第六章 插值与拟合

合集下载

插值与拟合实验

插值与拟合实验

x x x x
j 1 j 1 j + 1 j + 1
, x , x 其
j 1
≤ x
x ≤
≤ x
x
j
j
≤ 它
j + 1
1 , 6≤ x≤6 【例 2】 g ( x ) = 】 2 1+ x
用分段线性插值法求插值,并观察插值误差 用分段线性插值法求插值 并观察插值误差. 并观察插值误差 1.在[-6,6]中平均选取 个点作插值 在 中平均选取5个点作插值 中平均选取 个点作插值(xch11) 2.在[-6,6]中平均选取 个点作插值 在 中平均选取11个点作插值 中平均选取 个点作插值(xch12) 3.在[-6,6]中平均选取 个点作插值 在 中平均选取21个点作插值 中平均选取 个点作插值(xch13) 4.在[-6,6]中平均选取 个点作插值 在 中平均选取41个点作插值 中平均选取 个点作插值(xch14)
Matlab程序: 程序: 程序 ch607.m
【例 5】 】 已知飞机下轮廓线上数据如下, 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。 每改变0.1时的y 0.1时的
X Y
0 0
3 5 7 9 11 12 13 14 15 12 17 20 21 20 18 12 10 16
机翼下 轮廓线
【例 6】 】 测得平板表面3*5网格点处的温度分别为: 3*5网格点处的温度分别为 测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形。 试作出平板表面的温度分布曲面z=f(x,y)的图形。 z=f(x,y)的图形 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 先在三维坐标画出原始数据 输入以下命令: 输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值. 以平滑数据, 方向上每隔0.2个单位的地方进行插值. 0.2个单位的地方进行插值

插值与拟合

插值与拟合

插值与拟合大多数数学建模问题都是从实际工程或生活中提炼出来的,往往带有大量的离散的实验观测数据,要对这类问题进行建模求解,就必须对这些数据进行处理。

其目的是为了从大量的数据中寻找它们反映出来的规律。

用数学语言来讲,就是要找出与这些数据相应的变量之间的近似关系。

对于非确定性关系,一般用统计分析的方法来研究,如回归分析的方法。

对于确定性的关系,即变量间的函数关系,一般可用数据插值与拟合的方法来研究。

插值与拟合就是要通过已知的数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数对已知数据有较高的拟合进度。

如果要求这个近似函数经过所有已知的数据点,则称此类问题为插值问题。

当所给的数据较多时,用插值方法所得到的插值函数会很复杂,所以,通常插值方法用于数据较少的情况。

其实,通常情况下数据都是由观测或试验得到的,往往会带有一定的随机误差,因而,要求近似函数通过 所有的数据点也是没有必要的。

如果不要求近似函数通过所有的数据点,而是要求他能较好地反映数据的整体变化趋势,则解决这类问题的方法称为数据拟合。

虽然插值与拟合都是要构造已有数据的近似函数,但因对近似要求的准则不同,因此二者在数学方法上有很大的差异。

一、引例简单地讲,插值是对于给定的n 组离散数据,寻找一个函数,使该函数的图象能严格通过这些数据对应的点。

拟合并不要求函数图象通过这些点,但要求在某种准则下,该函数在这些点处的函数值与给定的这些值能最接近。

例1:对于下面给定的4组数据,求在110=x 处y 的值。

这就是一个插值问题。

我们可以先确定插值函数,再利用所得的函数来求110=x 处y 的近似值。

需要说明的是这4组数据事实上已经反映出x 与y 的函数关系为:x y =,当数据量较大时,这种函数关系是不明显的。

也就是说,插值方法在处理数据时,不论数据本身对应的被插值函数)(x f y =是否已知,它都要找到一个通过这些点的插值函数,此函数是被插值函数的一个近似,从而通过插值函数来计算被插值函数在未知点处的近似值。

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

插值与拟合

插值与拟合

且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为

插值与拟合应用举例

插值与拟合应用举例

插值与拟合1. 插值与拟合的基本概念插值与插值函数:已知由()g x (可能未知或非常复杂)产生的一批离散数据(,),0,1,,i i x y i n = ,且n+1个互异插值节点011n n a x x x x b -=<<<<= ,在插值区间内寻找一个相对简单的函数 ()f x ,使其满足下列插值条件:再利用已求得的 ()f x 计算任一非插值节点的近似值,这就是插值。

其中()f x 称为插值函数, ()g x 称为被插函数。

最小二乘拟合: 已知一批离散的数据 (,),0,1,,i i x y i n = ,i x 互不相同,寻求一个拟合函数 ()f x ,使()i f x 与i y 的误差平方和在最小二乘意义下最小。

在最小二乘意义下确定的 ()f x 称为最小二乘拟合函数。

温度问题在12小时内,每隔1小时测量一次温度。

温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。

(单位:℃)(1) 试估计在3.2h ,6.5h ,7.1h ,11.7h 的温度值,并画出其图形。

(2) 每隔1/10h 估计一次温度值,并画出其图形。

请你找出跟上述12个数据拟合的最好的一条曲线,请分别用分段线性插值、三次样条插值方法(至少用两条不同的曲线,并比较它们拟合好坏的程度)hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24];t=interp1(hours,temps,[3.2,6.5,7.1,11.7]) %线性插值 T=interp1(hours,temps,[3.2,6.5,7.1,11.7],'spline') %三次样条插值 计算结果为 t =10.2000 30.0000 30.9000 24.9000 T =9.6734 30.0427 31.1755 25.3820每隔1/10h 估计一次温度值并画出其图形: hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24]; h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'+',h,t,hours,temps,'r:') xlabel('时间'),ylabel('温度')三次多项式拟合: hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24]; a=polyfit(hours,temps,3) temps1=polyval(a,hours);plot(hours,temps,'ro',hours,temps1,'b.')得到320.00650.32837.1281 4.4343y x x x =--+-,图形如下:四次多项式拟合:得到4320.02730.7158 5.770712.225112.5884y x x x x =-+-+比较拟合的好坏:设ˆi y为拟合函数的值,i y 为测量值,则残差2ˆ()iiie y y=-∑ 。

插值与拟合

插值与拟合

常用方法——最小二乘法拟合
令: f (x) a1r1(x) a2r2 (x) .... amrm (x)
其中:rk(x)为事先选定的一组关于x的函数,ak为系数,
即求解ak,使下式最小
m
2
J (a1, a2 ,...,am ) min [ f ( xi ) yi ]
i 1
即使:
J 0, k (0, k ) ak
拉格朗日插值法
已知x0、x1、x2、x3、、、xn和y0、y1、y2、y3、、、yn 则可以构造一个经过这n+1个点的次数不超过n的多 项式y=Ln(x),使其满足:
Ln(xk)=yk,k=0、1、2、、、n •这样的Ln(x)就是通过拉格朗日插值得到的函数关系 •这样的方法叫做拉格朗日插值
注: 通过上述方法可得到一个次数不超过n的多项
2
1 n1
m1 1 (1 1)m1
m2
2 (1 2 )m2
n2
2
..
mn
1
n1
(1
n 1 )mn 1
3.代入原式
用matlab解插值
基本格式:Interp1(x,y,cx,'methed')
其中:x,y为已知的坐标 cx为待插值的点的横坐标 methed为插值方法,有如下:
10
11
12
13
14
15
16
10.20 10.32 10.42 10.50 10.55 10.58 10.60
解 :数据点描绘
11
10
9
8
7
6
5
4
0
2
4
6
8
10
12
14

插值与拟合

插值与拟合
max f (x) P(x)
x[ a ,b ]
即:有界区间上的连续函数被多项式一致逼近。
§ 7.1.4 实际应用中两种方法的选择
在实际应用中,究竟选择哪种方法比较恰 当?总的原则是根据实际问题的特点来决定采 用哪一种方法。具体说来,可从以下两方面来 考虑:
1.如果给定的数据是少量的且被认为是严 格精确的,那么宜选择插值方法。采用插值方 法可以保证插值函数与被插函数在插值节点处 完全相等。
2.如果给定的数据是大量的测试或统计的 结果,并不是必须严格遵守的,而是起定性地 控制作用的,那么宜选用数据拟合的方法。这 是因为,一方面测试或统计数据本身往往带有 测量误差,如果要求所得的函数与所给数据完 全吻合,就会使所求函数保留着原有的测量误 差;另一方面,测试或统计数据通常很多,如 果采用插值方法,不仅计算麻烦,而且逼近效 果往往较差。
0
(
x)

1

2
x x1

x0 x0

x x0
x1 x1
2


1(x)

1
2
x x1 x0 x1

x x0 x1 x0
2



2

0
(
x)

(
x

x0
)
(7.2.3)
下 面 的 (7.2.9) 、 (7.2.10) 两 式 构 成 了 三 次 Hermite 插值基本提法二的插值公式
P3(x) = 0(x)y0 1(x)y1 0(x)m0 1(x)m1 (7.2.9)
0 ( x)

(x ( x0

《插值与拟合》课件

《插值与拟合》课件

拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y(x)
h [( x
i i 1
n
i
x )( 2 a i y i y i ) y i ]
其中
n
2.MATLAB实现
function y=hermite(x0,y0,y1,x) %hermite interpolation n=length(x0);m=length(x); for k=1:m yy=0.0; for i=1:n h=1.0; a=0.0; for j=1:n if j~=i h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2; a=1/(x0(i)-x0(j))+a; end end yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i)); end y(k)=yy; end
1.方法介绍 在科学实验的统计方法研究中,往往要从一组实验 数据 ( x i , y i )中寻找出自变量x和因变量y之间的函数关 系y=f(x)。由于观测数据往往不够准确,因此并不要 ) 求y=f(x)经过所有的点 ( x i , y i ,而只要求在给定点 x i 上误差 i f ( x i ) y i 。按照某种标准达到最小,通常 采其欧氏范数 作为误差量度的标准。这就是所 谓的最小二乘法。
1.方法介绍 不少实际问题中不但要求在节点上函数值相等,而 且要求导数值也相等,甚至要求高阶导数值也相等, 满足这一要求的插值多项式就是Hermite插值多项 式。下面只讨论函数值与一阶导数值个数相等且已 知的情况。 已知n个插值节点 x 1 , x 2 , , x n 及其对应的函数 值 y 1 , y 2 , , y n 。和一阶导数值 y 1 , y 2 , , y n 。 y 即: ( x i ) y i , y ( x i ) y i , i 1, 2 , , n 。则计算插值 区域内任意x的函数值y的Hermite插值公式为:
y(x)

n
k 1
yk
n
x xj xk x j
j 1 jk
2.MATLAB实现
%lagrange interpolation function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end
所有的插值方法要求x0是单调的。x0也可能并非连续 等距的。当x0为等距且连续时可以用快速插值法。 使用这些方法的格式分别为'*1inear'、'*cubic'、 '*nearest'或'*spline'。x0为非连续的快速线性插值的 情况interplq。
【例6.1.3】正弦曲线的插值示例。
>>x0=0:1:10; y0=sin(x0); x1=0:0.25:10; y1=interp1(x0,y0,x1); plot(x0,y0,'o',x1,y1)
0.6
同类的函数 还有 Interplq interpfl spline interp2 interpn。
0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
0
1
2
3
4
5
6
7
8
9
10
>> x0=[-5:1:5]; >> y0=1./(1+x0.^2); >> x=[-5:0.1:5]; >> y=interp1(x0,y0,x); >> y1=1./(1+x.^2); >> plot(x,y,'--r',x,y1, '-b') >> legend('插值曲线', '原曲线')
x0=[-5:1:5]; y0=1./(1+x0.^2); x=[-5:0.1:5]; y=interp1(x0,y0,x,'spline'); y1=1./(1+x.^2); plot(x,y,'--r',x,y1, '-b') legend('插值曲线', '原曲线')
6.1.3 Hermite插值
3.习题举例
【例6.2.1】设 下表所示的数据。
y a b x cx ,用最小二乘法拟合如
2
x 0.5 1.0 1.5 2.0 2.5 3.0 y 1.75 2.45 3.81 4.80 8.00 8.60 此例用polyfit功能函数进行拟合。 在MATLAB 命令窗中输入
x0=[0.5 1.0 1.5 2.0 2.5 3.0]; y0=[1.75 2.45 3.81 4.80 8.00 8.60]; a=polyfit(x0,y0,2); x1=[0.5:0.05:3.0]; y1=a(1)*x1.^2+a(2)*x1+a(3); plot(x0,y0,'*') hold on plot(x1,y1,'-r')
10 9 8 7 6 5 4 3 2 1 0.5
1
1.5
2
2.5
3
【例6.2.2】用最小二乘法求一个形如 y a bx 2 的经 验公式,使它与下表所示的数据相拟合。
xi yi 19 25 31 38 44
19.0 32.3 49.0 73.3 98.8
下面用另一种方法来求解此拟合问题。用求解矩 阵的方法来解,把a,b看成是未知量。已知xi,yi求 解一超定方程。在MATLAB中实现为: x0=[19 25 31 38 44]; y0=[19.0 32.3 49.0 73.3 98.8]; x1=x0.^2; x1=[ones(5,1),x1']; ab=x1\y0'; x=[19:0.2:44]; y=ab(1)+ab(2)*x.^2; plot(x0,y0,'o') hold on plot(x,y,'-r')
100
90
80
70
60
50
40
30
20
10 15
20
25
30
35
40
45
除了polyfit命令实现拟合外,matlab还可以通过 basic—fitting完成拟合的功能。在basic—fitting 中首先画出历史数据的散点图,分析其所呈现的规 律,再进行拟合。 例如: >> Year=[1625,1830,1930,1960,1974,1987,1999]; >> Population=[5,10,20,30,40,50,60]; >> plot(Year,Population,'X'); >> xlabel('年份') >> ylabel('人口数量(亿人)')
1 0.8 0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
1
2
3
4
5
6
7
8
9
10
x0=0:1:10; y0=sin(x0); x1=0:0.005:10; y1=interp1(x0,y0,x1,'nearest'); figure(2) 1 plot(x0,y0,'o',x1,y1) 0.8
>>x0=[-5:1:5]; y0=1./(1+x0.^2); x=[-5:0.1:5]; y=lagrange(x0,y0,x); y1=1./(1+x.^2); plot(x,y,'--r',x,y1, '-b') legend('插值曲线', '原曲线')
插值曲线 原曲线
为了解决Runge问题,引入分段线性插值。
hi

(
x xj xi x j
)
2
j 1 ji
ai

n
1 xi x j
j 1 i j
3.习题举例 x0=[0.3 0.32 0.35]; y0=[0.29552 0.31457 0.34290]; y1=[0.95534 0.94924 0.93937]; x=[0.3:0.005:0.35]; y=hermite(x0,y0,y1,x); plot(x,y) y=hermite(x0,y0,y1,0.34) y2=sin(x); hold on plot (x,y2,'--r')
来拟合这些数据点,解决步骤如下:
来拟合这些数据点,解决步骤如下:
1.分别输入数据矩阵和函数值向量。
x 11 x 21 ... xm1 x 12 x 22 ... xm 2 ... ... ... ... x1n x2n ... xmn Y0 y1 y2 ... ym
yl=interp1(y0,x) 此格式默认x0=l:n,n为向量y0的元素 个数值,或等于矩阵y0的size(y,1)。 yl=interp1(x0,y0,x,'Method')
method用来指定插值的算法。默认为线性算法,其值可 以是如下的字符串。 · nearest 线性最近项插值。 · linear 线性插值。 · spline 三次样条插值。 · cubic 三次插值
相关文档
最新文档