Piezoelectric bending response and switching behavior of ferroelectric paraelectric bilayers

合集下载

安规必须要记得的一些专业术语

安规必须要记得的一些专业术语

安规必须要记得的一些专业术语安规---必须记好这些load test and short-circuit test 负载试验(短路试验)plugging 反接制动与反向intermittent periodic duty 反复短时工作制feedback control 反馈控制feedback loop 反馈回路luminous intensity 发光强度distributed capacitance 分布电容split phase motor 分相电动机fractional horsepower motor 分马力电动机nonlinear control system 非线性控制系统nonlinear (circuit) element 非线性(电路)元件nonlinearity 非线性second class load 二级负荷rated condition 额定工况rated value 额定值short-time duty 短时工作制short circuit current 短路电流short circuit 短路series resonance 串联谐振transducer 传感器(变换器)magnetic core 磁心magnetization curve 磁化曲线magnetic field 磁场magnetic field strength 磁场强度magnetic saturation 磁饱和magnetic hysteresis loop 磁滞回线magnetic flux 磁通量magnetic flux density 磁通密度superconductor 超导体uninterrupted duty 长期工作制programmed control 程序控制stepping motor 步进电动机parallel resonance 并联谐振differentiation protection 差动保护tachogenerator 测速发电机protective circuit 保护电路open loop control 闭环控制apparent power 表现功率comparator 比较器nominal value 标称值speed governing by frequency convertion 变频调速speed governing by pole changing 变极调速ampere-turns 安匝safety voltage 安全电压semiconductor devices 半导体器件thyristor 半导体开关元件semiconductor 半导体(absolute)magnetic permeability (绝对)磁导率current rating (of cable) [电缆的]载流量breaking capacity (of a switching device or a fuse)[开关电器的或熔断器的]分断能力auxiliary circuit(of a switching device) [开关电器的]辅助电路alternating component (of a pulsating voltage or current)[脉动电压或电流的]交流分量direct component(of a pulsating voltage or current)脉动电压或电流的]直流分量TTL circuitPI TTL电路PI regulatorPID 调节器PID regulatorPD 调节器PD regulator 调节器main circuit 主电路neutral point 中性点medium frequency 中频active power 有功功率active element 有源元件first class load 一级负荷hard magnetic material 硬磁材料direct control 直接控制direct coupling 直接耦合remote control 遥控sine wave 正弦波rectiffication 整流illuminance 照度operational amplifier 运算放大器load rate 用电负荷率piezoelectric effect 压电效应selector 选择器oxidation stability 氧化稳定性couplingMOS 耦合MOS circuit 电路linear control system 线性控制系统linear(circuit)element 线性(电路)元件linearity 线性gas protection 瓦斯保护reactive power 无功功率passive element 无源元件eddy current 涡流synchronous speed 同步转速on-load factor 通电持续率micromotor 微电机differentiator 微分电路regulated power supply 稳压电源voltage stabilizing circuit 稳压电路sequential order of the phases,phase sequence 相序phase 相位(位相,相角)phase displacement 相位移temperature rise 温升connection diagram of windings 绕组联结圈winding 绕组servo system 随动系统detuning 失调distortion 失真digital integrated circuit 数字集成电路digital display 数字显示digital quantity 数字量capacitive reactance 容抗third class load 三级负荷three-phase and three-wire sysyem 三相三线制three-phase and four-wire system 三相四线制soft magnetic material 软磁材料thermo-electric effect 热电效应thermal stability 热稳定性thermistor 热敏电阻servomotor 伺服电动机servo mechanism 伺服机构output 输出input 输入flashover,arc-over 闪络D filp flop D触发器DTL circuit DTL电路logic circuit 逻辑电路excitation 励磁(激磁)contravariant 逆变bus,busbar 母线(汇流排)continuous control 连续控制continuous system 连续系统interlock 连锁connection symbol 联结组标号torque motor 力矩电动机analog quantity 模拟量potential drop of internal resistance 内阻压降whirling speeds 临界转速full load 满载pulsating current 脉动电流pulsating voltage 脉动电压pulser,pulse generator 脉冲发生器puncture test 耐压试验ideal inductor 理想电感器ideal resistor 理想电阻器ideal voltage source 理想电压源ideal capacitor 理想电容器ideal current source 理想电流源ideal amplifier 理想放大器ideal transformer 理想变压器temperature classification,thermal stability classification 耐热等级filtering,filtration 滤波discrete system 离散系统zero-sequence protection 零序保护load,charge 负载(负荷)inductosyn 感应同步器induced voltage 感应电压inductive reactance 感抗high frepuency 高频photoelectric effect 光电效应overcurrent protection 过电流保护overvoltage protection 过电压保护mains frequency 工频power factor 功率因数constant control system 恒值控制系统phasing 核相(定相)glow discharge 辉光放电fundamental wave 基波integrator 积分电路mutual induction 互感应commutation 换向change-over switching 换接parasitic capacitance 寄生电容detector 检测装置relay protection 继电保护skin effect 集肤效应coercive force 矫顽力demodulation 解调dielectric loss 介质损耗contact voltage 接触电压contact resistance 接触电阻earth fault 接地故障ground device 接地装置resistance of an earthed conductor,earthing resistance 接地电阻cut-off 截止partial discharge 局部放电insulation resistance 绝缘电阻absorptance(absorption ratio) of insulation resistance 绝缘电阻的吸收比step vlotage 跨步电压programmable logic controllers 可编程序控制器no-load test 空载试验noload operation 空载运行open-circuit voltage 开路电压open loop control 开环控制diamagnetism 抗磁性control circuit 控制电器shielded cable 屏蔽电缆gas chromatograph test 气相色谱试验gas conduction 气体导电air gap 气隙signal circuit 信号电路small-power motor 小功率电动机resonance 谐振harmonic 谐波impedance 阻抗optimum control 最优控制autonomous control 自治调节synchro,selsyn 自整角机automatic reclosing equipment 自动重合闸automatic protection device 自动保护装置automatic control 自动控制automatic control system 自动控制系统automatic regulating system 自动调节系统slip 转差率electric circuit 电路electric current 电流bridge 电桥armature reaction 电枢反应voltage,electric potential difference 电压(电位差)electric corona,corona,corona discharge 电晕(放电)power supply 电源electric field 电场electromagnetic wave 电磁波electromagnetic induction 电磁感应electromotive force 电动势inductor 电感线圈electric arc 电弧electric spark 电火花electrolytic corrosion 电解腐蚀dielectric 电介质reactance 电抗clearance 电气间隙electronic approach switch 电子接近开关conductance 电导equivalent electric circuit 等效电路earth,ground 地speed regulation,speed governing 调速speed governing system 调速系统range of speed regulation 调速范围speed governing by voltage regulation 调压调速modulation 调制amplitude modulation 调幅frequency modulation 调频2、IEC试验室产品Abrasion test 磨损测试设备Apparatus for burning test (vertical and horizontal) 水平垂直燃烧测试设备Apparatus for production testing of hand tools for live working 手动测试工具Apparatus for winding a flexible pipe 软管弯折试验设备Appliance couplers test equipment (various) 各类测试连接器Automatic & manual production test equipment - for final control 自动/手动产品测试设备- 出厂控制Ball-pressure test apparatus 球压测试装置Bending equipment for conduits 管路弯折设备Bump test 冲击测试Burning test, horiz. 燃烧测试(水平)Cable test apparatus (various) 各类线缆测试Draining current measuring equipment 损耗电流测试设备Drip proof test(special) 淋浴测试Drop test 跌落测试Dust chamber 防尘箱Dynamometers 功率计Earth bond resistance tester Earthing resistance test appliance 接地电阻测试设备Electric resistance of non-metallic materials 非金属材料的电阻测试Gauges and similar mechanical checking devices 量规或类似测试装置Electrode arrangements 测试电极装置Flexing test equipment 弯折试验Fume cupboard (protective cabinet) 防护罩Flexing test apparatus for cables 线缆弯折试验装置Flame hoods 燃烧罩Endurance test appliance for plugs 插头寿命测试Equipment for testing refrigerators 冰箱测试设备Endurance test appliance 寿命测试Gauges for appliance inlets Gauges for finished lamps 灯具量规Gauges for lampholders 灯座量规Hot wire ignition test 热丝引燃测试Hipot testers Hot mandrel test apparatus 高压机High voltage test appliance 耐压测试High frequency spark generator 高频火花发生器High current transformers 高电流变送器High current arc ignition test 大电流起弧测试Heating tests 高温测试Heating cabinets 高温试验箱Hand held shower 手持花洒Ground continuity testers 接地电阻测试Gauges for plugs and sockets 插头插座量规Humidity chambers 横湿箱Gauges for starters 发动机量规Impact balls 冲击球Glass vessel for microwave oven testing 微波炉测试的玻璃容器Impact hammers 冲击锤Glow-wire test apparatus 灼热丝测试设备Impact weight apparatus Inductive loads 电感负载Jet nozzles 喷嘴Lampholder testing apparatus (various) 各类灯座测试设备Kit bunsen burner/ needle flame test 燃烧测试套件(本申/ 针焰)Leakage current test appliance 泄露电流测试设备Laboratory power supply with isolation and regulation 可控分离实验室电源Loading weights (various) 各类负重Laboratory stablized power supply unit 稳压源Luminaries testing equipment (various) 照明测试设备Measuring equipment for testing switches and socket-outlets (with DPM) 测试开关和插头插座测试设备Megohmeter 兆欧表Mechanical resistance testing apparatus for el. Irons Mechanismus for burning tests (vert. And h oriz.) 水平或垂直燃烧机架Needle flame burners 针焰燃烧工具Needle flame miniature burner 微型针焰燃烧工具Surge test circuit 浪涌测试Needle flame tester 针焰测试Resistance loads 电阻负载Scratch test equipment 刮擦测试设备Power sources 电源Probe for measuring surface temperature 表面温度探头Pendulum hammer 摆锤Plugs for endurance tests of socket-outlets 插头插座寿命测试Needle flame thermometer 针焰温度表Plugs and socket test equipment (various) 各类插头插座设备Splash testing apparatus 溅水测试Pendulum impact test apparatus 摆锤冲击测试Spray apparatus, tubes 喷水测试Solderability test apparatus 可焊性的测试设备Standard test enclosure 标准测试附件Temperature during operation, measuring equipment 温度测试Thermocouples 热电偶Temperature measurement 温度测试Test apparatus for IP tests IP 测试Torque test equipment 扭力测试Test finger nail 测试指甲Test panes for hob elements 燃气炉测试盘Test fingers 测试指Torsion apparatus 扭转测试Test hook 测试钩Tracking index apparatus 漏电起痕测试仪Test knifes 测试刀模Water evaporator 水蒸发器Test pin 测试真Tumbling barrel 滚筒试验装置Test probe 测试探头Variacs Vessel for testing induction hotplates 测试热传导的容器3、设备修理corrective maintenance 改善修理back repair rate 返修率stepped(sizing) repair 分级修理decentralized maintenance system 分散修理制waste and ungraded product and back repair loss 废次品及返修损失unscheduled maintenance time 非预定维修时间periodic repair task 定期修理作业periodic repair 定期维修法location accuracy 定位精度transmission accuracy 传动精度revision of overhaul plan 大修计划修改assesment of overhaul plan 大修计划考核overhaul planning 大修计划编制basis of overhaul plan 大修计划依据fulfilment rate of overhaul plan 大修计划完成率implementation of overhaul plan 大修计划实施overhaul cost 大修费用overhaul cost 大修成本构成overhaul cost analysis 大修成本分析fulfilment rate of overhaul cost 大修成本完成率overhaul guarantee 大修保修interval between overhauls, overhaul cycle 大修周期guarantee system of overhaul quality 大修质量保证体系overhaul quality evaluation 大修理质量评定overhaul quality control 大修理质量控制overhaul,capital repair 大修assembly repair 部件修理法partial repair 部分修理法compensation method 补偿法production program of spqre parts 备件生产计划stand-by or redundancy system 备份或冗余系统standard-size repair method 标准尺寸修理法“eight steps”method 八步法repeat location accuracy 重复定位精度middle repair 中修system with maintainable standby parts 有可维修备份的系统remote maintenance 远距离维修preventive maintenance 预防维修scheduled maintenance time 预定维修时间predictive maintenance 预知维修(状态监测维修)quality system 质量体系quality 质量deferred maintenance 逾期维修network planning 网络计划maintenance skill training 维修技术培训maintenance interval, uptime 维修间隔(正常运行时间)economic analysis of maintenance activities 维修活动的经济分析maintenance worker 维修工人maintenance protection 维修防护maintenance shop 维修车间maintenance prevention 维修预防maintenance cycle 维修周期maintenance time 维修时间synchronous repair 同步修理法repair downtime 停修时间item repair 项修(项目修理)repair on commission 外委修理(TPM)total production maintenance system 全员参加的生产维修制controlled maintenance 受控维修life cycle maintenance 寿命周期维修hot repair 热修repair schedule of equipment 设备修理计划acceptance check for equipment repair 设备修理验收quarterly repair schedule of equipment 设备季度修理计划technical check of equipment 设备技术考核equipment overhaul plan 设备大修计划monthly repair schedule of equipment 设备月度修理计划equipment maintenance plan 设备维修计划three essential factors of equipment maintenance 设备维修三要素item repair plan of equipment 设备项修计划annual repair schedule of equipment 设备年度修理计划breakdown maintenance 事后修理first-aid repair 抢修accuracy of machine tool after overhaul 大修机床精度rolling (circulation) plan 滚动计划MIS maintenance 管理信息系统维修process capacity index 工程能力指数working accuracy 工作精度recovery repair 恢复性修理rotational accuracy of machine tool 机床旋转精度machine repair shop 机修车间(分厂)maintenance mechanic 机修技工mechanical repair method 机械修复法instantaneous efficiency of machinery 机械的瞬时效率interchange method 互换法inspection 检验centralized maintenance system 集中修理制geometric accuracy 几何精度seasonal repair 季节性修理repair out of plan 计划外修理scheduled maintenance 计划维修planned preventive maintenance system 计划预修制planned repair 计划修理contact accuracy 接触精度emergency repair task 紧急修理作业machining and fitting method on the spot 就地加工修配法precision index 精度指数accuracy standard 精度标准precision retaining ability 精度保持性precision reserve 精度储备fine repair 精修fine repair mechanic 精修技工economic accuracy 经济精度balancing precision grade 平衡精度等级mean time to repair(MTTR), mean repair time 平均修理时间minor repair 小修fitting method 修配法repair link 修配环repair specification 修理任务书repair rasks dispatch 修理施工调度repair time, shutdown time 修理时间downtime quota for equipment repair 修理停歇时间定额repair facilities 修理用设备repair quality 修理质量repair quality index 修理质量指标repair quality plan 修理质量计划repair quality assessment 修理质量考核repair symbols 修理标识repair cost assessment 修理成本考核repair size 修理尺寸repair quota 修理定额repair cost quota 修理费用定额repair scheme 修理方案repair manhour quota 修理工时定额repair manhours assessment 修理工时考核repair technology 修理工艺maintenance engineering truck 修理工程车maintenance tool 修理工具repair time limit assessment 修理工期考核repair assessment 修理考核inspection before repair 修前预检measuring and drawing before repair 修前测绘inquiry before repair 修前访问service after repair 修后服务optimum repair cycle 最优修理周期assembly accuracy 装配精度electric repair shop 电修车间(分厂)maintenance electrician 电修技工repair cost accounting for single equipment 单台设备修理费用核算adjustment method 调整法adjusting link 调整环4、设备管理probability 概率(几率)variance 方差decentralized maintenance 分散维修dynamic test 动态试验power facilities management 动力设备设施管理duct-proof and protective equipment management 除尘、防护设备管理sampling investigation 抽样调查domestic production management of imported spare parts 备件国产化管理standard deviation 标准偏差budget of installation 安装预算machine contracting system 包机制regulation of check and lubrication before on shift 班前检查与润滑制度shift relief system [设备]交接班制度《Equipment Management Regulation》《设备管理条例》(《条例》)《repair [设备]修理maintenance (and repair) [设备]维修key-point investigation 重点调查management of key-point equipment 重点设备管理key-point equipment 重点设备liability accident 责任事故exponential distribution 指数分布histogram 直方图prepayment and collection 预付与托收承付prophylactic test 预防性试验prevention first 预防为主orthogonal design 正交设计法(正交试验法)normal distribution 正态分布transportation vehicle management system 运输车辆管理制度three guarantees of quality 质量“三包”accident due to quality 质量事故management regulation of pressure vessel 压力容器管理制度mean time to failure 无故障运行时间Weibull distribution 威布尔分布idle equipment management 闲置设备管理制度idle plant 闲置设备statistical analysis 统计分析maintainability 维修性maintenance information management 维修信息管理combination of service and planned maintenance 维护与计划检修相结合random event 随机事件numerical control (NC) equipment management 数控设备管理three-level service system 三级保养制mathematical expectation 数学期望mathematical model 数学模型mathematical statistics 数理统计technical facilities in production 生产技术装备production equipment 生产设备life cycle cost (LCC) 寿命周期费用mangement regulation of lubricant warehouse 润滑油库管理制度commodity inspection 商检(商品检验)combination of design, manufacturing and operation 设计、制造与使用相结合investigation on plant 设备调研reliability reliability theory 设备的可靠性与可靠度energy saving property of plant 设备的节能性facility inspection and appraise through comparison for plant 设备的检查评比plant check system 设备点检制度environmental protection property of plant 设备的环保性complete set of plant 设备的成套性safety of plant 设备的安全性productivity of plant 设备的生产率durability of plant 设备的耐用性flexibility of plant 设备的灵活性equipment condition monitoring and diagnostic technology manage 设备状态监测与诊断技术管理equipment condition management systen 设备状态管理制度total plant management 设备综合管理dynamic management system of plant assets 设备资产动态管理制度plant leasing 设备租赁preparation system before equipment repair 设备修前准备制度man-hours quota for equipment repair 设备修理工时定额expense quota for equipment repair 设备修理费用定额material quota for equipment repair 设备修理材料定额acceptance regulation of equipment repair quality 设备修理质量验收制度equipment model 设备型号type of equipment 设备型式economical life of equipment 设备经济寿命operation and business management system 设备经营管理制度technical document of plant 设备技术档案technical conditions of equipment 设备技术状况technical condition management of plant 设备技术状态管理management system for technical document and file of plant 设备技术资料管理制度technical properties of plant 设备技术性能technical life of equipment 设备技术寿命specialized cooperation of plant maintenance 设备检修专业化协作planning and management regulation of plant maintenance 设备检修计划管理制度plant maintenance plan 设备检修计划plant maintenance specification 设备检修规程plant maintenance quality 设备检修质量design and construction of equipment foundation 设备基础设计与施工management of equipment order contract 设备合同管理feasibility studies of plant project 设备规划可行性分析investment plan of plant 设备规划performance of plant 设备功能(效能)operational capability of plant 设备工作能力examination and check systems of plant management 设备管理考核制度economic responsibility regulation of plant management 设备管理经济责任制度post standard of plant management 设备管理岗位标准plant management systems 设备管理制度downtime quota for equipment repair 设备管理停歇时间定额(停歇天数)plant engineering modernization 设备管理现代化plant management, plant enginerring 设备管理fixed plant assets management systems 设备固定资产管理制度equipment failure 设备故障plant renewal management 设备更新管理制度plant renewal 设备更新plant replacement 设备更换post responsibility of plant management 设备岗位责任equipment modification management system 设备改造管理制度plant reconstruction, plant modernization 设备改造classified management of plant 设备分级管理operation regulation with fixed qualified operator and fixed eq 设备定人定机、凭证操作规定“five disciplines”of plant operation 设备操作的“五项纪律”operation specification of equipment 设备操作规程management regulation of equipment spare parts 设备备品配件管理制度management regulation of equipment spare parts inventory 设备备件库房管理制度to quote plant price 设备报价discard of plant 设备报废equipment installation management 设备安装管理equipment installation 设备安装tours system to inspect plant 设备巡回检查制度to enquire plant price 设备询价plant model selection 设备选型acceptance check and reception systems of plant 设备验收交接制度statistic-reporting system of plant 设备统计报表制度technical document and date for plant maintenance 设备维修技术资料management regulation of plant maintenance technology 设备维修技术管理制度equipment maintenance quota 设备维修定额equipment service specification 设备维护规程unit account of plant 设备台帐equipment perfectness norm 设备完好标准plant in good condition 设备完好claims for equipment 设备索赔specifications of usage 设备使用规程information feedback management in initial operation period of pl 设备使用初期信息反馈管理management regulation for operation and service of equipment 设备使用与维护管理制度life-cycle management of plant 设备全过程管理life of equipment 设备寿命lubrication management regulation of plant 设备润滑管理制度“five fixation” of lubrication 设备润滑“五定”accident management regulation of plant 设备事故管理制度three do not let pass of plant accident 设备事故“三不放过”plant accident 设备事故region responsibility system of plant maintenance 设备区域维修负责制fore period and later period management of plant 设备前期管理和后期管理regulation of fore period management of plant 设备前期管理规定wear compensation for plant 设备磨损补偿plant ageing 设备老化arithmetic mean 算术平均值(均值)coercionary service system 强制保养制effect coefficient of investment 投资效果系数economic management system of plant 设备经济管理制度excellence selection activity in plant management 设备管理评优活动Pareto chart 排列图(帕累托图)load test 负荷试验breakdown time 故障停机时间technological adaptability 工艺适应性supervision of engineering facilities 工程设备监理management of proccess-control-point equipment 工序控制点设备管理contract change and cancellation 合同变更与解除combined maintenance 混合维修regression analysis 回归分析interval between inspections 检查间隔期socialization of maintenance 检修社会化centralized maintenance 集中维修technical advancement 技术先进性combination of technical management and economic management 技术管理与经济管理相结合computer-aided plant management 计算机辅助设备管理P)planned preventive maintenance system 计划预修制度(ЛЛFOB of imported equipment 进口设备离岸价imported equipment management 进口设备管理CIF of imported equipment 进口设备到岸价precise,large scale,rare plant 精、大、稀设备management of precise,large scale,rare equipment 精、大、稀设备管理“five fixed” of precise,large scale,rare,critical equipme 精、大、稀、关键设备的“五定”economy 经济性static test 静态试验open-case inspection 开箱检查average deviation 平均偏差mean waiting time,MWT 平均等待时间repair cycle 修理周期structure of repair cycle 修理周期结构combination of repair, modernization and renewal 修理、改造与更新相结合complexity coefficient of repair 修理复杂系数time between repairs 修理间隔期leased equipment management system 租赁设备管理制度time value of fund 资金的时间价值natural accident 自然事故self-made equipment 自制设备management system for selfmade equipment 自制设备管理制度self-made spare parts management system 自制备件管理制度combination of professional management and mass management 专业管理与群众管理相结合transfer of facility 转让设备(设备调剂)typical investigation 典型调查areal (departmental) repair center 地区(部门)修理中心recovery ratio of used oil 废油回收率perfectness ratio of power plant 动力设备完好率fulfillment ratio of periodic service 定期保养完成率mean downtime(days) due to overhaul 大修理平均停歇天数perfectness ratio of key-point equipments 重点设备完好率qualification ratio under first acceptance check 一次交验合格率availability of plant in use 在用设备可利用率utilization ratio of installed equipments 已安装设备利用率annual profit ratio per 10000 yuan fixed assets 万元固定资产年创利润率maintenance expense for 1000 yuan production value 万元产值占用维修费用installation ratio of owned equipments 实有设备安装率comprehensive utilization ratio of plant 设备综合利用率added value rate of plant assets 设备资产增值率capital investment recovery period of plant 设备资产投资回收期newness degree of plant 设备新度profit ratio vs net book value of plant 设备净资产创利润率utilization ratio of planned time of plant 设备计划台时利用率constitution ratio of plant 设备构成比load rate of plant 设备负荷率back repair rate 设备返修率utilization ratio of institutional time of plant 设备制度台时利用率idelness ratio of plant 设备闲置率plant capital investment recovery ratio 设备投资回收报率capital investment recovery period of plant 设备投资产出比perfectness ratio of plant 设备完好率plant daily service fulfillment ratio 设备日常保养完成率incident frequency 设备事故频率utilization ratio 设备利用率down time ratio to accident (failure) 事故[故障]停机率fulfillment ratio of cleaning and oil change plan 清洗换油计划完成率mean repair cost per complexity coefficient of repair 每个修理复杂系数平均大修理成本maintenance expense per repair complexity coefficient 每个复杂系数占用维修费用industrial increase value ratio per 10000 yuan fixed assets 每万元固定资产创工业增加值率failure intensity 故障强度failure frequency 故障频率perfectness ratio of critical equipments 关键设备完好率perfectness raito of precise,large scale and rare equipments 精大稀设备完好率availability 可利用率(有效利用率)mean down time,MDT 平均停机时间mean time between failture 平均故障间隔期,平均无故障工作时间fulfillment ratio of repair plan 修理计划完成率。

材料科学专业学术翻译必备词汇

材料科学专业学术翻译必备词汇

材料科学专业学术翻译必备词汇38凝胶sol-gel 78环氧树脂epoxy39应变strain 79纳米tio tio编英文40性能研究properties 80掺杂doped 中文号41晶粒grain 81拉伸强度strength1合金alloy42粒径size 82阻尼damping2材料material43硬度hardness 83微观结构microstructure 3复合材料properties44粒子particles 84合金化alloying4 制备preparation45涂层coating 85制备方法preparation5强度strength46氧化oxidation 86沉积deposition6力学mechanical47疲劳fatigue 87透射电镜tem7力学性能mechanical48组织microstructure 88模量modulus8复合composite9薄膜films 49石墨graphite 89水热hydrothermal50机械mechanical 90磨损性wear10基体matrix51相变phase 91凝固solidification 11增强reinforced52冲击impact 92贮氢hydrogen12非晶amorphous53形貌morphology 93磨损性能wear13基复合材料composites54有机organic 94球磨milling14纤维fiber55损伤damage 95分数fraction15纳米nanometer56有限finite 96剪切shear16金属metal57粉体powder 97氧化物oxide17合成synthesis58无机inorganic 98直径diameter18界面interface59电化学electrochemical 99蠕变creep19颗粒particles60梯度gradient 100弹性模量modulus20法制备prepared61多孔porous 101储氢hydrogen21尺寸size62树脂resin 102压电piezoelectric 22形状shape63扫描电镜sem 103电阻resistivity23烧结sintering64晶化crystallization 104纤维增强composites 24磁性magnetic65记忆合金memory 105纳米复合材料preparation 25断裂fracture66玻璃glass 106制备出prepared26聚合物polymer67退火annealing 107磁性能magnetic27衍射diffraction68非晶态amorphous 108导电conductive28记忆memory69溶胶-凝胶sol-gel 109晶粒尺寸size29陶瓷ceramic70蒙脱土montmorillonite 110弯曲bending30磨损wear71样品samples 111光催化tio31表征characterization72粒度size 112非晶合金amorphous 32拉伸tensile73耐磨wear 113铝基复合材料composites 33形状记忆memory74韧性toughness 114金刚石diamond34摩擦friction75介电dielectric 115沉淀precipitation 35碳纤维carbon76颗粒增强rein forced 116分散dispersion36粉末powder77溅射sputtering 117电阻率resistivity37溶胶sol-gel118显微组织microstructure 119sic复合材料sic120硬质合金cemented121摩擦系数friction122吸波absorbing123杂化hybrid124模板template125催化剂catalyst126塑性plastic127晶体crystal128sic颗粒sic129功能材料materials130铝合金alloy131表面积surface132填充filled133电导率conductivity 134控溅射sputtering135金属基复合材料composites 136磁控溅射sputtering137结晶crystallization 138磁控magnetron139均匀uniform140弯曲强度strength141纳米碳carbon142偶联coupling143电化学性能electrochemical 144及性能properties145al复合材料composite146高分子polymer147本构constitutive 148晶格lattice149编织braided150断裂韧性toughness151尼龙nylon152摩擦磨损性friction153耐磨性wear154摩擦学tribological155共晶eutectic156聚丙烯polypropylene 157半导体semiconductor 158偶联剂coupling159泡沫foam160前驱precursor161高温合金superalloy162显微结构microstructure163氧化铝alumina164扫描电子显微镜sem165时效aging166熔体melt167凝胶法sol-gel168橡胶rubber169微结构microstructure170铸造casting171铝基aluminum172抗拉强度strength173导热thermal174透射电子显微镜tem175插层intercalation176冲击强度impact177超导superconducting178记忆效应memory179固化curing180晶须whisker181溶胶-凝胶法制sol-gel182催化catalytic183导电性conductivity184环氧epoxy185晶界grain186前驱体precursor187机械性能mechanical188抗弯strength189粘度viscosity190热力学thermodynamic191溶胶-凝胶法制备sol-gel192块体bulk193抗弯强度strength194 粘土clay195微观组织microstructure196孔径pore197玻璃纤维glass198压缩compression199摩擦磨损wear200马氏体martensitic201制得prepared202复合材料性能composites203气氛atmosphere204制备工艺preparation205平均粒径size206衬底substrate207相组成phase208表面处理surface209杂化材料hybrid210材料中materials211 断口fracture212增强复合材料composites213马氏体相变transformation214球形spherical215混杂hybrid216聚氨酯polyurethane217纳米材料nanometer218位错dislocation219纳米粒子particles220表面形貌surface221试样samples222电学properties223有序ordered224电压voltage225析出phase226拉伸性tensile227大块bulk228立方cubic229聚苯胺polyaniline230抗氧化性oxidation231增韧toughening232物相phase233表面改性modification234拉伸性能tensile235相结构phase236优异excellent237介电常数dielectric238铁电ferroelectric 复合材料力学性239“冃能composites 240碳化硅sic241共混blends242炭纤维carbon243复合材料层composite 244挤压extrusion 245表面活性剂surfactant 246阵列arrays247高分子材料polymer248应变率strain249短纤维fiber250摩擦学性能tribological 251浸渗infiltration 252阻尼性能damping253室温下room254复合材料层合板composite 255剪切强度strength256流变rheological 257磨损率wear258化学气相沉积deposition 259热膨胀thermal260屏蔽shielding261发光luminescence 262功能梯度functionally 263层合板laminates 264器件devices265铁氧体ferrite266刚度stiffness267介电性能dielectric268xrd分析xrd269锐钛矿anatase270炭黑carbon271热应力thermal272材料性能properties 273溶胶-凝胶法sol-gel274单向unidirectional 275衍射仪xrd276吸氢hydrogen 277水泥cement278退火温度annealing279粉末冶金powder280溶胶凝胶sol-gel281熔融melt282钛酸titanate283磁合金magnetic284脆性brittle285金属间化合物intermetallic286非晶态合金amorphous287超细ultrafine288羟基磷灰石hydroxyapatite289各向异性anisotropy290镀层coating291颗粒尺寸size292拉曼raman293新材料materials294tic颗粒tic295孔隙率porosity296制备技术preparation297屈服强度strength298金红石rutile299采用溶胶-凝胶sol-gel300电容量capacity301热电thermoelectric302抗菌antibacterial303聚酰亚胺polyimide304二氧化硅silica305放电容量capacity306层板laminates307微球microspheres308熔点melting309屈曲buckling310包覆coated311致密化densification312磁化强度magnetization313疲劳寿命fatigue314本构关系constitutive315组织结构microstructure316综合性能properties317热塑性thermoplastic318形核nucleation319复合粒子composite320材料制备preparation321晶化过程crystallization322层间interlaminar323陶瓷基ceramic324多晶polycrystalline325纳米结构nanostructures326纳米复合composite327热导率conductivity328空心hollow329致密度density330x射线衍射仪xrd331层状layered332矫顽力coercivity333纳米粉体powder334界面结合interface335超导体superconductor336衍射分析diffraction337纳米粉powders338磨损机理wear339泡沫铝aluminum340进行表征characterized341梯度功能gradient342耐磨性能wear343平均粒particle344聚苯乙烯polystyrene345陶瓷基复合材料composites346陶瓷材料ceramics347石墨化graphitization348摩擦材料friction349熔化melting350多层multilayer351及其性能properties352酚醛树脂resin353电沉积electrodeposition354分散剂dispersant355相图phase356复合材料界面interface357壳聚糖chitosan e 436粘弹性viscoelastic 358抗氧化性能oxidation 397薄膜材料films 437基体合金alloy359钙钛矿perovskite 398导热系数conductivity 438单相phase360分层delamination 399居里curie 439梯度材料material361热循环thermal 400第二相phase 440六方hexagonal 362氢量hydrogen 401复合材料制备composites 441四方tetragonal 363蒙脱石montmorillonite 402多孔材料porous 442蜂窝honeycomb 364接枝grafting 403水热法hydrothermal 443阳极氧化anodic365导率conductivity 404原子力显微镜afm 444塑料plastics366放氢hydrogen 405压电复合材料piezoelectric 445超塑性superplastic 367微粒particles 406尼龙6 nylon 446sem观察sem368伸长率elongation 407高能球磨milling 447烧蚀ablation369延伸率elongation 408显微硬度microhardness 448复合薄膜films370烧结工艺sintering 409基片substrate 449树脂基resin371层合laminated 410纳米技术nanotechnology 450高聚物polymer372纳米级nanometer 411直径为diameter 451气相vapor373莫来石mullite 412织构texture 452电子能谱xps374磁导率permeability 413氮化nitride 453硅烷偶联coupling 375填料filler 414热性能properties 454团聚particles 376热电材料thermoelectric 415磁致伸缩magnetostriction 455基底substrate 377射线衍射ray 416成核nucleation 456断口形貌fracture378铸造法casting 417老化aging 457抗压强度strength379粒度分布size 418细化grain 458储能storage380原子力afm 419压电材料piezoelectric 459松弛relaxation 381共沉淀coprecipitation 420纳米晶amorphous 460拉曼光谱raman382水解hydrolysis 421si合金si 461孔率porosity383抗热thermal 422复合镀层composite 462沸石zeolite384高能球ball 423缠绕winding 463熔炼melting385干摩擦friction 424抗氧化oxidation 464磁体magnet386聚合物基polymer 425表观apparent 465sem分析sem387疲劳裂纹fatigue 426环氧复合材料epoxy 466润湿性wettability 388分散性dispersion 427甲基methyl 467电磁屏蔽shielding 389硅烷silane 428聚乙烯polyethylene 468升温heating390弛豫relaxation 429复合膜composite 469致密dense391物理性能properties 430表面修饰surface 470沉淀法precipitation 392晶相phase 431大块非晶amorphous 471差热分析dta393饱和磁化强度magnetization 432结构材料materials 472成功制备prepared 394凝固过程solidification 433表面能surface 473复合体系composites 395共聚物copolymer 434材料表面surface 474浸渍impregnation 396光致发光photoluminescenc 435疲劳性能fatigue 475力学行为behavior476复合粉体powders 516晶型crystal 556摩擦因数friction477沥青pitch 517介电损耗dielectric 557钛基titanium478磁电阻magnetoresistance 518 复合涂层coating 558磁性材料magnetic479导电性能conductivity 519压电陶瓷piezoelectric 559制备纳米nanometer 480光电子能谱xps 520磨损量wear 560界面上interface481材料力学mechanical 521组织与性能microstructure 561晶粒大小size482夹层sandwich 522合成法synthesis 562阻尼材料damping483玻璃化glass 523烧结过程sintering 563热分析thermal484衬底上substrates 524金属材料materials 564复合材料层板laminates 485原位复合材料composites 525引发剂initiator 565二氧化钛titanium486智能材料materials 526有机蒙脱土montmorillonite 566沉积法deposition 487碳化物carbide 527水热法制hydrothermal 567光催化剂tio488复相composite 528再结晶recrystallization 568余辉afterglow489氧化锆zirconia 529沉积速率deposition 569断裂行为fracture490基体材料matrix 530非晶相amorphous 570颗粒大小size491渗透infiltration 531尖端tip 571合金组织alloy492退火处理annealing 532淬火quenching 572非晶形成amorphous 493磨粒wear 533亚稳metastable 573杨氏模量modulus494氧化行为oxidation 534穆斯mossbauer 574前驱物precursor 495细小fine 535穆斯堡尔mossbauer 575过冷alloy496基合金alloy 536偏析segregation 576尖晶石spinel497粒径分布size 537种材料materials 577化学镀electroless 498润滑lubrication 538先驱precursor 578溶胶凝胶法制备sol-gel499定向凝固solidification 539物性properties 579本构方程constitutive 500晶格常数lattice 540石墨化度graphitization 580磁学magnetic501晶粒度size 541中空hollow 581气氛下atmosphere 502颗粒表面surface 542弥散particles 582钛合金titanium503吸收峰absorption 543淀粉starch 583微粉powder504磨损特性wear 544水热法制备hydrothermal 584压电性piezoelectric 505水热合成hydrothermal 545涂料coating 585sic晶须sic506薄膜表面films 546复合粉末powder 586应力应变strain507性质研究properties 547晶粒长大grain 587石英quartz508试件specimen 548sem 等sem 588热电性thermoelectric 509结晶度crystallinity 549复合材料组织microstructure 589相转变phase510聚四氟乙烯ptfe 550界面结构interface 590合成方法synthesis511硅烷偶联剂silane 551煅烧calcined 591热学thermal512碳化carbide 552共混物blends 592气孔率porosity513试验机tester 553结晶行为crystallization 593永磁magnetic514结合强度bonding 554混杂复合材料hybrid 594流变性能rheological 515薄膜结构films 555laves 相laves 595压痕indentation596热压烧结sintering 636弹性体elastomer 676隐身stealth597正硅酸乙酯teos 637金属氧化物oxide 677比强度strength598点阵lattice 638均匀化homogenization 678改性研究modification 599梯度功能材料fgm 639吸收光谱absorption 679采用粉末powder600带材tapes 640磨损行为wear 680晶粒细化grain601磨粒磨损wear 641高岭土kaolin 681抗磨wear602碳含量carbon 642功能梯度材料fgm 682元合金alloy603仿生biomimetic 643滞后hysteresis 683剪切变形shear604快速凝固solidification 644气凝胶aerogel 684高温超导superconducting 605预制preform 645记忆性memory 685金红石型rutile606差示dsc 646磁流体magnetic 686晶化行为crystallization 607发泡foaming 647铁磁ferromagnetic 687催化性能catalytic608疲劳损伤fatigue 648合金成分alloy 688热挤压extrusion609尺度size 649微米micron 689微观microstructure 610镍基高温合金superalloy 650蠕变性能creep 690tem观察tem611透过率transmittance 651聚氯乙烯pvc 691缺口冲击impact612溅射法制sputtering 652湮没annihilation 692生物材料biomaterials 613结构表征characterization 653断裂力学fracture 693涂覆coating614差示扫描dsc 654滑移slip 694纳米氧化nanometer615通过sem sem 655差示扫描量热dsc 695x射线光电子能谱xps616水泥基cement 656等温结晶crystallization 696硅灰石wollastonite617木材wood 657树脂基复合材料composite 697摩擦条件friction618tem分析tem 658阳极anodic 698衍射峰diffraction619量热calorimetry 659退火后annealing 699块体材料bulk620复合物composites 660发光性properties 700溶质solute621铁电薄膜ferroelectric 661木粉wood 701冲击韧性impact622共混体系blends 662交联crosslinking 702锐钛矿型anatase623先驱体precursor 663过渡金属transition 703凝固组织microstructure 624晶态crystalline 664无定形amorphous 704磨损试验机tester625冲击性能impact 665拉伸试验tensile 705丙烯酸甲酯pmma626离心centrifugal 666溅射法sputtering 706raman 光谱raman627断裂伸长率elongation 667硅橡胶rubber 707减振damping628有机-无机organic-inorganic 668明胶gelatin 708聚酯polyester629块状bulk 669生物相容性biocompatibility 709体材料materials630相沉淀precipitation 670界面处interface 710航空aerospace631织物fabric 671陶瓷复合材料composite 711光吸收absorption632因数coefficient 672共沉淀法制coprecipitation 712韧化toughening633合成与表征synthesis 673本构模型constitutive 713疲劳裂纹扩展fatigue634缺口notch 674合金材料alloy 714超塑superplastic 635靶材target 675磁矩magnetic 715凝胶法制备gel716半导体材料semiconductor 717剪应力shear718发光材料luminescence 719凝胶法制gel720甲基丙烯酸甲酯pmma721硬质hard722摩擦性能friction723电致变色electrochromic 724超细粉powder725增强相reinforced726薄带ribbons727结构弛豫relaxation728光学材料materials729sic陶瓷sic730纤维含量fiber731高阻尼damping732镍基nickel733热导thermal734奥氏体austenite735单轴uniaxial736超导电性superconductivity 737咼温氧化oxidation738树脂基体matrix739含能energetic740粘着adhesion741穆斯堡尔谱mossbauer742脱层delamination 743反射率reflectivity744单晶高温合金superalloy745粘结bonded746快淬quenching747熔融插层intercalation748外加applied749钙钛矿结构perovskite750减摩friction751复合氧化物oxide752苯乙烯styrene753合金表面alloy754爆轰detonation755长余辉afterglow 756断裂过程757纺织fracturetextile。

新压电复合圆柱壳结构声辐射的主动控制

新压电复合圆柱壳结构声辐射的主动控制

SMART MATERIALS AND STRUCTURES
doi:10.1088/0964-1726/22/6/065003
Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer
1. Introduction
The discovery of piezoelectric materials has initiated an era in which electroacoustic transducers are playing an important role in distinguishing the threat of submarines and warships. A great many piezoelectric patches are closely distributed in planar, cylindrical, or spherical sonar arrays mounted on the submarines and ships. An external control voltage excites the piezoelectric patches and causes the sonar arrays to radiate sound into the far field, which is the fundamental principle of active sonar. Therefore, laminated cylindrical shells coated with a piezoelectric layer which is divided into lots of piezoelectric patches can be taken as simple sound projectors when an applied control voltage drives the smart patches. If an external load is applied on the piezoelectric cylindrical shells,

具有压电元件圆薄板传感器的非线性弯曲

具有压电元件圆薄板传感器的非线性弯曲

第31卷第2期辽宁工程技术大学学报(自然科学版)2012年4月V ol.31No.2Journal of Liaoning T echnical University(Natural Science)Apr.2012文章编号:1008-0562(2012)02-0260-04具有压电元件圆薄板传感器的非线性弯曲王浩1,徐加初2(1.暨南大学理工学院,广东广州510632;2.暨南大学应用力学研究所,广东广州510632)摘要:为解决在作用电压和机械力的耦合载荷作用下具有压电元件圆薄板传感器的非线性弯曲问题,基于V on Karman薄板非线性理论和压电本构方程,导出具有压电元件圆薄板传感器非线性弯曲控制方程.利用修正迭代法得到在机、电载荷共同作用下轴对称圆薄板的载荷、挠度和电压的关系式.通过算例分别讨论机械载荷和作用电压的变化对圆薄板弯曲变形的影响,结果表明:通过改变压电元件作用电压的大小和方向,可以有效地控制圆板的曲变形.该成果对具有压电元件圆薄板传感器弯曲变形控制具有一定的理论指导意义.关键词:非线性弯曲;压电元件;弹性圆薄板;传感器;修正迭代法;载荷;挠度;电压中图分类号:O343.9文献标志码:ANonlinear bending of thin circular plate sensors withpiezoelectric patches bondedWANG Hao1,XU Jiachu2(1.College of Science and Engineer ing,J ina n Univer sity,G ua ngzhou510632,China;2.Institute of Applied Mechanics,Jinan Univer sity,Guangzhou510632,China)Abstra ct:In order to investigate the problem associated with nolinear bending of pressure sensor of circular thin plate with piezoelectric patches under the action of coupling load of mechanical pressure and applied voltage, based on Von Karman plate theory and basic piezoelectricity equation,the nonlinear bending governing equation is derived and solved using modified iterative method in this study.The nonlinear relation of load,deflection and applied voltage is obtained.Numerical example shows that the bending deflection of the circular plate can be effectively controlled by regulating the magnitude and direction of voltage applied.The study results provide some useful value.Keywords:nolinear bending;piezoelectric patch;elastic thin circular plate;sensor;modified iterative method;load;deflection;applied voltage0引言压电材料作为功能材料的一种,以其特有的可设计性和机电耦合性质,被广泛用于各个工程领域,尤其作为智能传感器和执行器中核心元件发挥重要作用.因此,对具有压电材料的智能结构的强度、弯曲、屈曲和振动等力学行为的已被广泛关注.国内外对压电功能材料的研究已有大量成果.文献[1]基于经典板小绕度理论和压电理论,导出功能弹性薄板小绕度屈曲和弯曲微分方程;文献[2]假设梯度材料的物性参数为板厚度方向坐标的幂函数,应用达朗贝尔原理,导出了具有压电元件的功能梯度弹性薄板的动力学方程;文献[3]用V on Karman薄板非线性理论、压电基本方程和经典层合板理论,对上、下表面粘有压电传感膜层的圆薄板压力传感器的力一电耦合特性进行了定理分析;文献[4]分析了在热环境条件下受横向载荷作用的、带压电功能梯度材料悬臂板的非线性动力学问题;文献[5]采用有限元法在已建立的压电智能板的动力学方程基础上,应用模态控制理论对压电智能板振动控制的原理和策略进行了研究;文献[6]根据经典层合板理论建立了具有压电传感器和执行器的功能梯度材料板的成形和振动控制有限元方程;文献[7]用三维压电理论对受轴对称载荷功能梯度压电圆板给出解释解法;文献[8]根据横观各向同性压电板的经典理论,给出具有圆孔的无限压电板的解释解;文献收稿日期:2011-07-26基金项目:国家自然基金重点资助项目(11032005)作者简介:王浩(1978-),男,浙江杭州人,硕士研究生,主要从事板壳非线性力学面的研究.本文编校:曾繁慧261第2期王浩,等:具有压电元件圆薄板传感器的非线性弯曲[9]用非线性静态有限元方法分析有热和无热的条件下具有增强纤维复合层的功能梯度材料板非线性变形.本文考虑一个上下表面嵌有压电执行器的圆薄板,基于Von Karman 薄板非线性理论和压电理论,建立了具有压电元件圆薄板非线性弯曲控制方程,采用修正迭代法求出方程的解.通过数值算例分析出机械载荷和电压对圆薄板的弯曲变形的影响.1问题描述和基本方程考虑轴对称的固支弹性金属圆板,如图1,在其上下表面粘有压电薄膜元件.柱坐标系(r,θ,z )置于板的中面,坐标原点位于板中面的中心,金属圆板和压电元件半径均为a ,金属圆板的厚度为h,压电元件的厚度为h p .压电元件上表面受均匀载荷q 作用,在上下压电元件上作用等值反向电压V ,若上下压电元件上作用等值相向电压,则V 取负值.对于具有压电元件圆薄板,假设压电元件的厚度远小于弹性圆板的厚度,因此可以不计其对整体结构刚度的影响[9].本文只考虑压电元件对圆板的逆压电效应,而不考虑圆板弯曲变形对压电元件电场强度的影响.根据Von Karman 型薄板大挠度理论,在轴对称情况下板内任一点的应变为222d 1d d ()d 2d d 1d .d ru w z r r ru w z r r rθεε=+=,w(1)在不计压电片的厚度对整体结构刚度的影响和只考虑压电元件对板的逆压电效应,而不考虑板弯曲变形对压电元件电场的影响,具有压电元件圆薄板的本构方程为p dE ε=Q Q σ,(2)式中,为应力列向量,T (,,)r r θθσσστ=(,r E =E T ,)z E E θ为电场强度列向量,作用在上下压电元件上的电压V 等值反向,则/z p E V h =,有2101010(1)/2E v ννν=Q ,(3)为圆板的弹性系数矩阵,E 0、ν分别为圆薄板的弹性模量和泊松比,ppp p 2p101010(1)/p E v ννν=Q 2p ,(4)为压电元件的弹性系数矩阵,E p ν、分别为压电元件的弹性模量和泊松比13230000d d =d ,(5)为压电应变系数矩阵,本文仅考虑的情形,将式(3)、式(4)、式(5)代入式(2),得到1323p d d d ==zxR qh h p h p压电元件圆薄板r θo2p 20p 22p p2p 20p 22ppd 1d d 1d {()()}d 1d 2d d d 1d 1d 1d d {[()]()}d 1d 2d d d 1r E E u w u w w Vz r r r r r r h E E u u w w w Vz r r rr r r h θσννννσνννν=++=++,.(6)根据经典弹性薄板理论,轴力和弯矩可以表示为2222(,)(,)d ,(,)(,)d .h h r r hh r r N N z M M z θθθθσσσσ==∫∫图1具有压电元件圆薄板示意图z (7)将式(6)代入式(7),得到222222d 1d [()]d 2d d 1d [[()]d 2d d d (),d d d 1d (),d d V r V r u w uN A N r r r u u wN A N r r r w wM D r r r w wM D r r r θθνννν=++=++=+=+,,(8)式中,A 和D 分别是圆薄板的拉伸刚度和弯曲刚度,是由电场引起的薄膜力,v N 3p 00p 22p p,,.112(1)1vE hE h E V A D N d h ννν===h circular thin plate with piezoelectric patches bonded圆板在均匀分布载荷作用下的平衡方程为Fig.1a262辽宁工程技术大学学报(自然科学版)第31卷d()0,d d()0,d d d ()d d r r r r r rN N r rM M rQ r w rN rQ rq r rθθ==+++=0.(9)将方程(9)第二式代入第三式,并将方程两边对r 进行积分,利用式(8)第一、三、四式,得32232d d 1d d 1()d d d d 2r w w w w D r rN qr r r r r r +=0.(10)从式(8)第一、二式中消去并利用方程(9)的第一式,得到下列相容方程u 22d d(1)d ()()d d 2d r r A r rN N r rrν=w .(11)考虑压电板的边缘为刚性固定夹支,其边界条件可表示为当时,r a =d 0,0d ww r===u ;(12)当时,0r=d 0,d r wN r=有限.(13)2d()[(1(1)d Vr rrN ru N A r ννν=+)]N .(14)为了简化计算,引入下列无量纲参量:4222d ,,,,d (1),,2(1).2r Vr w W a y W S a h y Da a P q F N Dh D h A Dφνβν=======rN (15)无量纲化后的控制方程(10)和(12)化成22322222d d ,d d d d .d d y y yS y yS S y y S y y yφφφφβφ+=++=Py (16)无量纲化后的边界条件(12)和(13)化为当时,1y =d 0,0,0d SW y S yF yφν==+=;(17)当时,0y =d 0,0d Sy S yF yφν=+=y .(18)2控制方程的求解本文采用修正迭代法对边值问题(16)~(18)进行求解,选取圆板无量中心挠度作为迭代参0W 100d W φ=∫.(19)在方程(16)中去掉非线性项,得到下列一次近似223111222211112d d ,d d d d .d d y y Py y yS S y y S y y yφφφβφ+=+=(20)当1y =时,111d 0,0d S SF y y φν=+=;(21)当0y =时,111d 0,y0d S S yF yφν=+=.(22)方程(20)第一式在边界条件(21)和(22)下的解,(23)3112(P a y a y φ=+)式中,1211,88a a ==.00W 将式(23)代入式(19),得到P =α,(24)式中,018/(42)a a 2α=+.将式(24)代入式(23),得到.(25)310012(W a y a y φα=+)ν将式(25)代入方程(20)中,方程(20)在边界条件(21)和(22)的第二式下解为2235710012345()S W b y b y b y b y b Fy βα=++++,(26)式中,2211122[(186)(204)(7)48(1)b a a a a ννν=+++]/[],2221312425=/8/8,=/12,=/48,=1/(1).b a b a a b a b ν关于φ的二次近似,有下列边值问题223222112d d d d y y yS y yφφφφ+=+Py .(27)当1y =时,20φ=;(28)当0y =时,20φ=.(29)将式(25)和(26)代入方程(27)中,在边值条件(28)和(29)下,方程(27)的解是3321200345333579110067891011()()()P c y c y W F c y c y c y w c y c y c y c y c y c y φαβα5,=+++++++++(30)式中,152515112234,,(),8248a b a b a bc a c a c c ===+=,25221311211256,[2482448a b a b a b a b a b a b c c ++==+++263第2期王浩,等:具有压电元件圆薄板传感器的非线性弯曲23142411211278],,,80120824a b a b a b a b a b a bc c +++==221323142491011,,4880120a b a b a b a b a b c c c ++===.将式(31)代入式(19)中,得到31203()P F W W ααα=++,(31)式中,210234543067891011().c αα=111,(),24611111124681012c c c c c c c c αααβα==+++++++将式(31)化成有量纲形式142[(D q a α=+233202(1))]1ppppE a V d h w w Dh hαναν+,(32)式中,是压电板的中心挠度.0w 3数值计算结果与讨论以由不锈钢和陶瓷组成的具有压电元件圆薄板传感器作为分析算例,中间层为不锈钢,其上下各粘一层G-1195N 压电片.具有压电元件圆薄板传感器的几何尺寸和材料物理性能参数:0p p 10p p 210GPa,0.3,63GPa,0.29,2.5410m/V ,100mm ,1mm ,0.1mm.E E d a h h νν=====×===图2给出了不同电压作用下具有压电元件园薄板传感器的挠度和机械载荷的关系曲线.从图2曲线可知,对于给定的作用电压,传感器的挠度随着载荷的增大而增大,且呈现明显的非线性现象.图2在不同电压作用下载荷与中心挠度的关系Fig.2the curves between load and center deflectionunder differentapplied voltages图3给出了不同机械载荷作用时中心挠度和电压的关系曲线.从图3可看出,当作用电压V =0时,即仅在机械载荷作用下传感器有一个向下的挠度,当作用电压正向增大时,在相同载荷下挠度增加;当作用电压反向增大时,在相同载荷下挠度减小.图3不同载荷作用下电压与中心挠度的关系Fig.3curve between applied voltage andcenter deflection under different loads4结论(1)本文利用修正迭代解法可以较方便地得到在机械载荷和电压共同作用下压电元件圆薄板弯曲挠度的解析表达式.(2)通过变化作用于压电执行元件上电压的大小和方向,可以实现对板弯曲变形的有效控制.参考文献:[1]丁丽霞,刘玮.压电元件驱动的功能梯度弹性薄板的屈曲[J].功能材料,2006,37(8):1229-1231.[2]刘玮,闫铂,刘英同.具有压电元件的功能梯度梁的振动控制[J].吉林大学学报:理学版,2008,46(1):1-5.[3]石艺娜,周又和,赵强.压电层合圆板传感器的非线性静力耦合分析[J].振动与冲击,2007,26(5):36-43.[4]郝育新,孙彦军,王建华.带压电层功能梯度悬臂板非线性动力学分析.北京科技大学学报:自然科学版,2010,25(3):19-24.[5]黄国权,王铁桩.压电智能板动力学有限元模型建立及振动控制(Ⅱ)—压电智能板振动控制[J ].控制与检测,2006(9):57-59.[6]He X Q,Ng T Y,.Sivas hanker S,et al..Active control of FGM plateswith integrated piezoelectric sensors and actuat ors[J].InternationalJournal of Solids and Structures,2001,38:1641-1655.[7]Wang Y ,Xu R Q,.Ding H J.Anal yti cal solutions of functionally gradedpiezoelect ric circular plates subjected to axisymmetric loads[J].Acta Mechanica,2010,215:287-305.[8]Xu S P,Wang W .Bending of pi ezoelectric plates with a circular hol e.Acta Mechanica,2009,203:127-135.[9]Satyajit Panda,Ray MC.Nonlinear nite element analysis of functionallygraded plates int egrated with patches of piezoelectricber reinforcedcompos i te[J ].Finite Elements in Analysis and Design,2008,44:493-504.V=20VV=10VV=0V V=-20VV =-10V 5152535450.40.8 1.2 1.62w 0/mmq /k P a-50-30-101030500.50.70.91.11.31.5q=10kPaq=20kPaq=30kPaV/Vw/m m。

木材英语

木材英语

木材英语植物分类plant classification裸子植物gymnosperms被子植物angiosperms双子叶植物dicotyledons单子叶植物monocotyledons针叶树coniferous tree; conifer阔叶树broad-leaved tree; deciduous tree软材,针叶树材soft wood硬材,阔叶树材hard wood木本植物种类kinds of woody plants树木tree灌木shrub[ʃrʌb]木质藤本植物woody liana; woody climber维管植物vascular plant商用木材commercial timber幼龄材young tree老龄材old tree木质茎woody stem细胞cell组织tissue支持组织supporting tissue储存组织storage tissue输导组织conducting tissue树干stem; trunk; bole树根root主枝limb分枝branch小枝branchlet侧向支根lateral branch root小根rootlet根系root system分生组织meristematic tissue永久组织permanent tissue生长点terminal growing point; apical growing point原分生组织promeristem顶端分生组织apical meristem初生分生组织primary meristem表皮原dermatogen皮层原periblem中柱原plerome原形成层procambium表皮epidermis皮层cortex中柱central core stele髓pith形成层cambium初生韧皮部primary phloem初生木质部primary xylem初生长primary growth初生组织primary tissue高生长elongation; elongation of tree stem; height growth 母细胞mother cell子细胞daughter cell次生木质部secondary xylem; secondary wood次生韧皮部secondary phloem周皮periderm北半球northern hemisphere温带树木temperate-zone tree季节性活动seasonal activity形成层活动cambial activity生长轮growth ring年轮annual ring木质部分子xylem element韧皮部分子phloem element木质部(木材)xylem(wood)韧皮部(内皮)phloem(inner bark)尖削度taper植物生长激素plant growth hormone; auxin热带木材tropical wood国产木材domestic wood粗视木材特征gross structure features横切面cross section径切面radial section弦切面tangential section成熟树干mature trunk死皮(外皮)dead (outer)bark活皮(内皮)living(inner)bark边材sapwood心材heartwood正常心材normal heart wood受伤心材wound heartwood假心材false heartwood内含边材included sapwood边材树种sapwood tree熟材树种ripewood tree生长轮growth increment早材early wood; springwood晚材late wood ;summerwood正常年轮ring of normal type; normal growth increment 非正常年轮ring of abnormal type不连续年轮discontinuous ring假年轮false ring木射线wood ray; xylary ray髓射线pith ray木射线肉眼下不明显rays indistinct to the naked eye 木射线肉眼下明显rays distinct to the naked eye宽木射线broad ray叠生木射线storied ray薄壁组织parenchyma射线薄壁组织ray parenchyma轴向薄壁组织longitudinal parenchyma上皮薄壁组织epithelial parenchyma离管型薄壁组织apotracheal parenchyma星散状薄壁组织diffuse parenchyma轮界状薄壁组织terminal parenchyma切线状薄壁组织metatracheal parenchyma宽带状薄壁组织broad-bands parenchyma傍管状薄壁组织paratracheal parenchyma环管状薄壁组织vasicentric parenchyma翼状薄壁组织aliform parenchyma聚翼状薄壁组织confluent parenchyma无孔材nonporous wood有孔材porous wood环孔材ring porous wood散孔材diffuse porous wood半散孔材semi-diffuse porous wood半环孔材semi-ring porous wood胞间道intercellular canal(or duct)树脂道resin canal正常树脂道normal resin canal创伤树脂道traumatic canal髓斑pith fleck结构texture细结构fine texture粗结构coarse texture均匀结构even texture不均匀结构uneven texture纹理grain直纹理straight grain螺旋纹理spiral grain材色color光泽luster气味odor健全材sound wood滋味taste重量weight最轻木the lightest wood最重木the heaviest wood硬度hardness软soft中硬medium hard甚硬very hard径切板quartersawn lumber弦切板flatsawn lumber木材细胞woody cell; wood element轴向组织longitudinal(axial)tissue径向组织horizontal(ray)tissue垂周分裂anticlinal division平周分裂periclinal division纺锤形原始细胞fusiform initial形成层射线原始细胞cambial ray initial细胞壁cell wall多糖成分polysaccharide fraction纤维素cellulose半纤维素hemicellulose木素lignin初生壁primary cell wall次生壁secondary cell wall胞间层true middle lamella复胞间层compound lamella瘤状沉积warty deposit瘤状结构wart structure木质化lignification纤维丝microfibril纤维丝角microfibrillar angle结晶区crystalline(crystallite)area非结晶区amorphous area (region)基本纤维elementary fibril纤丝fibril细胞壁化学成分chemical constituents in the cell wall 纹孔式pitting单纹孔single pit具缘纹孔bordered pit纹孔对pit pair半具缘纹孔对half-bordered pit pair具缘纹孔对bordered pit pair单纹孔对simple pit pair互补纹孔complementary pit胞间隙intercellular space纹孔膜pit membrane纹孔腔pit cavity纹孔室pit chamber纹孔缘pit border纹孔环pit annulus纹孔塞torus塞缘margo纹孔道pit canal纹孔外口outer aperture纹孔内口inner aperture内含纹孔口include aperture外延纹孔口extended aperture细胞壁加厚thickening of the cell wall纹孔加厚spiral thickening附物纹孔vestured pitting隔膜Septa (septum的复数)木素碳水化合物Lignin-carbohydratic complex 木材解剖(学) wood anatomy管胞tracheid轴向管胞longitudinal tracheid径列条trabecula(trabecubae)澳柏型加厚callitrisoid thickening眉条crassulae轴向索状管胞longitudinal strand tracheid交叉场cross field窗格状纹孔对window-like pit pair松型纹孔对pinoid pit pair云杉型纹孔对piceoid pit pair杉木型纹孔对taxidioid pit pair柏木型纹孔对cupressiod pit pair射线管胞ray tracheid硬松hard pine软松soft pine齿状突起dentate单列射线uniseriate ray纺锤型射线fusiform ray结晶细胞crystal-bearing cell上皮细胞epithelial cell导管分子vessel element(member segment) 管孔pore穿孔perforation单管孔solitary pore复管孔multiple pore管孔链pore chain管孔团pore cluster单穿孔simple perforation梯状穿孔scalariform perforation互列纹孔式alternate pitting对列纹孔式opposite pitting梯纹孔式scalariform pitting侵填体tylosis(pl.tyloses)树胶gum阔叶树材管胞hardwood tracheid维管管胞vascular tracheid环管管胞vasicentric tracheid纤维fiber纤维状管胞fiber tracheid韧型纤维libriform fiber胶质木纤维gelatinous fiber横卧射线细胞procumbent ray cell直立射线细胞upright ray cell同形射线homogeneous(homocellular) ray 异形射线(heterogeneous)heterocellular ray 聚合木射线aggregate ray油细胞oil cell正常树胶道normal gum canal创伤树胶道traumatic gum canal主要成分primary components综纤维holocellulose非纤维素多糖noncellulosic polysaccharides 次要成分secondary components单宁(鞣质)tannins胶乳latex染料dye着色物质coloring material灰分ash纤维素分子链cellulose chain吡喃葡萄糖glucopyranose纤维二糖cellobilose大分子macromolecule聚合度degree of polymerization戊聚糖pentosan木聚糖xylan4-甲基葡萄糖醛酸4-methylglucuronic acid半乳糖galactose阿拉伯糖arabinose葡萄糖glucose甘露糖mannose半乳葡甘露聚糖galactoglucomannan苯丙烷phenylpropane紫丁香基丙烷单元syringyl unit愈疮木基丙烷单元guaiacyl unit对羟苯基丙烷p-hydroxyphenyl propane unit抽提物extractive聚酚polyphenol香油树脂、含油树脂oleoresin木材松节油wood turpentin松香rosin密度density比重specific gravity孔隙率porosity晚材率summerwood percentage水银测容器apparatus for determination of density by immersion in mercury排水测容法determining volume by weighing before and after immersing the wood sample 基本密度basic density生材密度green density; density of green wood绝干密度oven-dry density绝干重oven-dry weight绝干状态oven-dried condition气干密度air-dried density气干材air-dried wood气干状态air-dried condition木材实质密度density of dry wood substance; cell wall density木材含水率moisture content of wood (or M.C)炉干法oven-drying method蒸馏法distillation method含水率测定仪electrical moisture meter吸着水bound water自由水free water平衡含水率equilibrium moisture content(or E.M.C.)吸湿adsorption解吸desorption吸湿滞后sorption hysteresis纤维饱和点fiber saturation point(or F.S.P.)木材最大含水率maximum moisture content of wood收缩shrinkage膨胀swelling最大体积收缩和膨胀maximum volumetric shrinkage and swelling 径向收缩radial shrinkage弦向收缩tangential shrinkage干缩差异ratio of tangential shrinkage to radial shrinkage纵向收缩longitudinal shrinkage干缩系数coefficient of shrinkage热膨胀系数coefficient of thermal expansion木材的比热specific heat of wood木材的热传导thermal conductivity of wood热导率thermal conductivity木材的导温diffusivity of wood木材的直流电性质direct-current properties of wood电阻electrical resistance电传导electrical conductivity电导率conductivity木材的交流电性质alternating-current properties of wood介电常数dielectric constant功率因素power factor极性分子polar molecule木材的压电性质piezoelectric properties of wood电阻型木材含水率测定仪resistance-type moisture meter电容及射频capacity and radio-frequency含水率测定仪power-loss type moisture meter木材的声学性质acoustical properties of wood木材中的声传播sound transmission in wood木材的声速sound velocity in wood木材的声波阻抗sound wave resistance in wood声辐射阻尼damping of sound radiation内摩擦internal friction空间声学acoustics of space声能sound energy隔音sound transmission loss; separating noise source吸声absorbing sound within a space声反射reflection of sound声压sound pressure木材调湿humidity conditioned by wood色度测定quantitative color measurement木材色度color characterization of wood木材表面性质surface properties of wood木材的触觉特性touchable characteristics of wood木材的视觉特性visible characteristics of wood木材流变学rheology of wood流变模型rheological model弹性elasticity弹性模量modulus of elasticity塑性plasticity蠕变creep蠕变恢复creep recovery疲劳fatigue刚性模量modulus of rigidity变形deformation应变stain应力stress应力--应变曲线stress-strain curve载荷loading卸载unloading弹性变形elastic deformation各向异性anisotropy正交对称性rhombic symmetry弹性常数systems of elastic constant弹性常数elastic constant对称轴axis of symmetry分应力stress component分应变strain component柔度compliance木材弹性异向性the anisotropic elasticity of wood泊松比poisson's ratio体积模量bulk modulus理想弹性变形ideal elastic deformation粘滞流动变形viscous flow deformation弹性单元elastic element粘性单元viscous element流变曲线flow curve拉伸tension压缩compression弯曲bending木材抗弯强度bending strength of wood木材静曲弹性模量the modulus of elasticity in static bending of w木材顺纹抗剪强度shearing strength parallel to grain of wood木材顺纹抗拉强度tensile strength parallel to grain of wood木材顺纹抗压强度compressive strength parallel to grain of wood木材横纹压力compression perpendicular to grain of wood木材横纹抗压弹性模量modulus of elasticity in compression perpendicular to grain of wood 木材冲击韧性toughness of wood木材硬度hardness of wood木材抗劈强度cleavage strength of wood静力实验测定determination by static test动态实验测定determination by dynamic test无损检测nondestructive testing defects of wood 原木缺陷defects in log锯材缺陷saw timber defects knot节子knot活节live knot死节dead knot健全节sound knot腐朽节decay knot ;rotten knot漏节seriously decayed knot圆形节round knot椭圆行节oval knot条状节splay knot掌状节palmate knot隐生节enclosed knot材边节edge knot材面节face knot材棱节arris knot变色stain; discoloration化学变色chemical stain真菌变色fungus stain霉菌变色discoloration by mould变色菌变色discoloration caused by stain fungi 腐朽节变色discoloration caused by decay fungi 边材变色sap stain青变blue stain心材变色heart stain腐朽decay; rot白腐white rot褐腐brown rot; brown decay软腐soft rot; soft decay根腐butt rot干腐trunk rot初期腐朽incipient decay中腐intermediate decay后期腐朽(重腐)final decay; destruction stage 虫眼insect hole表面虫眼和虫沟surface insect-hole and gallery 深虫眼deep insect hole针孔虫眼pin hole小虫眼small insect hole大虫眼large insect hole蜂窝状孔洞honeycomb hole裂纹shake; check径裂heart shake轮裂ring shake环裂round shake弧裂cup shake冻裂frost crack干裂seasoning check; drying shake炸裂popping劈裂felling shake端裂end shake; end check贯通裂through shake材身纵裂side shake树干形状缺陷defects of trunk shape弯曲curvature单向弯曲simple curvature尖削tapering大root swelling树瘤cancer木材构造缺陷defects of wood structure扭转纹spiral斜纹cross grain应力木reaction wood应压木compression wood应拉木tension wood双心double pith脆心brittle heart树脂囊resin pocket; pith pocket乱纹(交错纹)interlocked grain; cross grain 伤疤damage机械损伤mechanical damage锯口偏斜deviation of saw kerf采脂伤blaze抽心extraction烧伤char夹皮inbark; bark pocket内夹皮closed inbark外夹皮opened bark偏枯scar树包knob树脂漏resinous wood脆性brashness树木生长应力growth stresses in tree湿材wet wood微细压缩裂隙minute compression failure木材加工缺陷defects of process缺棱wanting arris毛刺糙面rough saw cut瓦棱状锯疤deep saw mark变形change in shape翘曲distortion; warp顺弯bow; camber横弯edge bend; crook翘弯cupping扭曲twisting; winding方材断面菱形变形diamonding木材分等timber grading主要品质因子primary quality indexes生长速度growth rate慢生长slow growth快生长fast growth不同树种different species同种不同树株different individual of the same species 树株内在不同部位different places in a tree均匀性uniformity心材比例proportion of heartwood纤维长度fiber length应力木的存在occurrence of reaction wood幼龄材juvenile wood成熟材mature wood幼龄材的比例proportion of juvenile wood纹理方向grain orientation木材化学组成chemical composition of wood细胞组成cellular composition化学改良improving properties by chemical改性木材modified woods化学剂保持量retention渗透度penetration预处理pre-treatment刻痕incising木材防腐处理preservation process of wood常压法non-pressure process涂刷法brushing喷射法spraying短浸法dipping浸泡法steeping冷浴法cold soaking冷热槽法hot and cold bath扩散法diffusion method加压法pressure process满细胞法full-cell process空细胞法empty-cell process半空细胞法half empty-cell process双真空法double vacuum process木材防腐法wood preservatives杂酚油creosote五氯苯酚pentachlorophenol阻燃处理fire retardant treatment(or P.C.P.)木材可燃性combustibility of wood着火延滞retardation of ignition阻燃剂fire retardants熔融剂melt-forming chemicals泡沫剂foam-forming chemicals灭火气体发生剂slake gas-developing chemicals木材焦化剂wood-charring chemicals水溶性盐类water soluble salts木材尺寸稳定dimensional stabilization of wood抗收缩系数anti-shrink efficient (ASE)羟基hydroxyl group涂覆法coating-method润胀法bulking method聚乙二醇polyethylene glycol(PEG)常压热固化浸脂材impreg高压热固化浸脂材(浸脂压缩木)compreg木材依酰化acetylation of wood乙酰化木材acetylated wood乙酰基acetyl group甲醛处理formaldehyde treatment缩醛交联acetal cross-linkage木材热改性thermal modification of wood热固木staybwood ;heat-treated wood压缩热固木staypak竹类植物bamboo plants竹材bamboo; bamboo wood竹制品bamboo ware高生长height growth竹笋bamboo shoot竹杆culm节间生长internodal elongation居间分生组织intercalary meristem顶端分生组织区域apical meristematic zone of a bamboo shoot 原套原体tunica-corpus(叶)原基sheath(leaf) primordia原形成层(原维管束)procambia(provascular bundle)筛管sieve tube维管束vascular bundle竹皮系统rind system of bamboo下皮hypodermis竹基本系统basic system of bamboo 基本组织ground tissue髓环pith-ring纤维帽fiber cap。

piezoelectric effect 原理英文

piezoelectric effect 原理英文

piezoelectric effect 原理英文Piezoelectric Effect: Understanding the Principle Behind a Key TechnologyIntroductionThe piezoelectric effect is a fascinating phenomenon that has found wide-ranging applications in various fields, from sensors and actuators to medical devices and consumer electronics. This effect occurs in certain materials that exhibit a unique property – the generation of an electric charge in response to mechanical stress or the opposite effect, the generation of mechanical strain in response to an applied electric field. Understanding the principle behind the piezoelectric effect is crucial for harnessing its potential and developing innovative technologies. In this article, we delve into the fundamentals of the piezoelectric effect and explore its implications in modern science and industry.Historical BackgroundThe piezoelectric effect was first discovered by French physicists Jacques and Pierre Curie in 1880. They observed that certain crystals, such as quartz and Rochelle salt, produced electric charges when subjected to mechanical pressure. Thisphenomenon sparked a wave of research into the properties of piezoelectric materials and laid the foundation for the development of piezoelectric technology. Over the years, scientists have identified a wide range of materials that exhibit piezoelectric behavior, including ceramics, polymers, and composites.Principle of the Piezoelectric EffectAt the heart of the piezoelectric effect lies the concept of polarization, where the positive and negative charges within a material become displaced in response to an external stimulus. In piezoelectric materials, such as quartz or lead zirconate titanate (PZT), the crystal structure is asymmetric, with positive and negative charges distributed unevenly along certain axes. When a mechanical force is applied to the material, the crystal lattice deforms, causing the charges to shift and creating an electric field. This leads to the generation of an electric charge on the surface of the material, known as the direct piezoelectric effect.Conversely, when an electric field is applied to a piezoelectric material, the charges within the crystal lattice rearrange, resulting in a change in shape or mechanical strain, known as the inverse piezoelectric effect. This bidirectionalrelationship between mechanical stress and electric field forms the basis of piezoelectric transduction, where energy is converted between mechanical and electrical forms.Applications of the Piezoelectric EffectThe piezoelectric effect has revolutionized a wide range of industries, enabling the development of innovative devices and technologies. Some of the key applications of piezoelectric materials include:1. Sensors and Actuators: Piezoelectric sensors are widely used in industrial applications, such as measuring pressure, force, and acceleration. Likewise, piezoelectric actuators are employed in precision positioning systems, ultrasonic motors, and vibration control devices.2. Energy Harvesting: Piezoelectric materials can convert mechanical vibrations or ambient vibrations into electrical energy, making them ideal for energy harvesting applications in wearable devices, wireless sensors, and self-powered systems.3. Medical Devices: Piezoelectric transducers are used in medical imaging technologies, such as ultrasound andnon-destructive testing. Piezoelectric bone conduction devicesand piezoelectric actuators are also used in hearing aids and implantable medical devices.4. Consumer Electronics: Piezoelectric materials are found ina variety of consumer electronics products, including piezoelectric buzzers, acoustic sensors, and haptic feedback devices in smartphones and tablets.Future Prospects and ChallengesAs the demand for miniaturized, energy-efficient devices continues to grow, the piezoelectric effect holds great promise for future technological advancements. Researchers are exploring new materials, such as flexible and bio-compatible polymers, for unique applications in wearable electronics, biomedical implants, and energy-efficient devices. However, there are still challenges to overcome, such as improving the performance and durability of piezoelectric materials, optimizing energy conversion efficiency, and reducing costs for large-scale production.ConclusionThe piezoelectric effect is a powerful phenomenon that has transformed the way we interact with technology and the world around us. By understanding the principles behind this effectand exploring its diverse applications, we can unlock new opportunities for innovation and create a sustainable future. As we continue to push the boundaries of material science and engineering, the piezoelectric effect will undoubtedly play a key role in shaping the technologies of tomorrow.。

无损检测专业词汇

无损检测专业词汇
Plate wave 板波
PLM(Photostimulable Luminescence Method)光激发光方法
plug 塞
pneumatic pressure 气压
pneumatic signal气动信号
Pocket Dosimeter 袖珍剂量计 携带式放射线剂量计
Point source 点(声、光、辐射)源
push button station按钮式控制站
"Q factor,Quality factor Q值 品质因数"
Quadruple traverse technique 四次波法
qualification 资格 条件 限制 限定 赋予资格
quality analysisபைடு நூலகம்质量分析
Quality of a beam of radiation 射线束的品质
pressure test 压力试验
Pressure testing 压力试验 耐压试验
pressure vessel 压力容器
Pressure-evacuation test 压力抽真空试验
Pre-test 初探 预检
Primary coil 一次线圈 初级线圈
Primary radiation 初级辐射 一次辐射 原辐射
power drill机械钻
power receptacle 电力插座
power source 电源
Power supply 电源
power wiring电力布线
preamp 前置放大器
Pre-amplifier 前置放大器 预放大器
Pre-cleaning 预清理

压电陶瓷材料与元件(

压电陶瓷材料与元件(
valve, ink jet printer, ultrasonic motor, electronic switch,
• 換能器- ultrasonic cleaner, welder, atomizer, buzzer, air
transducer, delay line,
• 變壓器
ELECERAM TECHNOLOGY CO., LTD
已商業化之積層壓電元件
• 壓電變壓器-升壓 •壓電平面喇叭(DMA)-手機 •致動器-微形馬達,手機,數位相 機
ELECERAM TECHNOLOGY CO., LTD
壓電變壓器結構
Primary electrode
Poling direction (primary)
Secondary electrode
壓電效應
• 壓電方程式
d = D/T = S/E,
• 狀態方程式
D = d T + T E S = sE T + d E
ELECERAM TECHNOLOGY CO., LTD
壓電參數
• d33, d31 : 壓電電荷係數(壓電應變係數) • g33, g31 : 壓電電壓係數, • Qm : 機械品質因數, 保持振動能力的指標 • k33, k31, kp : 機電偶合係數, 機電轉換效率
致動器工作曲線
ELECERAM TECHNOLOGY CO., LTD
ELECERAM TECHNOLOGY CO., LTD
致動器應用於相機鏡頭模組
ELECERAM TECHNOLOGY CO., LTD
致動器
螺旋式
ELECERAM TECHNOLOGY CO., LTD
產生器(Generator)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Piezoelectric bending response and switching behaviorof ferroelectric/paraelectric bilayersYue Zhenga,b,Biao Wangb,c,C.H.Wooa,*aDepartment of Electronic and Information Engineering,The Hong Kong Polytechnic University,Hong Kong,ChinabElectro-Optics Technology Center,Harbin Institute of Technology,Harbin 150001,ChinacState Key Laboratory of Optoelectronic Materials and Technologies,Institute of Optoelectronic and Functional Composite Materialsand School of Physics and Engineering,Sun Yat-sen University,Guangzhou,ChinaReceived 2August 2007;received in revised form 1October 2007;accepted 3October 2007Available online 3December 2007AbstractWe consider the dynamic piezoelectric bending response and switching behavior of ferroelectric/paraelectric bilayers due to an applied electric field.A thermodynamic model is developed,in which the stresses due to the lattice mismatch and ferroelectric phase transfor-mation are inhomogeneous.The polarization,radius of curvature,and relative vertical displacement due to the bending are calculated and analyzed as a function of the ratio of the thicknesses of the two layers.The bending response is found to be very large,and is highly adjustable by varying the relative thicknesses of the two layers.Our results show ferroelectric/paraelectric bilayers may have very good potential for applications as transducers,sensors and actuators.Ó2007Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.Keywords:Ferroelectric;Paraelectric;Bilayer;External electric field1.IntroductionFerroelectric or piezoelectric materials are used exten-sively as transducers,sensors and actuators for signals of various kinds of external fields,including electric,mag-netic,temperature,pressure,vibration or noise etc [1–12].These materials are popular for smart structure design because they are light,compact,relatively inexpensive,and exhibit moderately linear field-strain relations at low drive levels,and are particularly suited to aerospace,aero-nautic,industrial and biomedical applications.Further-more,an inherently non-linear and hysteric constitutive behavior gives rise to many interesting properties [1].Much effort has been devoted to increase the displace-ment sensitivities of actuators and sensors by making use of multilayer and composite actuator/sensor structuressuch as bimorphs [13],moonies [14],and cymbals [15,16].To enhance the small displacements,various types of strain-amplifying architectures have also been developed.For example,a flex-tensional actuator composed of a PZN-PZT layer and a PZN-PZT/Ag layer was developed by Yoon et al.[17],the displacement of which was remark-ably enhanced with inter-digital electrodes.To supplement the design effort,analysis of the stress distribution and cur-vature in multilayer and composite layers were performed [18,19]using elasticity theory.In addition,physical properties of ferroelectric thin films grown on substrate depend very much on surface and boundary effects.Pertsev et al.[20]reported on the effect of mechanical boundary conditions on the polarization,dielectric constants and phase diagram of ferroelectric film grown on a substrate.Bhattacharya and James [21]devel-oped a theory of deformation to study the behavior of the martensitic films grown on a substrate with finite thick-ness.Our previous works [22,23]have also shown that the epitaxial stress significantly affects the transformation in1359-6454/$30.00Ó2007Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.actamat.2007.10.011*Corresponding author.Tel.:+852********.E-mail addresses:yuezheng@ (Y.Zheng),stdwangb@ (B.Wang),chung.woo@.hk (C.H.Woo)./locate/actamatAvailable online at Acta Materialia 56(2008)479–488general,changing the Curie temperature,the Curie–Weiss relation and the magnitude of the polarization,or even change a first-order bulk ferroelectric to undergo second-order phase transition in the thin film form.In this work,we consider the effects of film/substrate thicknesses on the polarization distribution,piezoelectric bending response and switching behavior of a ferroelec-tric/paraelectric (FE/PE)bilayer system.We are particu-larly interested in the relative vertical displacement of the bending bilayer as a function of the geometry and the actu-ating field.2.Formulation 2.1.The free energyWe consider the FE/PE bilayer system shown in Fig.1a,where h and H are the thicknesses of the respective layers,and L is the common lateral dimension.The coordinate system is defined such that the interface is at z =0,and the free surfaces at z =h and z =ÀH ,respectively.As in our previous formulation [22–24],the ferroelectric is considered as an assembly of polar molecules (crystallo-graphic unit cells)occupying a volume V in space.Follow-ing the classical description of electrical susceptibility of a collection of polar molecules [25](crystallographic unit cells)the total polarization P T at any spatial location may be considered as composed of a non-linear structural component P and a linear induced component P E that is proportional to the electric field E with a constant suscep-tibility v d .To properly reflect the non-linear behavior of the free energy in the neighborhood of system instability it is necessary to separate the two contributions.The elec-tric displacement is then given byD ¼e 0E þP T ¼e 0E þP E þP ¼e 0E þv d E þP ¼e d E þPwhere e 0are dielectric constants of the vacuum.e d is the dielectric constant of the current phase of the background material [24–30].To simplify discussions,we consider the one-dimen-sional problem in which the polarization is directed along the plate thickness such that P 1=P 2=0and P 3=P (z ),i.e.,independent of x and y .The total free energy per unit area of the bilayer can then be written as F ¼F 0þF P þF Ela þF Ele¼F 0þZ hÀHðf P ðz Þþf Ela ðz Þþf Ele ðz ÞÞd z ð1Þwhere F P is the self-energy of the reference state which,in the present case,is the field-free (electrical and mechanical)infinite crystal.F Ela and F Ele are contributions due to ac-tions on the reference state caused by mechanical stresses and electric fields in the finite crystal,respectively.f P ,f Ela and f Ele are the corresponding energy densities.F 0is the free energy component that is independent of the polariza-tion.To concentrate on the mechanical behavior of the sys-tem in this study,we consider cases where surface effects such as depolarization and surface relaxation [23]are neg-ligible.At the same time,we will only discuss mechanical behavior of FE/PE system far away from the phase transi-tion temperature T c ,which is mainly determined by the misfit between film and substrate [23].For simplicity,the effect of the induced polarization on the mechanical behav-ior is neglected in this work [28].We first consider the elastic energy contribution FEla due to the lattice misfit of the materials in the bilayer.Let as be the lattice constant of PE layer and af the equiv-alent cubic cell constant of the free-standing FE layer.Assuming a coherent interface,the biaxial in-plane misfitstrain in the film e m can be written as [22]e m 11¼e m22¼e m ¼ða s Àa f Þ=a f .In addition to the misfit,we also have a transformation strain associated with the polarization generated by the lat-tice instability.In the following,we only consider the case of a FE layer grown on a compressive PE layer (i.e.as <af).We assume that the polarization P is along the z direc-tion and the transformation strains determined by thepolarization can be expressed as e T 11¼e T 22¼e T¼Q 12P 2,where Q12is the electrostrictive coefficient.We consider both the FE and PE layers are cubic elastic media withmoduli C 11;C 12; C11; C 22,respectively.The effective elastic constants are given by G ¼C 11þC 12À2C 212=C 11andG ¼ C 11þ C 12À2 C 212= C 11.Stresses in the bilayer are thus created by the combined effects of the misfit and transformation strains,which can be calculated following the treatment of Hsueh and Evans [31–34].Thus,starting with uncoupled FE and PE layers that experience unconstrained and incompatible in-plane strains e 11¼e 22¼e m ÀQ 12P 2and e 11¼ e 22[22,34,35],respectively (Fig.1b),uniform stresses,corresponding to the uniform strain c ,are then imposed on each of the two layers to maintain displacement compatibility and equilibrium (Fig.1c).In this procedure,the resultantforceFig. 1.Schematic diagrams showing:(a)the FE/PE bilayer system,(b)unconstrained strains due to the misfit strain and self-phase-transfor-mation strains,(c)constrained strains to main displacement compatibility,and (d)bending induced by asymmetric stresses.480Y.Zheng et al./Acta Materialia 56(2008)479–488(per unit length)N created by the misfit and the electro-strictive stresses in the FE layer r appl¼Gðe mÀQ12P2Þ, due to the constraint of the PE layer,is given byN¼Z h0r appl d z¼Z hGðe mÀQ12P2Þd zAt equilibrium,the balancing force–N is provided by a uniform elastic strain c¼ÀN=ðhGþH GÞin the PE layer[36].The total elastic strain is then cÀQ12P2þe m in theFE layer,and c in the PE layer(Fig.1c).Finally,relaxing the constraint of strain uniformity,bending of the system occurs because of the development of asymmetric stresses as shown in Fig.1d.In thefinal configuration,the strain depends on z and can be written ase s¼e¼cþzÀt brforÀH6z60e f¼eÀQ12P2þe m¼cþzÀt brÀQ12P2þe m for0P z P hð2Þwhere z=t b is the location of the bending axis,which is different from the conventional neutral axial.r is the radius of curvature of the system.According to Eq.(2)the strain is proportional to the distance from the bending axis and inversely proportional to the radius of curvature.Taking into account both the misfit and transformation strains,the stresses r s and r f in the substrate andfilm, respectively,are given byr s¼ G e forÀH6z60r f¼GðeÀQ12P2þe mÞfor0P z P hð3ÞThe strain distributions in the FE/PE bilayer system are contingent upon solutions of the three parameters,c,t b and r,which can be determined sequentially from the following three equilibrium conditions.Firstly,zero resultant force in Fig.1c givesZ0ÀH Gc d zþZ hGðcþe mÀQ12P2Þd z¼0ð4ÞThe uniform strain component c from Eq.(4)is then given byc¼ÀGhðe mÀQ12hR hP2d zÞGHþGhð5ÞSecondly,the force equilibrium in Fig.1d requiresZ0ÀH G zÀt brd zþZ hGzÀt brd z¼0ð6Þfrom which the position of the bending axis t b can be determinedt b¼Gh2À GH22ðGhþ GHÞð7ÞThirdly,the torque equilibrium in Fig.1d requiresZ0ÀH r s z d zþZ hr f z d z¼Z0ÀHG eðzÞz d zþZ hG½eðzÞþe mÀQ12P2 z d z¼0ð8Þfrom which the radius of the curvature r can be determinedfrom Eqs.(4)–(8)to giver¼GH2ð2Hþ3tbÞþGh2ð2hÀ3t bÞ3ðGcH2ÀGch2ÀG e m h2þ2GQ12RP2z d zÞð9ÞFinally,the total elastic energy F Ela of the bilayer isgiven byF Ela¼12Z hÀHðr1ðzÞe1ðzÞþr2ðzÞe2ðzÞÞd z¼Z0ÀHG eðzÞeðzÞd zþZ hGÀ2½eðzÞþe m Q12P2ðzÞÂþQ212P4ðzÞþðe mÞ2þe2ðzÞþ2eðzÞe mid zð10ÞThe free energy of our reference state F P in thefirstterm of Eq.(1)is now considered.F P can be written asthe sum of the non-linear Landau free energy functionalfor afield-free and uniform infinite crystal and the Ginz-burg contribution to account for the presence of non-uni-formity in PF P¼Z h12AðTÀT c0ÞP2þ14BP4þ16CP6þ12Dd Pd z2d zð11Þwhere A,B and C are the expansion coefficients of the Lan-dau free energy,and D can be approximated asn2Áj AðTÀT c0Þj,n is a characteristic length along whichthe polarization varies.The last term in Eq.(1)has contributions from the depo-larization and external electricfields E d and E ext,respec-tively.As a result of possible charge compensation,suchas that due to oxygen vacancies in perovskite ferroelectrics,we may assume for simplicity that E d is negligible.The con-tribution F Ele can then be written simply asF Ele¼Z h½ÀE ext PðzÞ d zð12Þ2.2.Euler–Lagrange equation and numerical solutionThe variation of the total free energy with respect to P[20,23–37]yields the Euler–Lagrange equation for thedynamics of the system,which is often called the time-dependent Ginzberg–Landau equation(TDGL),fromwhich the evolution of the polarization in ferroelectric layercan be calculatedo Pðz;h;H;tÞo t¼ÀMd Fd P¼ÀM AÃðz;h;H;tÞPþBÃðz;h;H;tÞP3þCP5ÀDd2P2ÀE ext!;ð13ÞY.Zheng et al./Acta Materialia56(2008)479–488481where M is the kinetic coefficient related to the domain wall mobility,and the renormalized coefficients areAÃðz;h;H;tÞ¼AðTÀT c0ÞÀ4GQ12cðh;H;tÞþzÀt bðh;HÞrðh;H;tÞþe m!;BüBþ4GQ212:From Eqs.(3)–(10),the evolution of the polarization,the uniform strain component,the position of the bending axis,and the radius of the curvature can be calculated as functions of FE layer thickness h,PE layer thickness H and evolution time t:cðh;H;tÞ¼ÀGhGHþGhðemÀQ121hZ hPðtÞd zÞ;t bðh;HÞ¼Gh2À GH2 2ðGhþ GHÞ;rðh;H;tÞ¼GH2ð2Hþ3tbÞþGh2ð2hÀ3t bÞ3ðGcH2ÀGch2ÀG e m h2þ2GQ12RP2ðtÞz d zÞð14ÞEq.(13)can be solved numerically to yield the steady-state polarization distribution and the corresponding gradient, and the mechanical force balance from Eqs.(4),(6),and (8).The polarization profile P(z)along the z direction and the average polarization h P i¼R hP d z=h can be ob-tained from the solution of Eq.(13).From Eqs.(5),(7), and(9),respectively,the uniform strain component c,the position of the bending axis t b,and the radius of the curva-ture r can also be determined.2.3.The stationary and relative displacementsSolving Eqs.(13)and(14),stationary values of the polarization P1,uniform strain component c1,andradius Fig.2.Schematic diagram showing bending of FE/PE bilayer due to a applied external electricfields.Inhomogeneous stress distribution in FE/ PE bilayer result in a radius of curvature r and a dome-shaped bending with displacement d.Fig.3.(a)The polarization,(b)the uniform strain component,and(c)the radius of the curvature from the solution of the TDGL equation(18).The general time is s·10À9.The calculation is done for H=h=0.1mm.The black line is for a static applied electricfield of E ext=0and the blue line for E ext=200kV cmÀ1.Evolution from the unpolarized unstable state to the polarized stationary state can be clearly seen.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of this article.)482Y.Zheng et al./Acta Materialia56(2008)479–488of the curvature r 1can be obtained at s >s s .In this solu-tion,we have used the generalized evolution time s ¼Mt ¼N D s ¼NM D t [23,24,26],where D t is the real time step and D s =M D t is the effective time step.N is the total number of the time steps.s s is the time after which P ,c and r becomes stationary.According to Fig.2,the stationary bending displace-ment due to E ext is given byd 1ðE ext Þ¼r 1Àffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir 21Àsin L2 !2s ð15ÞWe define the relative displacement in terms of the static ones by D D ðE ext Þ¼d 1ðE ext ÞÀd 1ðE ext ¼0ÞHðh ;H Þð16Þwhere H¼h þH is the total thickness of the bilayer.The relative displacement measures the piezoelectric bending re-sponse due to the applied electric field only.2.4.Piezoelectric response of the bilayer under a cyclic electric fieldUnder a cyclic sinusoidal external field E ext along the z direction as in [26,37,38,39]:E ext ¼E 0sin 2p tT¼E 0sin ð2p tf 0Þð17Þwhere E 0,T 0and f 0are the amplitude,period and fre-quency,respectively.The time evolution of the system isgoverned by the TDGL equation:o P ðz ;h ;H ;E 0;t Þo t ¼ÀM d Fd P ðz ;h ;H ;E 0;t Þ;ð18ÞThe mechanical responses of the system,the evolution of the polarization P (z ,h ,H ,t ),the uniform strain component c (h ,H ,t ),the position of the bending axis t b (h ,H ,t ),and the radius of the curvature r (h ,H ,t )can be obtained numeri-cally by solving Eqs.(17)and (18)via Eq.(13).The dynamic and relative displacements of our system can then be calculated according to Eqs.(15)and (16):d ½E ext ðE 0;t Þ ¼r ðE 0;t ÞÀffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir ðE 0;t Þ2Àsin ðL ðE 0;t Þ2Þ !2s ð19ÞandD D ½E ext ðE 0;t Þ ¼d ½E ext ðE 0;t Þ Àd ðE ext ¼0ÞHðh ;H Þð20Þ3.Results and discussionsThe following results and discussions refer to the specific example of the BaTiO 3/SrTiO 3bilayer system.The lattice constants of BaTiO 3layer and SrTiO 3layerareFig.4.(a)The average polarization,(b)normalized static radius of curvature,and (c)normalized static displacement,as functions of the thickness of the PE substrate H for various FE film thickness h .Y.Zheng et al./Acta Materialia 56(2008)479–488483a f=0.401and a s=0.3905,respectively.The material con-stants for the Landau free energy,the electrostrictive coef-ficients and the elastic properties are from Refs.[20,40,41]. Wefirstly consider that the thickness h1of the FE layer is 0.1mm,and the lateral dimension L is50h1.The general-ized time step used is D s=0.1·10À9.In Fig.3a,we show the spontaneous growth from zero to afinal stationary value of the average polarization in the FE layer under sta-tic external electricfields E ext=0and E ext=20kV cmÀ1. Fig.3b andc shows the respective stationary values of the corresponding uniform strain component and radius of the curvature.The generalized time s in thesefigures is in unit of0.2·10À6.3.1.Stationary polarization,curvature and bending displacement with external electricfieldIn Fig.4a we plot the stationary average polarization h P1i calculated using the foregoing procedure as a func-tion of H,for various thickness of the FEfilm h.This result shows that the average polarization is a strong function of h for all values of H except the very small ones.h P1i can be seen to vary between two limits of H:one in which H is large and the FE layer is totally constrained by a thick PE substrate,and another in which H is small and the FE layer is free standing and unconstrained.The small peak of h P1i at H%0.3h is the result of the bending of the bilayer.Fig.4b and c plots the corresponding radius of curvature and static displacements,respectively,both of which show corresponding minima and maxima at H%0.3h.It is interesting to note the very large displace-ments that can be obtained in the region H6h,where effective strains as large as100%can be achieved.3.2.Stationary polarization curvature and bending displacement as function of external electricfield Fig.5a shows the stationary average polarization h P1i as function of the external electricfield,for various values of the PE substrate thickness.h P1i can be seen to increase with increasing external electricfield and increasing sub-strate thickness.Based on results in Fig.5a,we also calcu-late the stationary curvature r1and displacement d1. Fig.5b shows that the stationary curvature increases,while Fig.5c shows that the stationary displacement decreases, with increasing external electricfield.From Eq.(16),we can also calculate the relative displacement as function of external electricfield as shown in Fig.5d.These results con-firm the large piezoelectric bending response under applied electricfield.In the case of H=0.05h,the relative displace-ment|D D|can be as high as18%for an applied electricfield E ext=500kV cmÀ1.For a substrate thickness of H=0.5h, j D D j may increase to27%.Lower values of j D D j,however, are obtained as the ratio H=h furtherincreases.Fig.5.(a)The average polarization,(b)normalized radius of curvature,(c)normalized static displacement,and(d)the relative displacement,as functions of the applied external electricfiled for various substrate thicknesses.484Y.Zheng et al./Acta Materialia56(2008)479–4883.3.Hysteresis loopWe compare the cases where H =h =0.1mm and H =2h =0.2mm.The average polarization h P i is calcu-lated as a function of a sinusoidal applied electric field by solving Eq.(18).In Eq.(17),the amplitude of the external field used is E 0=1500kV cm À1.To alleviate the effect of the frequency of the external electric field on the switching behavior of bilayer system,we use the generalized time step D s =1·10À9.Number of time step N in a period is 200.Fig.6shows the corresponding hysteresis loops of BaTiO 3/SrTiO 3bilayer.The remnant polarization P r and coercive field E c all see enhancement as Hincreases.Fig.6.Hysteresis loops in BTO/STO for H =h (squares),and H =2h(circles).Fig.7.The polarization distribution at points B,C,D,E,F and G in hysteresis loop of Fig.6at the case of H =h .Y.Zheng et al./Acta Materialia 56(2008)479–488485To understand the deformation behavior of the bilayer, we also give the polarization pattern at points B,C,D,E,F and G for H=h,as shown in Fig.7.Here it is obvious that external electricfield influences the magnitude and distribu-tion of the polarization,and hence the total strains in FE/ PE layer.At the same time,the external electricfield also induces the bending deformation of the bilayer,which we will be discussed in the next section.3.4.Dynamic loadingThe dynamic curvature and displacement due to the sinusoidal external electricfield of Eq.(17)are calculated and shown in Fig.8for a substrate thickness H=h.The radius of curvature r is shown in Fig.8a.The dynamic displacement d can be obtained by solving Eq.(19) (Fig.8b).It can be seen that the displacement can reach about200%of FEfilm thickness at external electricfields E ext=À730(D)and730(G)(kV cmÀ1).When external electricfield is large,such as E ext=À1100(E)or1100(B)(kV cmÀ1),the displacement reduces to only about0.7h.From Fig.8a and b,the relative dynamic displace-ment j D D j can also be obtained by solving Eq.(20). The results are plotted in Fig.8c.It can be seen that j D D j can be as high as58%for E ext=À1100(E)or 1100(B)and H=h.To examine the effect of the substrate thickness on the pie-zoelectric bending response,we also calculate the dynamic curvature,displacement d and relative displacement j D D j of a BaTiO3/SrTiO3bilayer for H=2h and plot the results in Fig.9.It can be seen that the piezoelectric and bending responses are weakened due to the increase of the substrate thickness.Thus,the relative displacement j D D j in Fig.9c is only1/3of that of Fig.8c where H=h.Results of Figs8and9again demonstrate that the FE/PE bilayer system has a large piezoelectric bending response.At the same time,our results also indicate the piezoelectric and bending response can be adjusted via the thicknesses of the PE substrate and the FEfilm.4.SummaryIn summary,an elastic and thermodynamic model is constructed for investigating the piezoelectric and bending response of a FE/PE bilayer system.Taking into account effects of the misfit and transformation strains,we obtain static and dynamic polarization,curvature and displace-ment as a function of thefilm/substrate thicknesses of the bilayer.Our results show that both the static and dynamic piezoelectric and bending responses due to the inhomoge-neous stress in the bilayer can produce large verticaldis-Fig.8.Dynamics of:(a)the radius of curvature,(b)displacement of bonding bilayer,and(c)relative displacement of bonding bilayer subjected to a sinusoidal applied electricfield(H=h).486Y.Zheng et al./Acta Materialia56(2008)479–488placements.At the same time,this displacement,together with the associated polarization,radius of curvature,and vertical displacement,can be adjusted by varying the thick-nesses of the two layers.The elastic and thermodynamic model developed in this paper is applicable to many other multilayer systems.AcknowledgementsThis project was supported by Grants PolyU 5322/04E,GYF66,GYF53.Co-author B.W.is also grateful for support from the National Science Foundation of China (Nos.50232030,10172030,10572155and 10732100)and the Science Foundation of Guangzhou Province (2005A10602002).References[1]Smith RC.Smart material system:model development.SIAM,Society for Industrial and Applied Mathematics;2005.[2]Ball BL,Smith RC,Ounaies Z.Smart Struct Mater 2003;5049:100.[3]Chopra H,Ji C,Kokorin V.Phys Rev B 2000;61:4913.[4]Chen X,Fang DN,Hwang KC.Acta Mater 1997;45:3181.[5]Dapino MJ,Smith RC,Flatau AB.IEEE Trans Magn 2000;36:545.[6]Li G,Furman E,Haertling GH.J Am Ceram Soc 1997;80:1382.[7]Li X,Shih WY,Aksay IA,Shih WH.J Am Ceram Soc 1999;82:1733.[8]Ludwig A,Quandt E.J Appl Phys 2000;87:4691.[9]Nasser SN.J Appl Phys 2002;92:2899.[10]O’Handley RC,Murray SJ,Marioni M,Nembach H,Allen SM.JAppl Phys 2000;87:4712.[11]Uchino K.Piezoelectric actuators and ultrasonic motors.Boston(MA):Kluwer Academic Publishers;1997.[12]Lam KH,Sun CL,Chan HLW,Zhao XZ,Choy CL.J Electroceram2007;18:251.[13]Kugel VD,Chandran S,Cross LE.Appl Phys Lett 1996;69:2021.[14]Newnham RE,Dogan A,Xu QC,Onitsuka K,Tressler J,YoshikawaS.Proc IEEE Ultra Symp 1993;1:509.[15]Fernandez JF,Dogan A,Fielding JT,Uchino K,Newnham RE.Sensor Actuat A Phys 1998;65:228.[16]Wise SA.Sensor Actuat A 1998;69:33.[17]Yoon CB,Lee SH,Lee SM,Kim HE.J Euro Ceram Soc2006;26:2345.[18]Zhang XC,Xu BS,Wang HD,Wu YX.Thin Solid Films2005;488:274.[19]Mossi K,Mouhli M,Smith BF,Mane PP,Bryant RG.Smart MaterStruct 2006;15:1785.[20]Pertsev NA,Zembilgotov AG,Tagantsev AK.Phys Rev Lett1998;80:1988.[21]Bhattacharya K,James RD.J Mech Phys Solids 1999;47:531.[22]Wang B,Woo CH.Acta Mater 2004;52:5639.[23]Wang B,Woo CH.J Appl Phys 2005;97:084109.[24]Wang B,Woo CH.J Appl Phys 2006;100:044114.[25]Van Vleck JH.The theory of electric and magnetic susceptibil-ity.Oxford University Press;1932.p.27–9.[26]Wang J,Zhang TY.Acta Mater 2007;55:2465.[27]Zheng Y,Wang B,Woo CH.Appl Phys Lett 2006;88:092903.[28]Kim DJ,Jo JY,Kim YS,Chang YJ,Lee JS,Yoon JG,et al.PhysRev Lett2005;95:237602.Fig.9.Dynamics of:(a)the radius of curvature,(b)displacement of bonding bilayer,and (c)relative displacement of bonding bilayer subjected to a sinusoidal applied electric field (H =2h ).Y.Zheng et al./Acta Materialia 56(2008)479–488487。

相关文档
最新文档