2013届高考数学第一轮例题专项复习教案3.doc
2013届高考数学第一轮数列专项复习教案1

一、选择题
1. 已知 an+1-an- 3=0,则数列 { an} 是( )
A .递增数列
B.递减数列
C. 常数项
D.不能确定
2.数列 1,3,6,10,15,…的递推公式是 ( )
A . an+ 1= an+n,n∈N +
B . an= an- 1+ n,n∈N+, n≥2 C. an+1= an+ (n+ 1),n∈ N+ ,n≥2 D. an= an- 1+ (n- 1), n∈ N+ ,n≥2
函数与数列的联系与区别
一方面,数列是一种特殊的函数,因此在解决数列问题时,要善
于利用函数的知识、函数的观点、函数的思想方法来解题,即用
共性来解决特殊问题. 另一方面, 还要注意数列的特殊性 ( 离散型 ) ,由于它的定义域是 N+或它的子集 {1,2 ,…, n} ,因而它的图像是一系列孤立的点, 而不像我们前面所研究过的初等函数一般都是连续的曲线, 因此 在解决问题时,要充分利用这一特殊性,如研究单调性时,由数 列的图像可知,只要这些点每个比它前面相邻的一个高 ( 即 an>an - 1) ,则图像呈上升趋势,即数列递增,即 { an} 递增 ? an+1>an 对任 意的 n ( n∈N+) 都成立.类似地,有 { an} 递减 ? an+1<an对任意的 n( n∈N+) 都成立.
-1 n=2k-1 ,
an= 1 n=2k ,
其中 k∈N+.
1.2 数列的函数特性
课时目标 1.了解数列的递推公式 ,明确递推公式与通项公式的 异同; 2.会根据数列的递推公式写出数列的前几项; 3.了解数列 和函数之间的关系 ,能用函数的观点研究数列.
1.如果数列 { an} 的第 1 项或前几项已知 ,并且数列 { an} 的任一项 an 与它的前一项 an-1(或前几项 )间的关系可以用一个式子来表 示 ,那么这个式子就叫做这个数列的递推公式. 2.数列可以看作是一个定义域为 ____________(或它的有限子集 {1,2,3 ,…,n}) 的函数 ,当自变量按照从小到大的顺序依次取值 时 ,对应的一列 ________. 3.一般地 ,一个数列 { an} ,如果从 ________起,每一项都大于 它的前一项 ,即__________,那么这个数列叫做递增数列.如果 从 ________起,每一项都小于它的前一项 ,即__________,那么 这个数列叫做递减数列.如果数列 { an} 的各项 ________,那么这 个数列叫做常数列.
2013届高考数学第一轮精讲精练复习教案2

2013高中数学精讲精练第二章函数【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”.4.掌握“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.第1课 函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数. 【基础练习】1.设有函数组:①y x =,y =y x =,y =;③y =,y =;④1(0),1(0),x y x >⎧=⎨-<⎩,x y x =;⑤lg 1y x =-,lg 10xy =.其中表示同一个函数的有___②④⑤___.2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_____②③____. 3.写出下列函数定义域:(1) ()13f x x =-的定义域为______________; (2) 21()1f x x =-的定义域为______________;(3) 1()f x x =+的定义域为______________; (4) ()f x =_________________.4.已知三个函数:(1)()()P x y Q x =; (2)y =(*)n N ∈; (3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:(1)______________________; (2)______________________; (3)______________________________.5.写出下列函数值域:(1) 2()f x x x =+,{1,2,3}x ∈;值域是{2,6,12}.x x xxR {1}x x ≠± [1,0)(0,)-⋃+∞ (,1)(1,0)-∞-⋃- ()0Q x ≠ ()0P x ≥ ()0Q x >且()0P x >且()1Q x ≠(2) 2()22f x x x =-+; 值域是[1,)+∞. (3) ()1f x x =+,(1,2]x ∈. 值域是(2,3].【范例解析】例1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()f x =,()g x =③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:在①中,()f x 的定义域为{1}x x ≠,()g x 的定义域为R ,故不是同一函数;在②中,()f x 的定义域为[1,)+∞,()g x 的定义域为(,1][1,)-∞-⋃+∞,故不是同一函数;③④是同一函数.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可.例2.求下列函数的定义域:①12y x =+- ②()f x = 解:(1)① 由题意得:220,10,x x ⎧-≠⎪⎨-≥⎪⎩解得1x ≤-且2x ≠-或1x ≥且2x ≠,故定义域为(,2)(2,1][1,2)(2,)-∞-⋃--⋃⋃+∞.② 由题意得:12log (2)0x ->,解得12x <<,故定义域为(1,2).例3.求下列函数的值域:(1)242y x x =-+-,[0,3)x ∈;(2)221x y x =+()x R ∈;(3)y x =-分析:运用配方法,逆求法,换元法等方法求函数值域.(1) 解:2242(2)2y x x x =-+-=--+,[0,3)x ∈,∴函数的值域为[2,2]-;(2) 解法一:由2221111x y x x ==-++,21011x <≤+,则21101x -≤-<+,01y ∴≤<,故函数值域为[0,1).解法二:由221x y x =+,则21y x y =-,20x ≥,∴01yy≥-,01y ∴≤<,故函数值域为[0,1).(3t =(0)t ≥,则21x t =-,2221(1)2y t t t ∴=--=--, 当0t ≥时,2y ≥-,故函数值域为[2,)-+∞.点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.【反馈演练】1.函数f (x )=x 21-的定义域是___________.2.函数)34(log 1)(22-+-=x x x f 的定义域为_________________. 3. 函数21()1y x R x=∈+的值域为________________. 4.函数23y x =-+的值域为_____________.5.函数)34(log 25.0x x y -=的定义域为_____________________.6.记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ;(2) 若B ⊆A ,求实数a 的取值范围. 解:(1)由2-13++x x ≥0,得11+-x x ≥0,x <-1或x ≥1, 即A =(-∞,-1)∪[1,+ ∞) . (2) 由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a ,∴B=(2a ,a +1) . ∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, ∴21≤a <1或a ≤-2,故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[21,1).(,0]-∞ (1,2)(2,3)⋃ (0,1] (,4]-∞ 13[,0)(,1]44-⋃第2课 函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式.【基础练习】1.设函数()23f x x =+,()35g x x =-,则(())f g x =_________;(())g f x =__________.2.设函数1()1f x x =+,2()2g x x =+,则(1)g -=_____3_______;[(2)]f g =17;[()]f g x =213x +. 3.已知函数()f x 是一次函数,且(3)7f =,(5)1f =-,则(1)f =__15___.4.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=_____________. 5.如图所示的图象所表示的函数解析式为__________________________. 【范例解析】例1.已知二次函数()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式. 分析:给出函数特征,可用待定系数法求解.第67x - 64x +413|1|2323--=x y (0≤x ≤2)解法一:设2()(0)f x ax bx c a =++>,则26,426,4 4.4c a b c ac b a⎧⎪=⎪⎪++=⎨⎪-⎪=⎪⎩解得2,4,6.a b c =⎧⎪=-⎨⎪=⎩故所求的解析式为2()246f x x x =-+.解法二:(0)(2)f f =,∴抛物线()y f x =有对称轴1x =.故可设2()(1)4(0)f x a x a =-+>.将点(0,6)代入解得2a =.故所求的解析式为2()246f x x x =-+.解法三:设()() 6.F x f x =-,由(0)(2)6f f ==,知()0F x =有两个根0,2, 可设()()6(0)(2)F x f x a x x =-=--(0)a >,()(0)(2)6f x a x x ∴=--+, 将点(1,4)代入解得2a =.故所求的解析式为2()246f x x x =-+.点评:三种解法均是待定系数法,也是求二次函数解析式常用的三种形式:一般式,顶点式,零点式.例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y (km )与时间x (分)的关系.试写出()y f x =的函数解析式.分析:理解题意,根据图像待定系数法求解析式. 解:当[0,30]x ∈时,直线方程为115y x =,当[40,60]x ∈时,1[0,30],15()2(30,40),1[40,60].210x x f x x x x ⎧⎪∈⎪∴=∈⎨⎪∈⎪-⎩点评:建立函数的解析式是解决实际问题的关键,把题中文字语言描述的数学关系用数学符号语言表达.要注意求出解析式后,一定要写出其定义域.【反馈演练】1.若()2x x e e f x --=,()2x xe e g x -+=,则(2)f x =( D )A. 2()f x B.2[()()]f x g x + C.2()g xD. 2[()()]f x g x ⋅2.已知1(1)232f x x -=+,且()6f m =,则m 等于________.3. 已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式. 解:设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,x2 14-则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故.第3课 函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性. 【基础练习】 1.下列函数中: ①1()f x x=; ②()221f x x x =++; ③()f x x =-; ④()1f x x =-.其中,在区间(0,2)上是递增函数的序号有___②___. 2.函数y x x =的递增区间是___ R ___. 3.函数y =的递减区间是__________. 4.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.5.已知下列命题:(,1]-∞- (1,)+∞①定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的增函数; ②定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是减函数; ③定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间[0,)+∞上也是增函数,则函数()f x 在R 上是增函数;④定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间(0,)+∞上也是增函数,则函数()f x 在R 上是增函数.其中正确命题的序号有_____②______. 【范例解析】例 . 求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数; (2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数. 分析:利用单调性的定义证明函数的单调性,注意符号的确定. 证明:(1)对于区间3(,]4-∞内的任意两个值1x ,2x ,且12x x <,因为22121122()()231(231)f x f x x x x x -=-+---+-2221122233x x x x =-+-1212()[32()]x x x x =--+,又1234x x <≤,则120x x -<,1232x x +<,得1232()0x x -+>, 故1212()[32()]0x x x x --+<,即12()()0f x f x -<,即12()()f x f x <. 所以,函数2()231f x x x =-+-在区间3(,]4-∞上是单调增函数. (2)对于区间(,1)-∞-内的任意两个值1x ,2x ,且12x x <, 因为1212122121()()11x x f x f x x x ---=-++12123()(1)(1)x x x x -=++, 又121x x <<-,则120x x -<,1(1)0x +<,2(1)0x +<得,12(1)(1)0x x ++> 故12123()0(1)(1)x x x x -<++,即12()()0f x f x -<,即12()()f x f x <.所以,函数21()1x f x x -=+在区间(,1)-∞-上是单调增函数.同理,对于区间(1,)-+∞,函数21()1x f x x -=+是单调增函数; 所以,函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调增函数. 点评:利用单调性定义证明函数的单调性,一般分三步骤:(1)在给定区间内任意取两值1x ,2x ;(2)作差12()()f x f x -,化成因式的乘积并判断符号;(3)给出结论.例2.确定函数()f x =分析:作差后,符号的确定是关键.解:由120x ->,得定义域为1(,)2-∞.对于区间1(,)2-∞内的任意两个值1x ,2x ,且12x x <,则12()()f x f x -===又120x x -<0+>,12()()0f x f x ∴-<,即12()()f x f x <.所以,()f x 在区间1(,)2-∞上是增函数.点评:运用有理化可以对含根号的式子进行符号的确定.【反馈演练】 1.已知函数1()21xf x =+,则该函数在R 上单调递__减__,(填“增”“减”)值域为_________.2.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f =__25___.3.函数y =1[2,]2--.4. 函数2()1f x x x =-+的单调递减区间为1(,1],[,1]2-∞-.(0,1)5. 已知函数1()2ax f x x +=+在区间(2,)-+∞上是增函数,求实数a 的取值范围. 解:设对于区间(2,)-+∞内的任意两个值1x ,2x ,且12x x <, 则12121211()()22ax ax f x f x x x ++-=-++2112(12)()0(2)(2)a x x x x --=<++,120x x -<,1(2)0x +>,2(2)0x +>得,12(2)(2)0x x ++>,120a ∴-<,即12a >.第4课 函数的奇偶性【考点导读】1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.【基础练习】1.给出4个函数:①5()5f x x x =+;②421()x f x x -=;③()25f x x =-+;④()x x f x e e -=-.其中奇函数的有___①④___;偶函数的有____②____;既不是奇函数也不是偶函数的有____③____. 2. 设函数()()()xa x x x f ++=1为奇函数,则实数=a -1 .3.下列函数中,在其定义域内既是奇函数又是减函数的是( A ) A .R x x y ∈-=,3 B .R x x y ∈=,sin C .R x x y ∈=, D .R x x y ∈=,)21(【范例解析】例1.判断下列函数的奇偶性:(1)2(12)()2x xf x +=; (2)()lg(f x x =;(3)221()lg lgf x x x =+; (4)()(1f x x =-(5)2()11f x x x =+-+; (6)22(0),()(0).x x x f x x x x⎧-+≥⎪=⎨<+⎪⎩分析:判断函数的奇偶性,先看定义域是否关于原点对称,再利用定义判断. 解:(1)定义域为x R ∈,关于原点对称;2222(12)2(12)()222x x x x x x f x ----+⋅+-===⋅2(12)()2x xf x +=, 所以()f x 为偶函数.(2)定义域为x R ∈,关于原点对称;()()lg(lg(lg10f x f x x x -+=-++==,()()f x f x ∴-=-,故()f x 为奇函数.(3)定义域为(,0)(0,)x ∈-∞⋃+∞,关于原点对称;()0f x =,()()f x f x ∴-=-且()()f x f x -=,所以()f x 既为奇函数又为偶函数.(4)定义域为[1,1)x ∈-,不关于原点对称;故()f x 既不是奇函数也不是偶函数. (5)定义域为x R ∈,关于原点对称;(1)4f -=,(1)2f =,则(1)(1)f f -≠且(1)(1)f f -≠-,故()f x 既不是奇函数也不是偶函数.(6)定义域为x R ∈,关于原点对称;22()()(0),()(0).()()x x x f x x x x ⎧--+-->⎪-=⎨-<-+-⎪⎩,22(0),()(0).x x x f x x x x ⎧-->⎪∴-=⎨<-⎪⎩又(0)0f =, 22(0),()(0).x x x f x x x x ⎧--<⎪∴-=⎨≥-⎪⎩()()f x f x ∴-=-,故()f x 为奇函数. 点评:判断函数的奇偶性,应首先注意其定义域是否关于原点对称;其次,利用定义即()()f x f x -=-或()()f x f x -=判断,注意定义的等价形式()()0f x f x -+=或()()0f x f x --=.例2. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.分析:奇函数若在原点有定义,则(0)0f =. 解:设0x <,则0x ->,2()22f x x x ∴-=++.又()f x 是奇函数,()()f x f x ∴-=-,2()()22f x f x x x ∴=--=---. 当0x =时,(0)0f =.综上,()f x 的解析式为2222,0()0,0022,x x x f x x x x x ⎧-+>⎪==⎨⎪<---⎩.作出()f x 的图像,可得增区间为(,1]-∞-,[1,)+∞,减区间为[1,0)-,(0,1]. 点评:(1)求解析式时0x =的情况不能漏;(2)两个单调区间之间一般不用“⋃”连接;(3)利用奇偶性求解析式一般是通过“x -”实现转化;(4)根据图像写单调区间.【反馈演练】1.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( D )A .()()76f f >B .()()96f f >C .()()97f f >D .()()107f f > 2. 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( B )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数3. 设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为____1,3 ___.4.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ________.5.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取 值范围是(-2,2).6. 已知函数21()ax f x bx c+=+(,,)a b c Z ∈是奇函数.又(1)2f =,(2)3f <,求a ,b ,c的值;解:由()()f x f x -=-,得()bx c bx c -+=-+,得0c =.又(1)2f =,得12a b +=,25而(2)3f <,得4131a a +<+,解得12a -<<.又a Z ∈,0a ∴=或1. 若0a =,则12b Z =∉,应舍去;若1a =,则1b Z =∈.所以,1,1,0a b c ===.综上,可知()f x 的值域为{0,1,2,3,4}.第5 课 函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法. 【基础练习】1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:(1)2x y =12x y -= 123x y -=+; (2)2log y x = 2log ()y x =-2log (3)y x =-.2.作出下列各个函数图像的示意图:(1)31x y =-; (2)2log (2)y x =-; (3)21xy x -=-. 解:(1)将3x y =的图像向下平移1个单位,可得31x y =-的图像.图略; (2)将2log y x =的图像向右平移2个单位,可得2log (2)y x =-的图像.图略;(3)由21111x y x x -==---,将1y x =的图像先向右平移1个单位,得11y x =-的图像,再向下平移1个单位,可得21x y x -=-3.作出下列各个函数图像的示意图:x向右平移1个向上平移3个作关于y 轴对称的向右平移3个(1)12log ()y x =-; (2)1()2x y =-; (3)12log y x =; (4)21y x =-.解:(1)作12log y x =的图像关于y 轴的对称图像,如图1所示;(2)作1()2x y =的图像关于x 轴的对称图像,如图2所示;(3)作12log y x =的图像及它关于y 轴的对称图像,如图3所示;(4)作21y x =-的图像,并将x 轴下方的部分翻折到x 轴上方,如图4所示.4. 函数()|1|f x x =-的图象是( B )例1.作出函数2()223f x x x =-++及()f x -,()f x -,(2)f x +,()f x ,()f x 的图像.分析:根据图像变换得到相应函数的图像. 解:()y f x =-与()y f x =的图像关于y 轴对称;()y f x =-与()y f x =的图像关于x 轴对称;将()y f x =的图像向左平移2个单位得到(2)y f x =+的图像;xxx图3图4保留()y f x =的图像在x 轴上方的部分,将x 轴下方的部分关于x 轴翻折上去,并去掉原下方的部分;将()y f x =的图像在y 轴右边的部分沿y 轴翻折到y 轴的左边部分替代原y 轴左边部分,并保留()y f x =在y 轴右边部分.图略.点评:图像变换的类型主要有平移变换,对称变换两种.平移变换:左“+”右“-”,上“+”下“-”;对称变换:()y f x =-与()y f x =的图像关于y 轴对称;()y f x =-与()y f x =的图像关于x 轴对称;()y f x =--与()y f x =的图像关于原点对称;()y f x =保留()y f x =的图像在x 轴上方的部分,将x 轴下方的部分关于x 轴翻折上去,并去掉原下方的部分;()y f x =将()y f x =的图像在y 轴右边的部分沿y 轴翻折到y 轴的左边部分替代原y轴左边部分,并保留()y f x =在y 轴右边部分.例2.设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像;(2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明.分析:根据图像变换得到)(x f 的图像,第(3)问实质是恒成立问题. 解:(1)(2)方程5)(=x f 的解分别是4,0,142-和142+,由于)(x f 在]1,(-∞-和]5,2[上单调递减,在]2,1[-和),5[∞+上单调递增,因此(][)∞++-∞-=,142]4,0[142, A .由于A B ⊂∴->-<+,2142,6142.【反馈演练】B )xxxx2. 为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象向右平移1个单位长度得到.3.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k =14-. 4.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线21=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_____0____ . 5. 作出下列函数的简图:(1)2(1)y x x =-+; (2)21x y =-; (3)2log 21y x =-.第6课 二次函数【考点导读】1.理解二次函数的概念,掌握二次函数的图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.【基础练习】1. 已知二次函数232y x x =-+,则其图像的开口向__上__;对称轴方程为32x =;顶点坐标为 31(,)24-,与x 轴的交点坐标为(1,0),(2,0),最小值为14-.2. 二次函数2223y x mx m =-+-+的图像的对称轴为20x +=,则m =__-2___,顶点坐标为(2,3)-,递增区间为(,2]-∞-,递减区间为[2,)-+∞. 3. 函数221y x x =--的零点为11,2-. 4. 实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件为0ac <;有两正根的充要条件为0,0,0b c a a ∆≥->>;有两负根的充要条件为0,0,0b ca a∆≥-<>.5. 已知函数2()23f x x x =-+在区间[0,]m 上有最大值3,最小值2,则m 的取值范围是__________.【范例解析】例1.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈.[1,2](1)讨论)(x f 的奇偶性;(2)若2a =时,求)(x f 的最小值. 分析:去绝对值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数.当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠.此时)(x f 既不是奇函数,也不是偶函数.(2)⎪⎩⎪⎨⎧<+-≥-+=2123)(22x x x x x x x f由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f . 故函数)(x f 在),(∞-∞内的最小值为43. 点评:注意分类讨论;分段函数求最值,先求每个区间上的函数最值,再确定最值中的最值.例2.函数()f x 212ax x a =+-()a R ∈在区间2]的最大值记为)(a g ,求)(a g 的表达式.分析:二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况.解:∵直线1x a =-是抛物线()f x 212ax x a =+-的对称轴,∴可分以下几种情况进行讨论:(1)当0>a 时,函数()y f x =,2]x ∈的图象是开口向上的抛物线的一段,由10x a=-<知()f x在2]x ∈上单调递增,故)(a g (2)f =2+=a ; (2)当0=a 时,()f x x =,2]x ∈,有)(a g =2;(3)当0<a 时,,函数()y f x =,2]x ∈的图象是开口向下的抛物线的一段,若1x a=-]2,0(∈即22-≤a 时,)(a g f ==, 若1x a =-]2,2(∈即]21,22(--∈a 时,)(a g 11()2f a a a=-=--, 若1x a =-),2(+∞∈即)0,21(-∈a 时,)(a g (2)f =2+=a .综上所述,有)(a g =⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-≤<---->+)22(2)2122(,21)21(2a a a a a a .点评:解答本题应注意两点:一是对0a =时不能遗漏;二是对0a ≠时的分类讨论中应同时考察抛物线的开口方向,对称轴的位置及()y f x =在区间2]上的单调性.【反馈演练】1.函数[)()+∞∈++=,02x c bx x y 是单调函数的充要条件是0b ≥.2.已知二次函数的图像顶点为(1,16)A ,且图像在x 轴上截得的线段长为8,则此二次函数的解析式为2215y x x =-++.3. 设0>b ,二次函数122-++=a bx ax y 的图象为下列四图之一:则a 的值为 ( B ) A .1B .-1C .251-- D .251+- 4.若不等式210x ax ++≥对于一切1(0,)2x ∈成立,则a 的取值范围是5[,)2-+∞. 5.若关于x 的方程240x mx -+=在[1,1]-有解,则实数m 的取值范围是(,5][5,)-∞-⋃+∞.6.已知函数2()223f x x ax =-+在[1,1]-有最小值,记作()g a . (1)求()g a 的表达式; (2)求()g a 的最大值.解:(1)由2()223f x x ax =-+知对称轴方程为2a x =,当12a≤-时,即2a ≤-时,()(1)25g a f a =-=+; 当112a-<<,即22a -<<时,2()()322a a g a f =-=-;当12a≥,即2a ≥时,()(1)52g a f a ==-; 综上,225,(2)()3,(22)252,(2)a a a g a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.(2)当2a ≤-时,()1g a ≤;当22a -<<时,()3g a ≤;当2a ≥时,()1g a ≤.故当0a =时,()g a 的最大值为3.7. 分别根据下列条件,求实数a 的值:(1)函数2()21f x x ax a =-++-在在[0,1]上有最大值2; (2)函数2()21f x ax ax =++在在[3,2]-上有最大值4.解:(1)当0a <时,max ()(0)f x f =,令12a -=,则1a =-; 当01a ≤≤时,max ()()f x f a =,令()2f a =,a ∴= 当1a >时,max ()(1)f x f =,即2a =. 综上,可得1a =-或2a =.(2)当0a >时,max ()(2)f x f =,即814a +=,则38a =; 当0a <时,max ()(1)f x f =-,即14a -=,则3a =-.综上,38a =或3a =-. 8. 已知函数2(),()f x x a x R =+∈.(1)对任意12,x x R ∈,比较121[()()]2f x f x +与12()2x x f +的大小;(2)若[1,1]x ∈-时,有()1f x ≤,求实数a 的取值范围. 解:(1)对任意1x ,2x R ∈,212121211[()()]()()0224x x f x f x f x x ++-=-≥ 故12121[()()]()22x x f x f x f ++≥.(2)又()1f x ≤,得1()1f x -≤≤,即211x a -≤+≤,得2max 2min (1),[1,1](1),[1,1]a x x a x x ⎧≥--∈-⎪⎨≤-+∈-⎪⎩,解得10a -≤≤.第7课 指数式与对数式【考点导读】1.理解分数指数幂的概念,掌握分数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质;3.能运用指数,对数的运算性质进行化简,求值,证明,并注意公式成立的前提条件;4.通过指数式与对数式的互化以及不同底的对数运算化为同底对数运算. 【基础练习】1.写出下列各式的值:(0,1)a a >≠=3π-; 238=____4____; 3481-=127; log 1a =___0_____; log a a =____1____;4=__-4__.2.化简下列各式:(0,0)a b >>(1)2111333324()3a b a b ---÷-=6a -;(2)2222(2)()a a a a ---+÷-=2211a a -+.3.求值:(1)354)⨯=___-38____;(2)33(lg 2)3lg 2lg 5(lg 5)+⋅+=____1____;(3)234567log 3log 4log 5log 6log 7log 8⨯⨯⨯⨯⨯=_____3____. 【范例解析】 例1. 化简求值:(1)若13a a -+=,求1122a a --及442248a a a a --+-+-的值;(2)若3log 41x =,求332222x xx x--++的值. 分析:先化简再求值.解:(1)由13a a -+=,得11222()1a a --=,故11221a a--=±;又12()9a a -+=,227a a -+=;4447a a -∴+=,故44224438a a a a --+-=-+-.(2)由3log 41x =得43x=;则33227414223x x x xx x---+=-+=+. 点评:解条件求值问题:(1)将已知条件适当变形后使用;(2)先化简再代入求值.例2.(1)求值:11lg 9lg 240212361lg 27lg 35+-+-+; (2)已知2log 3m =,3log 7n =,求42log 56. 分析:化为同底.解:(1)原式=lg10lg 3lg 240136lg10lg 9lg 5+-+-+1lg810lg8=+=;(2)由2log 3m =,得31log 2m=;所以33342333log 563log 2log 73log 56log 4213log 2log 71mnm mn++===++++. 点评:在对数的求值过程中,应注意将对数化为同底的对数. 例3. 已知35a b c ==,且112a b+=,求c 的值.分析:将a ,b 都用c 表示. 解:由35a b c ==,得1log 3c a =,1log 5c b =;又112a b+=,则log 3log 52c c +=,得215c =.0c >,c ∴= 点评:三个方程三个未知数,消元法求解.【反馈演练】1.若21025x =,则10x -=15. 2.设lg 321a =,则lg 0.321=3a -. 3.已知函数1()lg1xf x x-=+,若()f a b =,则()f a -=-b .4.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是(-∞,-1)∪(1,+∞).5.设已知f (x 6) = log 2x ,那么f (8)等于12. 6.若618.03=a ,)1,[+∈k k a ,则k =__-1__.7.已知函数21(0)()21(1)xc cx x c f x c x -+⎧⎪=⎨⎪+≤⎩<<<,且89)(2=c f . (1)求实数c 的值; (2)解不等式182)(+>x f . 解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()1f x >的解集为58x ⎫⎪<<⎬⎪⎭.第8课 幂函数、指数函数及其性质【考点导读】1.了解幂函数的概念,结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像了解它们的变化情况;2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型. 【基础练习】1.指数函数()(1)x f x a =-是R 上的单调减函数,则实数a 的取值范围是(1,2).2.把函数()f x 的图像分别沿x 轴方向向左,沿y 轴方向向下平移2个单位,得到()2x f x =的图像,则()f x =222x -+.3.函数220.3x x y --=的定义域为___R __;单调递增区间1(,]2-∞-;值域14(0,0.3].4.已知函数1()41x f x a =++是奇函数,则实数a 的取值12-. 5.要使11()2x y m -=+的图像不经过第一象限,则实数m 的取值范围2m ≤-. 6.已知函数21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为1(,0)2. 【范例解析】例1.比较各组值的大小:(1)0.20.4,0.20.2,0.22, 1.62;(2)b a -,b a ,a a ,其中01a b <<<;(3)131()2,121()3.分析:同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性. 解:(1)0.20.200.20.40.41<<=,而0.2 1.6122<<, 0.20.20.2 1.60.20.422∴<<<.(2)01a <<且b a b -<<,b a b a a a -∴>>.(3)111322111()()()223>>.点评:比较同指不同底可利用幂函数的单调性,同底不同指可利用指数函数的单调性;另注意通过0,1等数进行间接分类.例2.已知定义域为R 的函数12()2x x bf x a +-+=+是奇函数,求,a b 的值;解:因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++ 又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++例3.已知函数2()(1)1x x f x a a x -=+>+,求证:(1)函数()f x 在(1,)-+∞上是增函数; (2)方程()0f x =没有负根. 分析:注意反证法的运用.证明:(1)设121x x -<<,122112123()()()(1)(1)x x x x f x f x a a x x --=-+++,1a >,210x x a a ∴->,又121x x -<<,所以210x x ->,110x +>,210x +>,则12()()0f x f x -<故函数()f x 在(1,)-+∞上是增函数.(2)设存在00x <0(1)x ≠-,满足0()0f x =,则00021x x a x -=-+.又001x a <<,002011x x -∴<-<+ 即0122x <<,与假设00x <矛盾,故方程()0f x =没有负根. 点评:本题主要考察指数函数的单调性,函数和方程的内在联系.【反馈演练】1.函数)10()(≠>=a a a x f x 且对于任意的实数y x ,都有( C ) A .)()()(y f x f xy f =B .)()()(y f x f xy f +=C .)()()(y f x f y x f =+D .)()()(y f x f y x f +=+2.设713=x ,则( A ) A .-2<x <-1B .-3<x <-2C .-1<x <0D .0<x <13.将y =2x 的图像 ( D ) 再作关于直线y =x 对称的图像,可得到函数2log (1)y x =+的图像.A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D . 先向下平行移动1个单位4.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( CA .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a5.函数x a y =在[]1,0上的最大值与最小值的和为3,则a 的值为___2__. 6.若关于x 的方程4220x x m ++-=有实数根,求实数m 的取值范围.x4题解:由4220x x m ++-=得,219422(2)224x x x m =--+=-++<,(,2)m ∴∈-∞ 7.已知函数2()()(0,1)2x xa f x a a a a a -=->≠-. (1)判断()f x 的奇偶性;(2)若()f x 在R 上是单调递增函数,求实数a 的取值范围.解:(1)定义域为R ,则2()()()2x xa f x a a f x a --=-=--,故()f x 是奇函数. (2)设12x x R <∈,12121221()()()(1)2x x x x a f x f x a a a a-+-=-+-,当01a <<时,得220a -<,即01a <<;当1a >时,得220a ->,即a >综上,实数a 的取值范围是(0,1))⋃+∞.第9课 对数函数及其性质【考点导读】1.理解对数函数的概念和意义,能画出具体对数函数的图像,探索并理解对数函数的单调性;2.在解决实际问题的过程中,体会对数函数是一类重要的函数模型;3.熟练运用分类讨论思想解决指数函数,对数函数的单调性问题. 【基础练习】1. 函数)26(log 21.0x x y -+=的单调递增区间是1[,2)4.2. 函数2()log 21f x x =-的单调减区间是1(,)2-∞. 【范例解析】例1. (1)已知log (2)a y ax =-在[0,1]是减函数,则实数a 的取值范围是_________. (2)设函数2()lg()f x x ax a =+-,给出下列命题:①)(x f 有最小值; ②当0=a 时,)(x f 的值域为R ; ③当40a -<<时,)(x f 的定义域为R ;④若)(x f 在区间),2[+∞上单调递增,则实数a 的取值范围是4-≥a . 则其中正确命题的序号是_____________. 分析:注意定义域,真数大于零. 解:(1)0,1a a >≠,2ax ∴-在[0,1]上递减,要使log (2)a y ax =-在[0,1]是减函数,则1a >;又2ax -在[0,1]上要大于零,即20a ->,即2a <;综上,12a <<.(2)①)(x f 有无最小值与a 的取值有关;②当0=a 时,2()lg f x x R =∈,成立; ③当40a -<<时,若)(x f 的定义域为R ,则20x ax a +->恒成立,即240a a +<,即40a -<<成立;④若)(x f 在区间),2[+∞上单调递增,则2,2420.aa a ⎧-≤⎪⎨⎪+->⎩解得a ∈∅,不成立.点评:解决对数函数有关问题首先要考虑定义域,并能结合对数函数图像分析解决. 例3.已知函数xxx x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性. 分析:利用定义证明复合函数的单调性.解:x 须满足,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x xx x 得由所以函数)(x f 的定义域为(-1,0)∪(0,1).因为函数)(x f 的定义域关于原点对称,且对定义域内的任意x ,有)()11log 1(11log 1)(22x f xx x x x x x f -=-+--=+---=-,所以)(x f 是奇函数. 研究)(x f 在(0,1)内的单调性,任取x 1、x 2∈(0,1),且设x 1<x 2 ,则,0)112(log )112(log ,011)],112(log )112([log )11(11log 111log 1)()(1222211222212222112121>----->------+-=-++--+-=-x x x x x x x x x x x x x x x f x f 由得)()(21x f x f ->0,即)(x f 在(0,1)内单调递减, 由于)(x f 是奇函数,所以)(x f 在(-1,0)内单调递减.点评:本题重点考察复合函数单调性的判断及证明,运用函数性质解决问题的能力. 【反馈演练】1.给出下列四个数:①2(ln 2);②ln(ln 2);③ln ;④ln 2.其中值最大的序号是___④___.2.设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),(8,2),则a b +等于___5_ _.3.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,则定点A 的坐标是(2,1)--.4.函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为12. 5.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数有___3___个.6.下列四个函数:①lg y x x =+; ②lg y x x =-;③lg y x x =-+;④lg y x x =--.其中,函数图像只能是如图所示的序号为___②___.第6题7.求函数22()log 2log 4x f x x =⋅,1[,4]2x ∈的最大值和最小值. 解:2222()log 2log (log 1)(log 2)4xf x x x x =⋅=+-222log log 2x x =-- 令2log t x =,1[,4]2x ∈,则[1,2]t ∈-,即求函数22y t t =--在[1,2]-上的最大值和最小值. 故函数()f x 的最大值为0,最小值为94-. 8.已知函数()log ax bf x x b+=-(0,1,0)a a b >≠>. (1)求()f x 的定义域;(2)判断()f x 的奇偶性;(3)讨论()f x 的单调性,并证明.解:(1)解:由 0x bx b +>-,故的定义域为()(,)b b -∞-⋃+∞. (2)()log ()()a x bf x f x x b-+-==---,故()f x 为奇函数.(3)证明:设12b x x <<,则121221()()()()log ()()ax b x b f x f x x b x b +--=+-,12212121()()2()10()()()()x b x b b x x x b x b x b x b +---=>+-+-.当1a >时,12()()0f x f x ∴->,故)(x f 在(,)b +∞上为减函数;同理)(x f 在(,)b -∞-上也为减函数;当01a <<时,12()()0f x f x ∴-<,故)(x f 在(,)b +∞,(,)b -∞-上为增函数.第10课 函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法. 【基础练习】1.函数2()44f x x x =++在区间[4,1]--有_____1 ___个零点.2.已知函数()f x 的图像是连续的,且x 与()f x 有如下的对应值表:则()f x 在区间[1,6]上的零点至少有___3__个.【范例解析】例1.()f x 是定义在区间[-c ,c ]上的奇函数,其图象如图所示:令()()g x af x b =+,则下列关于函数()g x 的结论:①若a <0,则函数()g x 的图象关于原点对称;②若a =-1,-2<b <0,则方程()g x =0有大于2的实根; ③若a ≠0,2b =,则方程()g x =0有两个实根; ④若0a ≠,2b =,则方程()g x =0有三个实根.其中,正确的结论有___________. 分析:利用图像将函数与方程进行互化.解:当0a <且0b ≠时,()()g x af x b =+是非奇非偶函数,①不正确;当2a =-,0b =时,()2()g x f x =-是奇函数,关于原点对称,③不正确;当0a ≠,2b =时,2()f x a=-,由图知,当222a -<-<时,2()f x a=-才有三个实数根,故④不正确;故选②. 点评:本题重点考察函数与方程思想,突出考察分析和观察能力;题中只给了图像特征,因此,应用其图,察其形,舍其次,抓其本.例2.设2()32f x ax bx c =++,若0a b c ++=,(0)0f >,(1)0f >. 求证:(1)0a >且12-<<-ab; (2)方程()0f x =在(0,1)内有两个实根.分析:利用0a b c ++=,(0)0f >,(1)0f >进行消元代换. 证明:(1)(0)0f c =>,(1)320f a b c =++>,由0a b c ++=,得b a c =--,代入(1)f 得:0a c ->,即0a c >>,且01c a <<,即1(2,1)b ca a=--∈--,即证. (2)11()024f a =-<,又(0)0f >,(1)0f >.则两根分别在区间1(0,)2,1(,1)2内,得证.点评:在证明第(2)问时,应充分运用二分法求方程解的方法,选取(0,1)的中点12来考察1()2f 的正负是首选目标,如不能实现1()02f <,则应在区间内选取其它的值.本题也可选3ba-,也可利用根的分布来做.【反馈演练】1.设123)(+-=a ax x f ,a 为常数.若存在)1,0(0∈x ,使得0)(0=x f ,则实数a2.设函数2,0,()2,0.x bx c x f x x ⎧++≤=⎨>⎩若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =解的个数为( C ) A .1 B .2C .3D .43.已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实数根,下列命题: ①方程[()]f f x x =也一定没有实数根;②若0a >,则不等式[()]f f x x >对一切实数x 都成立;。
2013届高考数学第一轮专项复习教案28

8.5轨迹问题●知识梳理本节主要内容是轨迹的概念及轨迹方程的求法.求轨迹方程常用的方法:(1)结合解析几何中某种曲线的定义,从定义出发寻找解决问题的方法;(2)利用几何性质,若所求的轨迹与图形的性质相关,往往利用三角形或圆的性质来解问题;(3)如果点P 的运动轨迹或所在曲线已知,又点Q 与点P 之间的坐标可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹;(4)参数法.●点击双基1.动点P 到直线x =1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是A.中心在原点的椭圆B.中心在(5,0)的椭圆C.中心在原点的双曲线D.中心在(5,0)的双曲线 解析:直接法. 答案:B2.(2005年春季北京,6)已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是A.22x -32y =1B.32x -22y =1C.42x -y 2=1D.x 2-42y =1解析:设双曲线的方程为22a x -22by =1.由题意||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=(25)2.又∵|PF 1|·|PF 2|=2,∴a =2,b =1. 故双曲线方程为42x -y 2=1.答案:C3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是A.y 2-482x =1(y ≤-1)B.y 2-482x =1C.y 2-482x =-1D.x 2-482y =1解析:由题意|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2.故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c =7,a =1,b 2=48,所以轨迹方程为y 2-482x =1(y ≤-1).答案:A4.F 1、F 2为椭圆42x +32y =1的左、右焦点,A 为椭圆上任一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:延长F 1D 与F 2A 交于B ,连结DO ,可知DO =21F 2B =2,∴动点D 的轨迹方程为x 2+y 2=4.答案:x 2+y 2=45.已知△ABC 中,B (1,0)、C (5,0),点A 在x 轴上方移动,且tan B +tan C =3,则△ABC 的重心G 的轨迹方程为________________.解析:设A (x 0,y 0), ∵tan B +tan C =3, ∴100-x y -500-x y=3,点A 的轨迹方程为y 0=-43(x 02-6x 0+5)(x 0≠1且x 0≠5).若G (x ,y )为△ABC 的重心,则由重心坐标公式:x =3510x ++,y =30y ,∴x 0=3x -6,且y 0=3y .代入A 点轨迹方程得G 的轨迹方程为y -1=-49(x -3)2(x ≠37且x ≠311). 答案:y -1=-49(x -3)2(x ≠37且x ≠311)●典例剖析【例1】在△PMN 中,tan ∠PMN =21,tan ∠MNP =-2,且△PMN 的面积为1,建立适当的坐标系,求以M 、N 为焦点,且过点P 的椭圆的方程.剖析:如上图,以直线MN 为x 轴,线段MN 的垂直平分线为y轴,建立平面直角坐标系,则所求椭圆方程为22ax +22by =1.显然a 2、b 2是未知数,但a 2、b 2与已知条件没有直接联系,因此应寻找与已知条件和谐统一的未知元,或改造已知条件.解法一:如上图,过P 作PQ ⊥MN ,垂足为Q ,令|PQ |=m ,于是可得|MQ |=|PQ |cot ∠PMQ =2m ,|QN |=|PQ |cot ∠PNQ =21m .∴|MN |=|MQ |-|NQ |=2m -21m =23m . 于是S △PMN =21|MN |·|PQ |=21·23m ·m =1.因而m =34,|MQ |=234,|NQ |=31,|MN |=3.|MP |=22||||PQ MQ +=34316+=3152,|NP |=22||||PQ NQ +=3431+=315.以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设椭圆方程为22ax +22by =1(a >b >0).则2a =|MP |+|NP |=15,2c =|MN |=3,故所求椭圆方程为1542x +32y =1.解法二:设M (-c ,0)、N (c ,0),P (x ,y ),y >0,c xy +=21, cx y-=2, y ·c =1, 解之,得x =635,y =332,c =23.设椭圆方程为b 2x 2+a 2y 2=a 2b 2,则 b 2·(635)2+a 2(332)2=a 2b 2,a 2-b 2=43,解之,得a 2=415,b 2=3. (以下略)评述:解法一选择了与a 较接近的未知元|PM |、|PN |,但需改造则已知条件,以便利用正弦定理和面积公式;解法二以条件为主,选择了与条件联系最直接的未知元x 、y 、c .本题解法较多,但最能体现方程思想方法的、学生易于理解和接受的是这两种解法.深化拓展若把△PMN 的面积为1改为PM ·PN =38,求椭圆方程. 提示:由tan ∠PMN =21,tan ∠MNP =-2,易得sin ∠MPN =53,cos ∠MPN =54.由PM ·PN =38,得|PM ||PN |=310.易求得|PM |=3152,|PN |=315.进而求得椭圆方程为1542x +32y =1. 【例2】(2004年福建,22)如下图,P 是抛物线C :y =21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q .若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程.剖析:欲求PQ 中点M 的轨迹方程,需知P 、Q 的坐标.思路一,P 、Q 是直线l 与抛物线C 的交点,故需求直线l 的方程,再与抛物线C 的方程联立,利用韦达定理、中点坐标公式可求得M 的轨迹方程;思路二,设出P 、Q 的坐标,利用P 、Q 的坐标满足抛物线C 的方程,代入抛物线C 的方程相减得PQ 的斜率,利用PQ 的斜率就是l 的斜率,可求得M 的轨迹方程.解:设P (x 1,y 1)、Q (x 2,y 2)、M (x 0,y 0),依题意知x 1≠0,y 1>0,y 2>0.由y =21x 2,①得y ′=x .∴过点P 的切线的斜率k 切=x 1, ∴直线l 的斜率k l =-切k 1=-11x , 直线l 的方程为y -21x 12=-11x (x -x 1).②方法一:联立①②消去y ,得x 2+12x x -x 12-2=0.∵M 为PQ 的中点,x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1).消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y =x 2+221x +1(x ≠0).方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-1x .将上式代入②并整理,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y =x 2+221x +1(x ≠0).评述:本题主要考查了直线、抛物线的基础知识,以及求轨迹方程的常用方法.本题的关键是利用导数求切线的斜率以及灵活运用数学知识分析问题、解决问题.∴深化拓展当点P 在抛物线C 上移动时,求点M 到x 轴的最短距离. 提示:∵x ≠0,x 2>0,∴y =x 2+221x +1≥221+1=2+1,当且仅当x 2=221x ,x =±214时等号成立,即点M 到x 轴的最短距离为2+1.【例3】(2000年春季全国)已知抛物线y 2=4px (p >0),O 为顶点,A 、B 为抛物线上的两动点,且满足OA ⊥OB ,如果OM ⊥AB 于M 点,求点M 的轨迹方程.剖析:点M 是OM 与AB 的交点,点M 随着A 、B 两点的变化而变化,而A 、B 为抛物线上的动点,点M 与A 、B 的直接关系不明显,因此需引入参数.解法一:设M (x 0,y 0),则k OM =0x y ,k AB =-0y x ,直线AB 方程是y =-00y x (x -x 0)+y 0.由y 2=4px 可得x =py 42,将其代入上式,整理,得x 0y 2-(4py 0)y-4py 02-4px 02=0. ①此方程的两根y 1、y 2分别是A 、B 两点的纵坐标,∴A (py 421,y 1)、B (py 422,y 2).∵OA ⊥OB ,∴k OA ·k OB =-1.∴14y p ·24y p =-1.∴y 1y 2=-16p 2.根据根与系数的关系,由①可得y 1·y 2=2020)(4x y x p +-,∴2020)(4x y x p +-=16p 2.化简,得x 02+y 02-4px 0=0,即x 2+y 2-4px =0(除去原点)为所求.∴点M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设A 、B 两点坐标为A (pt 12,2pt 1)、B (pt 22,2pt 2). ∴k OA =12t ,k OB =22t ,k AB =212t t +.∵OA ⊥OB ,∴t 1·t 2=-4. ∴AB 方程是y -2pt 1=212t t +(x -pt 12), ①直线OM 的方程是y =-221t t +x .② ①×②,得(px )t 12+2pyt 1-(x 2+y 2)=0.③∴直线AB 的方程还可写为y -2pt 2=212t t +(x -pt 22). ④由②×④,得(px )t 22+(2py )t 2-(x 2+y 2)=0.⑤由③⑤可知t 1、t 2是方程(px )t 2+(2py )t 2-(x 2+y 2)=0的两根.由根与系数的关系可得t 1t 2=pxy x )(22+-.又t 1·t 2=-4,∴x 2+y 2-4px =0(原点除外)为所求点M 的轨迹方程.故M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法三:设M (x ,y ),直线AB 方程为y =kx +b ,由OM ⊥AB 得k =-yx .由y 2=4px 及y =kx +b 消去y ,得k 2x 2+x (2kb -4p )+b 2=0. 所以x 1x 2=22kb .消去x ,得ky 2-4py +4pb =0.所以y 1y 2=kpb 4.由OA ⊥OB ,得y 1y 2=-x 1x 2,所以kpk4=-22kb ,b =-4kp .故y =kx +b =k (x -4p ).用k =-yx 代入,得x 2+y 2-4px =0(x ≠0). 解法四:设点M 的坐标为(x ,y ),直线OA 的方程为y =kx , 显然k ≠0,则直线OB 的方程为y =-k1x . y=kx , y 2=4px ,类似地可得B 点的坐标为(4pk 2,-4pk ),从而知当k ≠±1时,k AB =)1(4)1(422k kp k k p -+=k k -11.故得直线AB 的方程为y +4pk =k k-11(x -4pk 2),即(k1-k )y +4p =x ,①直线OM 的方程为y =-(k1-k )x .②由解得A 点的坐标为(24k p ,kp 4可知M点的坐标同时满足①②,由①及②消去k便得4px=x2+y2,即(x-2p)2+y2=4p2,但x≠0,当k=±1时,容易验证M点的坐标仍适合上述方程.故点M的轨迹方程为(x-2p)2+y2=4p2(x≠0),它表示以点(2p,0)为圆心,以2p为半径的圆.评述:本题考查了交轨法、参数法求轨迹方程,涉及了类比、分类讨论等数学方法,消参时又用到了整体思想法,对含字母的式子的运算能力有较高的要求,同时还需要注意轨迹的“完备性和纯粹性”.此题是综合考查学生能力的一道好题.深化拓展本题中直线AB恒过定点(4p,0),读者不妨探究一番.●闯关训练夯实基础1.已知M(-2,0)、N(2,0),|PM|-|PN|=4,则动点P的轨迹是A.双曲线B.双曲线左边一支C.一条射线D.双曲线右边一支解析:利用几何性质.答案:C2.(2003年河南)已知双曲线中心在原点且一个焦点为F(7,2,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为-3则此双曲线的方程是A.32x -42y =1B.42x -32y =1C.52x -22y =1D.22x -52y =1解析:设双曲线方程为22ax -22by =1.将y =x -1代入22a x -22by =1,整理得(b 2-a 2)x 2+2a 2x -a 2-a 2b 2=0.由韦达定理得x 1+x 2=2222b a a -,221xx +=222ba a -=-32.由c 2=a 2+b 2求得a 2=2,b 2=5. 答案:D3.曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.解析:代入法(或相关点法). 答案:(x -6)2+4(y -10)2=44.与圆x 2+y 2-4x =0外切,且与y 轴相切的动圆圆心的轨迹方程是____________.解析:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.答案:y 2=8x (x >0)或y =0(x <0)5.自抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连结顶点O 与P 的直线和连结焦点F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x 1,y 1)、R (x ,y ),则Q (-21,y 1)、F (21,0), ∴OP 的方程为y =11x y x ,① FQ 的方程为y =-y 1(x -21).②由①②得x 1=x x212-,y 1=xy 212-,代入y 2=2x ,可得y 2=-2x 2+x . 6.求经过定点A (1,2),以x 轴为准线,离心率为21的椭圆下方的顶点的轨迹方程.解:设椭圆下方的焦点F (x 0,y 0),由定义2||AF =21, ∴|AF |=1,即点F 的轨迹方程为(x 0-1)2+(y 0-2)2=1. 又设椭圆下方顶点为P (x ,y ),则x 0=x ,y 0=23y ,∴点P 的轨迹方程是(x -1)2+(23y -2)2=1.培养能力7.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如下图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ .∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |.∴x 2+y 2=a |y |,即x 2+(y ±2a )2=(2a )2. 轨迹是分别以CO 、OD 为直径的两个圆.8.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y =k (x -1),代入y 2=4x ,得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点,∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),根据韦达定理,有x 1+x 2=22)2(2kk +, 从而y 1+y 2=k (x 1+x 2-2)=k4. 设△AOB 的重心为G (x ,y ),x =3021x x ++=32+234k, y =3021y y ++=k 34,∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x -98,因此所求轨迹C 的方程为y 2=34x -98. 探究创新9.(2004年春季安徽)已知k >0,直线l 1:y =kx ,l 2:y =-kx . (1)证明:到l 1、l 2的距离的平方和为定值a (a >0)的点的轨迹是圆或椭圆;(2)求到l 1、l 2的距离之和为定值c (c >0)的点的轨迹. (1)证明:设点P (x ,y )为动点,则则 消去k ,得x =32+34(43y )221||k kx y +-+221||k kx y ++=a ,整理得2222)1(k a k x ++2)1(22ak y +=1.因此,当k =1时,动点的轨迹为圆; 当k ≠1时,动点的轨迹为椭圆. (2)解:设点P (x ,y )为动点,则 |y -kx |+|y +kx |=c21k +.当y ≥k |x |时,y -kx +y +kx =c21k +,即y =21c21k +;当y ≤-k |x |时,kx -y -y -kx =c21k +,即y =-21c21k +;当-k |x |<y <k |x |,x >0时,kx -y +y +kx =c21k +,即x =k21c 21k +;当-k |x |<y <k |x |,x <0时,y -kx -y -kx =c21k +,即x =-k21c21k +.综上,动点的轨迹为矩形. ●思悟小结1.求轨迹方程的一般步骤是:建系、设点、列式、代入、化简、检验.检验就是要检验点的轨迹的纯粹性和完备性.2.如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.3.如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.4.如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.5.如果轨迹动点P(x,y)的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x、y用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.6.注意参数的取值范围对方程的影响.●教师下载中心教学点睛1.已知曲线求方程或已知方程画曲线是解析几何中的两个基本问题.如何探求动点的轨迹方程呢?①从定义出发,还本索源.在探求动点的轨迹方程时,如能结合解析几何中某种曲线的定义,也就能寻找到解决问题的钥匙;②利用平面几何的性质.动点的轨迹与图形的性质相关,若某些轨迹与直线或圆有关,则可以利用三角形或圆的性质来帮助分析;③伴随曲线的思想和方法.如果点P的运动轨迹或所在的曲线已知,又点P与点Q的坐标之间可以建立起某种关系,则借助于点P的运动轨迹,我们便可以得到点Q的运动轨迹,这便是伴随曲线的思想方法.2.在探求轨迹的过程中,需要注意的是轨迹的“完备性”和“纯粹性”,也就是说既不能多,也不能少,因此,在求得轨迹方程之后,要深入地再思考一下:①是否还遗漏了一些点?是否还有另一个满足条件的轨迹方程存在?②在所求得的轨迹方程中,x、y的取值范围是否有什么限制?拓展题例【例1】是否存在同时满足下列条件的抛物线?若存在,求出它的方程;若不存在,请说明理由.(1)准线是y轴;(2)顶点在x轴上;(3)点A(3,0)到此抛物线上动点P的距离最小值是2.解:假设存在这样的抛物线,顶点为(a,0),则方程为y2=4a (x-a)(a≠0),设P(x0,y0),则y02=4a(x0-a),|AP|2=(x0-3)2+y02=[x0-(3-2a)]2+12a-8a2,令f(a)=|AP|2,①当a>0时,有x0≥a,当3-2a≥a即a∈(0,1]时,|AP|2=f(3-2a),∴a=11;或a=21).抛物线方程为y2=4(x-1)或y2=2(x-2当3-2a<a即a>1时,|AP|2=f(a).∴a=5或a=1(舍),抛物线方程为y2=20(x-5).②当a<0时,显然与已知矛盾,1)或y2=20∴所求抛物线方程为y2=4(x-1)或y2=2(x-2(x-5).【例2】(2003年太原市模拟题)已知椭圆的焦点为F1(-1,0)、F 2(1,0),直线x =4是它的一条准线.(1)求椭圆的方程;(2)设A 1、A 2分别是椭圆的左顶点和右顶点,P 是椭圆上满足|P A 1|-|P A 2|=2的一点,求tan ∠A 1P A 2的值;(3)若过点(1,0)的直线与以原点为顶点、A 2为焦点的抛物线相交于点M 、N ,求MN 中点Q 的轨迹方程.解:(1)设椭圆方程为22ax +22by =1(a >b >0).c =1, ca 2=4,c =1, a =2,所求椭圆方程为42x +32y =1.(2)由题设知,点P 在以A 1、A 2为焦点,实轴长为2的双曲线的右支上.由(1)知A 1(-2,0),A 2(2,0),设双曲线方程为22mx -22ny =1(m >0,n >0).2m =2,m =1,m 2+n 2=4,n =3.∴双曲线方程为x 2-32y =1.由42x +32y =1,x 2-32y =1,由题设解得∴则解得解得P 点的坐标为(5102,553)或(5102,-553).当P 点坐标为(5102,553)时,tan ∠A 1P A 2=12121PA PA PA PA k k k k +-=-45.同理当P 点坐标为(5102,-353)时,tan ∠A 1P A 2=-45.故tan∠A 1P A 2=-45.(3)由题设知,抛物线方程为y 2=8x .设M (x 1,y 1)、N (x 2,y 2),MN 的中点Q (x ,y ), 当x 1≠x 2时,有 y 12=8x 1, ①y 22=8x 2,② x =221x x +,③ y =221y y +,④2121x x y y --=1-x y.⑤ ①-②,得2121x x y y --(y 1+y 2)=8,将④⑤代入上式,有1-x y·2y =8,即y 2=4(x -1)(x ≠1). 当x 1=x 2时,MN 的中点为(1,0),仍满足上式. 故所求点Q 的轨迹方程为y 2=4(x -1).。
2013届高考数学第一轮专项复习教案25

第九章直线、平面、简单几何体●网络体系总览直线平面与简单几何体空间两条直线平 面空间两个平面空间向量简单几何体空间向量及有关概念棱 柱空间向量的运算及运算律棱 锥空间向量的坐标运算多面体和正多面体空间直线与平面平行直线线在面内线面平行线面相交平行公理定义等角定理判定所成的角、距离判定定理性质定理判定(性质)定理判定(性质)定理直交斜交直交两平面间距离二面角及平面角斜交平行相交异面直线相交直线平面的概念、性质、表示、画法线面间距离三垂线定理,线面成角判定(性质)定理,点到面的距离球、●考点目标定位1.直线与直线、直线与平面、平面与平面的位置关系.2.线线、线面、面面的平行与垂直的判定和性质,三垂线定理.3.两条异面直线所成的角,直线与平面所成的角,二面角的平面角.4.点到平面的距离,线面距离,平行平面的距离,异面直线的距离,两点间的球面距离.5.空间向量及其加法、减法,空间向量的坐标表示,空间向量的数量积.6.直棱柱、平行六面体及正棱锥的性质,球的体积及表面积的计算.●复习方略指南1.立体几何不外乎两大问题,一类是空间位置关系的论证,这类问题应熟练掌握公理、定理、定义或用空间向量来论证,位置关系的论证要注意其间的转化.如线面平行可转化为线线平行等;另一类问题是空间量(空间角、距离、体积、侧面积)的计算,如线面角、二面角的求解.2.立体几何在高考中,选择题、填空题一般出中等难度的题,解答题中可能会有难题.3.归纳总结,理线串点,从知识上可分为:(1)平面的基本性质;(2)两个特殊的位置关系,即线线、线面、面面的平行与垂直;(3)三个角、三个距离.根据每部分内容选择典型的例题,总结出解题方法,对于空间位置关系的论证及空间角与距离的求解,还要注意把空间向量贯彻、渗透其中,通过一题多解,使学生把所学知识真正学活、会用.4.抓主线攻重点,可以针对一些重点内容进行训练,平行和垂直是位置关系的核心,而线面垂直又是核心中的核心,线面角、二面角、距离均与线面垂直密切相关.因此对于这部分内容复习中要强化,并要注意用空间向量去解空间位置关系及空间量的求解.5.复习中要加强数学思想方法的总结与提炼,立体几何中蕴涵着丰富的思想方法,如割补思想、降维转化思想即化空间问题到平面图形中去解决,又如证线面间的位置关系常需经过多次转换才能获得解决,又如可把空间位置关系及空间量的求解转化为空间向量的运算,这些无不体现着化归转化的思想.因此自觉地学习和运用数学思想方法去解题,常能收到事半功倍的效果.9.1平面、空间两条直线●知识梳理1.平面的基本性质,即三个公理及推论.2.公理4及等角定理.3.空间两条直线的位置关系有且只有三种,即平行、相交及异面.4.两条异面直线所成的角及距离,求作异面直线所成的角时,往往取题中的特殊点.●点击双基1.若a,b是异面直线,则只需具备的条件是A.a⊂平面α,b⊄平面α,a与b不平行B.a⊂平面α,b⊂平面β,α∩β=l,a与b无公共点C.a∥直线c,b∩c=A,b与a不相交D.a⊥平面α,b是α的一条斜线答案:C2.如下图,直线a、b相交于点O且a、b成60°角,过点O与a、b都成60°角的直线有A.1条B.2条C.3条D.4条解析:在a、b所确定的平面内有一条,平面外有两条.答案:C3.(2004年北京朝阳区模拟题)如下图,正四面体S—ABC中,D为SC的中点,则BD与SA所成角的余弦值是A.33 B.32 C.63 D.62 解析:取AC 的中点E ,连结DE 、BE ,则DE ∥SA ,∴∠BDE 就是BD 与SA 所成的角.设SA =a ,则BD =BE =23a ,DE =21a ,cos ∠BDE =DE BD BE DE BD ⋅-+2222=63. 答案:C4.如下图,正方体ABCD —A 1B 1C 1D 1的棱长为a ,那么(1)哪些棱所在直线与直线BA 1成异面直线?______________________.(2)直线BA 1与CC 1所成角的大小为________.(3)直线BA 1与B 1C 所成角的大小为________.(4)异面直线BC 与AA 1的距离为________.(5)异面直线BA 1与CC 1的距离是________.答案:(1)D 1C 1、D 1D 、C 1C 、C 1B 1、DC 、AD(2)45°(3)60°(4)a (5)a5.(2002年全国)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是_____________.解析:连结FE 1、FD ,则由正六棱柱相关性质可得FE 1∥BC 1,在△EFD 中,EF =ED =1,∠FED =120°,∴FD =o 120cos 222⋅⋅-+ED EF ED EF =3.在△EFE 1和△EE 1D 中,易得E 1F =E 1D =1)2(2+=3,∴△E 1FD 是等边三角形,∠FE 1D =60°.而∠FE 1D 即为E 1D 与BC 1所成的角.答案:60°说明:本题主要考查正六棱柱的性质及异面直线所成角的求法.●典例剖析【例1】如下图,四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =2∶3,DH ∶HA =2∶3.求证:EF 、GH 、BD 交于一点.证明:连结GE 、HF ,∵E 、G 分别为BC 、AB 的中点,∴GE ∥AC .又∵DF ∶FC =2∶3,DH ∶HA =2∶3,∴HF ∥AC .∴GE ∥HF .故G 、E 、F 、H 四点共面.又∵EF 与GH 不能平行,∴EF 与GH 相交,设交点为O .则O ∈面ABD ,O ∈面BCD ,而平面ABD ∩平面BCD =BD .∴EF 、GH 、BD 交于一点. 评述:证明线共点,常采用证两直线的交点在第三条直线上的方法,而第三条直线又往往是两平面的交线.【例2】A 是△BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明:用反证法.设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解:取CD 的中点G ,连结EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的锐角或直角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.特别提示①证明两条直线是异面直线常用反证法;②求两条异面直线所成的角,首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为90°;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是(0,2π]. 【例3】长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C .(2)异面直线D 1B 与AC 所成角的余弦值.(1)解:BC 为异面直线AB 与CC 1的公垂线段,故AB 与CC 1的距离为b .AA 1为异面直线AB 与A 1C 1的公垂线段,故AB 与A 1C 1的距离为c .过B 作BE ⊥B 1C ,垂足为E ,则BE 为异面直线AB 与B 1C 的公垂线,BE =C B BC BB 11⋅=22c b bc +,即AB 与B 1C 的距离为22c b bc+.(2)解法一:连结BD 交AC 于点O ,取DD 1的中点F ,连结OF 、AF ,则OF ∥D 1B ,∴∠AOF 就是异面直线D 1B 与AC 所成的角.∵AO =222b a +,OF =21BD 1=2222c b a ++,AF =2422c b +, ∴在△AOF 中,cos ∠AOF =OF AO AF OF AO ⋅-+2222=))((2222222c b a b a b a +++-. 解法二:如下图,在原长方体的右侧补上一个同样的长方体,连结BG 、D 1G ,则AC ∥BG ,∴∠D 1BG (或其补角)为D 1B 与AC 所成的角.BD 1=222c b a ++,BG =22b a +,D 1G =224c a +,在△D 1BG 中,cos ∠D 1BG =BG B D G D BG B D ⋅-+1212212=-))((2222222c b a b a b a +++-,故所求的余弦值为))((2222222c b a b a b a +++-.深化拓展利用中位线平移和利用补形平移是处理长方体中异面直线所成角的重要方法.●闯关训练夯实基础1.两条相交直线l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件解析:若l 和m 中至少有一条与β相交,不妨设l ∩β=A ,则由于l α,∴A ∈α.而A ∈β,∴α与β相交.反之,若α∩β=a ,如果l 和m 都不与β相交,由于它们都不在平面β内,∴l ∥β且m ∥β.∴l ∥a 且m ∥a ,进而得到l ∥m ,与已知l 、m 是相交直线矛盾.因此l 和m 中至少有一条与β相交.答案:C2.(2004年天津,6)如下图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于A.510 B.515 C.54 D.32 解法一:取面CC 1D 1D 的中心为H ,连结FH 、D 1H .在△FHD 1中, FD 1=25,FH =23,D 1H =22. 由余弦定理,得∠D 1FH 的余弦值为515. 解法二:取BC 的中点G .连结GC 1∥FD 1,再取GC 的中点H ,连结HE 、OH ,则∠OEH 为异面直线所成的角. 在△OEH 中,OE =23,HE =45,OH =45. 由余弦定理,可得cos ∠OEH =515. 答案:B3.如下图,四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD =2AB =2,EF ⊥AB ,则EF 与CD 所成的角等于_____________.解析:取AD 的中点G ,连结EG 、FG ,易知EG =1,FG =21. 由EF ⊥AB 及GF ∥AB 知EF ⊥FG .在Rt △EFG 中,求得∠GEF =30°,即为EF 与CD 所成的角.答案:30°4.(2003年上海)在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC 所成角的大小等于_____________.(结果用反三角函数值表示)答案:arctan25.如下图,设不全等的△ABC 与△A 1B 1C 1不在同一平面内,且AB ∥A 1B 1,BC ∥B 1C 1,CA ∥C 1A 1.求证:AA 1、BB 1、CC 1三线共点.证明:不妨设AB ≠A 1B 1,AA 1∩BB 1=S ,∵BC ∥B 1C 1,∴BB 1面BCC 1B 1,S ∈面BBC 1B 1.同理,S ∈面ACC 1A 1.∴S ∈CC 1,即AA 1、BB 1、CC 1三线共点于S .6.在三棱锥A —BCD 中,AD =BC =2a ,E 、F 分别是AB 、CD 的中点,EF =3a ,求AD 与BC 所成的角.解:取AC 的中点M ,连结ME 、MF ,则ME ∥BC ,MF ∥AD ,所以∠EMF (或其补角)是直线AD 与BC 所成的角.在△EMF 中,ME =21BC =a ,MF =21AD =a ,EF =3a ,cos ∠EMF =222223aa a a -+=-21,∠EMF =120°,因此异面直线AD 与BC 所成的角为60°. 培养能力7.如下图,在三棱锥P —ABC 中,AB =AC ,PB =PC ,E 、F 分别是PC 和AB 上的点且PE ∶EC =AF ∶FB =3∶2.(1)求证:PA ⊥BC ;(2)设EF 与PA 、BC 所成的角分别为α、β,求证:α+β=90°.证明:(1)取BC 的中点D ,连结AD 、PD .则BC ⊥平面ADP ,AP ⊂平面ADP ,(2)在AC 上取点G ,使AG ∶GC =3∶2,连结EG 、FG ,则EG ∥PA ,FG ∥BC ,从而∠EGF 为PA 与BC 所成的角,由(1)知∠EGF =90°,而∠GEF 、∠GFE 分别是EF 与PA 、EF 与BC 所成的角α、β,∴α+β=90°.8.如下图,设△ABC 和△A 1B 1C 1的三对对应顶点的连线AA 1、BB 1、CC 1相交于一点O ,且1OA AO =1OB BO =1OC CO =32.试求111C B A ABC S S ∆∆的值.解:依题意,因为AA 1、BB 1、CC 1相交于一点O ,且1OA AO =1OB BO =1OC CO ,所以AB ∥A 1B 1,AC ∥A 1C 1,BC ∥B 1C 1.由平移角定理得∠BAC =∠B 1A 1C 1,∠ABC =∠A 1B 1C 1,△ABC ∽△A 1B 1C 1,所以111C B A ABC S S ∆∆=(32)2=94. 说明:利用平移定理,可证明空间两个角相等或两个三角形相似、全等;利用平行公理,可证明空间两条直线平行,从而解决相关问题.探究创新9.如下图,已知空间四边形ABCD 的对角线AC =10,BD =6,M 、N 分别是AB 、CD 的中点,MN =7,求异面直线AC 与BD 所成的角.解:取BC 的中点E ,连结EN 、EM ,∴∠MEN 是异面直线AC 与BD 所成的角或其补角.在△EMN 中,EN =2BD =3,EM =2AC =5,MN =7,cos ∠MEN =-21,∴∠MEN =120°.∴异面直线AC 与BD 所成的角是60°.●思悟小结1.本节重点问题是证明三点共线、三线共点以及求异面直线所成的角.2.证明三点均在两个平面的交线上,可以推证三点共线;求异面直线所成的角,一般先取一个特殊点作它们的平行线,作出所求的角或其补角,再解三角形.●教师下载中心首先要使学生掌握本节的重点内容:平面的基本性质、异面直线的定义及判断、异面直线所成的角,其次结合例题讲清求异面直线所成的角的方法步骤.拓展题例【例1】设异面直线a 与b 所成的角为50°,O 为空间一定点,试讨论,过点O 与a 、b 所成的角都是θ(0°≤θ≤90°)的直线l 有且仅有几条?解:过点O 作a 1∥a ,b 1∥b ,则相交直线a 1、b 1确定一平面α.a 1与b 1夹角为50°或130°,设直线OA 与a 1、b 1均为θ角,作AB ⊥面α于点B ,BC ⊥a 1于点C ,BD ⊥b 1于点D ,记∠AOB =θ1,∠BOC =θ2(θ2=25°或65°),则有cos θ=cos θ1·cos θ2.因为0°≤θ1≤90°,所以0≤cos θ≤cos θ2.当θ2=25°时,由0≤cos θ≤cos25°,得25°≤θ≤90°;当θ2=65°时,由0≤cos θ≤cos65°,得65°≤θ≤90°.故当θ<25°时,直线l 不存在;当θ=25°时,直线l 有且仅有1条;当25°<θ<65°时,直线l 有且仅有2条;当θ=65°时,直线l 有且仅有3条;当65°<θ<90°时,直线l 有且仅有4条;当θ=90°时,直线l 有且仅有1条.说明:异面直线所成的角就是选点、平移后的平面角.上述解答首先将问题转化为:求过点O 与a 1、b 1均成θ角的直线的条数,进而通过讨论θ的范围去确定直线l 的条数.【例2】已知空间四边形ABCD ,E 、H 分别是AB 、AD 的中点,F 、G 分别是边BC 、DC 的三等分点(如下图),求证:(1)对角线AC 、BD 是异面直线;(2)直线EF 和HG 必交于一点,且交点在AC 上.证明:(1)假设对角线AC 、BD 在同一平面α内,则A 、B 、C 、D 都在平面α内,这与ABCD 是空间四边形矛盾,∴AC 、BD 是异面直线.(2)∵E 、H 分别是AB 、AD 的中点,∴EH 21BD . 又F 、G 分别是BC 、DC 的三等分点,∴FG 32BD .∴EH ∥FG ,且EH <FG . ∴FE 与GH 相交.设交点为O ,又O 在GH 上,GH 在平面ADC 内,∴O 在平面ADC 内.同理,O 在平面ABC 内.从而O 在平面ADC 与平面ABC 的交线AC 上.。
2013届高考数学第一轮专项复习教案33

7.6直线与圆的位置关系●知识梳理 直线和圆1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.①Δ>0,直线和圆相交. ②Δ=0,直线和圆相切. ③Δ<0,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d 和半径R 的大小加以比较. ①d <R ,直线和圆相交. ②d =R ,直线和圆相切. ③d >R ,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. ●点击双基1.(2005年北京海淀区期末练习题)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为A.相切B.相交C.相切或相离D.相交或相切解析:圆心到直线的距离为d =21m+,圆半径为m . ∵d -r =21m +-m =21(m -2m +1)=21(m -1)2≥0,∴直线与圆的位置关系是相切或相离. 答案:C2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6B.225 C.1D.5 解析:圆心到直线的距离为22,半径为2,弦长为222)22()2(-=6.答案:A3.(2004年全国卷Ⅲ,4)圆x 2+y 2-4x =0在点P (1,3)处的切线方程为 A.x +3y -2=0B.x +3y -4=0 C.x -3y +4=0D.x -3y +2=0 解法一:x 2+y 2-4x =0y =kx -k +3⇒x 2-4x +(kx -k +3)2=0. 该二次方程应有两相等实根,即Δ=0,解得k =33. ∴y -3=33(x -1),即x -3y +2=0. 解法二:∵点(1,3)在圆x 2+y 2-4x =0上, ∴点P 为切点,从而圆心与P 的连线应与切线垂直. 又∵圆心为(2,0),∴1230--·k =-1. 解得k =33,∴切线方程为x -3y +2=0. 答案:D4.(2004年上海,理8)圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________.解析:∵圆C 与y 轴交于A (0,-4),B (0,-2), ∴由垂径定理得圆心在y =-3这条直线上. 又已知圆心在直线2x -y -7=0上,y =-3, 2x -y -7=0.∴圆心为(2,-3),半径r =|AC |=22)]4(3[2---+=5. ∴所求圆C 的方程为(x -2)2+(y +3)2=5. 答案:(x -2)2+(y +3)2=55.若直线y =x +k 与曲线x =21y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k =-2●典例剖析 【例1】已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径.剖析:由于OP ⊥OQ ,所以k OP ·k OQ =-1,问题可解.解:将x =3-2y 代入方程x 2+y 2+x -6y +m =0,得5y 2-20y +12+m =0.设P (x 1,y 1)、Q (x 2,y 2),则y 1、y 2满足条件y 1+y 2=4,y 1y 2=512m+.∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0.而x 1=3-2y 1,x 2=3-2y 2,∴x 1x 2=9-6(y 1+y 2)+4y 1y 2.∴m =3,此时Δ>0,圆心坐标为(-21,3),半径r =25.评述:在解答中,我们采用了对直线与圆的交点“设而不求”的解法技巧,但必须注意这样的交点是否存在,这可由判别式大于零帮助考虑.∴解得【例2】求经过两圆(x +3)2+y 2=13和x 2+(y +3)2=37的交点,且圆心在直线x -y -4=0上的圆的方程.剖析:根据已知,可通过解方程组 (x +3)2+y 2=13,x 2+(y +3)2=37由圆心在直线x -y -4=0上,三个独立条件,用待定系数法求出圆的方程;也可根据已知,设所求圆的方程为(x +3)2+y 2-13+λ[x 2+(y +3)2-37]=0,再由圆心在直线x -y -4=0上,定出参数λ,得圆方程.解:因为所求的圆经过两圆(x +3)2+y 2=13和x 2+(y +3)2=37的交点, 所以设所求圆的方程为(x +3)2+y 2-13+λ[x 2+(y +3)2-37]=0.展开、配方、整理,得(x +λ+13)2+(y +λλ+13)2=λλ++1284+22)1()1(9λλ++. 圆心为(-λ+13,-λλ+13),代入方程x -y -4=0,得λ=-7. 故所求圆的方程为(x +21)2+(y +27)2=289.评述:圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,圆C 2:x 2+y 2+D 2x +E 2y +F 2=0,若圆C 1、C 2相交,那么过两圆公共点的圆系方程为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ∈R 且λ≠-1).它表示除圆C 2以外的所有经过两圆C 1、C 2公共点的圆.特别提示在过两圆公共点的图象方程中,若λ=-1,可得两圆公共弦所在的直线方程. 【例3】已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0,x =3,x +y -4=0,y =1,即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径),∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点.(2)解:弦长最小时,l ⊥AC ,由k AC =-21,∴l 的方程为2x -y -5=0.评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论求直线过定点,你还有别的办法吗?●闯关训练 夯实基础1.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是A.(4,6)B.[4,6)C.(4,6]D.[4,6]得圆上两∵m ∈得解析:数形结合法解. 答案:A2.(2003年春季北京)已知直线ax +by +c =0(ab c ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |、|b |、|c |的三角形A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在解析:由题意得22|00|b a c b a ++⋅+⋅=1,即c 2=a 2+b 2,∴由|a |、|b |、|c |构成的三角形为直角三角形.答案:B3.(2005年春季北京,11)若圆x 2+y 2+mx -41=0与直线y =-1相切,且其圆心在y 轴的左侧,则m 的值为____________.解析:圆方程配方得(x +2m )2+y 2=412+m ,圆心为(-2m,0).由条件知-2m<0,即m >0.又圆与直线y =-1相切,则0-(-1)=412+m ,即m 2=3,∴m =3.答案:34.(2004年福建,13)直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于____________.解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25. 知圆心为(3,1),r =5.由点(3,1)到直线x +2y =0的距离d =5|23|+=5.可得21弦长为25,弦长为45. 答案:455.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.解:圆(x -2)2+(y -2)2=1关于x 轴的对称方程是(x -2)2+(y +2)2=1. 设l 方程为y -3=k (x +3),由于对称圆心(2,-2)到l 距离为圆的半径1,从而可得k 1=-43,k 2=-34.故所求l 的方程是3x +4y -3=0或4x +3y +3=0.6.已知M (x 0,y 0)是圆x 2+y 2=r 2(r >0)内异于圆心的一点,则直线x 0x +y 0y =r 2与此圆有何种位置关系?分析:比较圆心到直线的距离与圆半径的大小.解:圆心O (0,0)到直线x 0x +y 0y =r 2的距离为d =20202y x r +.∵P (x 0,y 0)在圆内,∴220y x +<r . 则有d >r ,故直线和圆相离. 培养能力7.方程ax 2+ay 2-4(a -1)x +4y =0表示圆,求a 的取值范围,并求出其中半径最小的圆的方程.解:(1)∵a ≠0时,方程为[x -a a )1(2-]2+(y +a 2)2=22)22(4a a a +-,由于a 2-2a +2>0恒成立,∴a ≠0且a ∈R 时方程表示圆.(2)r 2=4·2222aa a +-=4[2(a 1-21)2+21], ∴a =2时,r min 2=2.此时圆的方程为(x -1)2+(y -1)2=2.8.(文)求经过点A (-2,-4),且与直线l :x +3y -26=0相切于(8,6)的圆的方程.解:设圆为x 2+y 2+Dx +Ey +F =0,依题意有方程组 3D -E =-36, 2D +4E -F =20, 8D +6E +F =-100. D =-11,E =3,F =-30.∴圆的方程为x 2+y 2-11x +3y -30=0.(理)已知点P 是圆x 2+y 2=4上一动点,定点Q (4,0). (1)求线段PQ 中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于R ,求R 点的轨迹方程.解:(1)设PQ 中点M (x ,y ),则P (2x -4,2y ),代入圆的方程得(x -2)2+y 2=1.(2)设R (x ,y ),由||||RQ PR =||||OQ OP =21, 设P (m ,n ),则有 m =243-x ,n =23y ,代入x 2+y 2=4中,得(x -34)2+y 2=916(y ≠0). 探究创新9.已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程.∴解:设点P 的坐标为(x ,y ),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-,整理得x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|MN |=2,所以∠PMN =30°,直线PM 的斜率为±33. 直线PM 的方程为y =±33(x +1). ②将②代入①整理得x 2-4x +1=0.解得x 1=2+3,x 2=2-3.代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1. ●思悟小结1.直线和圆的位置关系有且仅有三种:相离、相切、相交.判定方法有两个:几何法,比较圆心到直线的距离与圆的半径间的大小;代数法,看直线与圆的方程联立所得方程组的解的个数.2.解决直线与圆的位置关系的有关问题,往往充分利用平面几何中圆的性质使问题简化.●教师下载中心 教学点睛1.有关直线和圆的位置关系,一般要用圆心到直线的距离与半径的大小来确定.2.当直线和圆相切时,求切线方程一般要用圆心到直线的距离等于半径,求切线长一般要用切线、半径及圆外点与圆心连线构成的直角三角形;与圆相交时,弦长的计算也要用弦心距、半径及弦长的一半构成的直角三角形.3.有关圆的问题,注意圆心、半径及平面几何知识的应用.4.在确定点与圆、直线与圆、圆与圆的位置关系时,经常要用到距离,因此,两点间的距离公式、点到直线的距离公式等应熟练掌握,灵活运用.拓展题例 【例1】已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A (1,2)作圆的切线有两条,求a 的取值范围.解:将圆的方程配方得(x +2a )2+(y +1)2=4342a -,圆心C 的坐标为(-2a ,-1),半径r =4342a -,条件是4-3a 2>0,过点A (1,2)所作圆的切线有两条,则点A 必在圆外,即22)12()21(+++a >4342a -.化简得a 2+a +9>0.4-3a 2>0, a 2+a +9>0,由-332<a <332, a ∈R .∴-332<a <332.故a 的取值范围是(-332,332).【例2】已知⊙O 方程为x 2+y 2=4,定点A (4,0),求过点A 且和⊙O 相切的动圆圆心的轨迹.剖析:两圆外切,连心线长等于两圆半径之和,两圆内切,连心线长等于两圆半径之差,由此可得到动圆圆心在运动中所应满足的几何条件,然后将这个几何条件坐标化,即得到它的轨迹方程.解法一:设动圆圆心为P (x ,y ),因为动圆过定点A ,所以|PA |即动圆半径. 当动圆P 与⊙O 外切时,|PO |=|PA |+2; 当动圆P 与⊙O 内切时,|PO |=|PA |-2. 综合这两种情况,得||PO |-|PA ||=2.将此关系式坐标化,得|22y x +-22)4(y x +-|=2.化简可得(x -2)2-32y =1.解法二:由解法一可得动点P 满足几何关系 ||OP |-|PA ||=2,即P 点到两定点O 、A 的距离差的绝对值为定值2,所以P 点轨迹是以O 、A 为焦点,2为实轴长的双曲线,中心在OA 中点(2,0),实半轴长a =1,半焦距c =2,虚半轴长b =22a c -=3,所以轨迹方程为(x -2)2-32y =1.解。
2013届高考数学第一轮专项复习教案10

10.5二项式定理●知识梳理1.二项展开式的通项公式是解决与二项式定理有关问题的基础.2.二项展开式的性质是解题的关键.3.利用二项式展开式可以证明整除性问题,讨论项的有关性质,证明组合数恒等式,进行近似计算等.●点击双基1.已知(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|等于A.29B.49C.39D.1解析:x的奇数次方的系数都是负值,∴|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9.∴已知条件中只需赋值x=-1即可.答案:B2.(2004年江苏,7)(2x+x)4的展开式中x3的系数是A.6B.12C.24D.48解析:(2x+x)4=x2(1+2x)4,在(1+2x)4中,x的系数为·22=24.C24答案:C1)7的展开式中常数项是3.(2004年全国Ⅰ,5)(2x3-xA.14B.-14C.42D.-42解析:设(2x 3-x1)7的展开式中的第r +1项是T 1+r =C r7(2x 3)r-7(-x1)r =C r72r -7·(-1)r·x)7(32x r-+-,当-2r +3(7-r )=0,即r =6时,它为常数项,∴C 67(-1)6·21=14. 答案:A4.(2004年湖北,文14)已知(x 23+x 31-)n 的展开式中各项系数的和是128,则展开式中x 5的系数是_____________.(以数字作答)解析:∵(x 23+x 31-)n 的展开式中各项系数和为128, ∴令x =1,即得所有项系数和为2n =128.∴n =7.设该二项展开式中的r +1项为T 1+r =C r7(x 23)r-7·(x 31-)r=C r 7·x61163r -,令61163r -=5即r =3时,x 5项的系数为C 37=35.答案:355.若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =_____________.解析:a ∶b =C 3n ∶C 2n =3∶1,n =11.答案:11 ●典例剖析 【例1】如果在(x +421x)n 的展开式中,前三项系数成等差数列,求展开式中的有理项.解:展开式中前三项的系数分别为1,2n ,8)1(-n n , 由题意得2×2n =1+8)1(-n n ,得n =8.设第r +1项为有理项,T 1+r =C r8·r21·x4316r -,则r 是4的倍数,所以r =0,4,8.有理项为T 1=x 4,T 5=835x ,T 9=22561x.评述:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r .【例2】求式子(|x |+||1x -2)3的展开式中的常数项. 解法一:(|x |+||1x -2)3=(|x |+||1x -2)(|x |+||1x -2)(|x |+||1x -2)得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x |,一个括号取||1x ,一个括号取-2,得C 13C 12(-2)=-12,∴常数项为(-2)3+(-12)=-20. 解法二:(|x |+||1x -2)3=(||x -||1x )6.设第r +1项为常数项,则T 1+r =C r6·(-1)r ·(||1x )r ·|x |r -6=(-1)6·C r6·|x |r 26-,得6-2r =0,r =3.∴T 3+1=(-1)3·C 36=-20.思考讨论(1)求(1+x +x 2+x 3)(1-x )7的展开式中x 4的系数; (2)求(x +x4-4)4的展开式中的常数项;(3)求(1+x )3+(1+x )4+…+(1+x )50的展开式中x 3的系数.解:(1)原式=xx --114(1-x )7=(1-x 4)(1-x )6,展开式中x 4的系数为(-1)4C 46-1=14.(2)(x +x 4-4)4=442)44(x x x +-=48)2(x x -,展开式中的常数项为C 4482·(-1)4=1120. (3)方法一:原式=1)1(]1)1[()1(483-+-++x x x =x x x 351)1()1(+-+.展开式中x 3的系数为C 451.方法二:原展开式中x 3的系数为C 33+C 34+C 35+…+C 350=C 44+C 34+…+C 350=C 45+C 35+…+C 350=…=C 451.评述:把所给式子转化为二项展开式形式是解决此类问题的关键.【例3】设a n =1+q +q 2+…+q 1-n (n ∈N *,q ≠±1),A n =C 1n a 1+C 2n a 2+…+C n n a n .(1)用q 和n 表示A n ; (2)(理)当-3<q <1时,求lim ∞→n nn A 2.解:(1)因为q ≠1,所以a n =1+q +q 2+…+q 1-n =qq n --11.于是A n =qq --11C1n+qq --112C2n+…+qq n--11C n n=q-11[(C 1n +C 2n +…+C n n )-(C 1n q +C 2n q 2+…+C n n q n)]=q -11{(2n -1)-[(1+q )n -1]} =q-11[2n -(1+q )n ].(2)nn A 2=q-11[1-(21q+)n ]. 因为-3<q <1,且q ≠-1, 所以0<|21q+|<1. 所以lim ∞→n nn A 2=q-11.●闯关训练 夯实基础1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为A.20B.219C.220D.220-1解析:C 120+C 220+…+C 2020=220-1. 答案:D2.(2004年福建,文9)已知(x -xa)8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是A.28B.38C.1或38D.1或28解析:T 1+r =C r 8·x 8-r ·(-ax -1)r =(-a )r C r8·x 8-2r .令8-2r =0,∴r =4.∴(-a)4C48=1120.∴a=±2.当a=2时,令x=1,则(1-2)8=1.当a=-2时,令x=-1,则(-1-2)8=38.答案:C3.(2004年全国Ⅳ,13)(x-x1)8展开式中x5的系数为_____________.解析:设展开式的第r+1项为T1+r =C r8x8-r·(-x1)r=(-1)r C r8x238r-.令8-23r=5得r=2时,x5的系数为(-1)2·C28=28.答案:284.(2004年湖南,理15)若(x3+xx1)n的展开式中的常数项为84,则n=_____________.解析:T1+r =C rn(x3)n-r·(x23-)r=C rn·x rn293-.令3n-29r=0,∴2n=3r.∴n必为3的倍数,r为偶数.试验可知n=9,r=6时,C rn =C69=84.答案:95.已知(x x lg+1)n展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x的值.解:由题意C2-nn +C1-nn+C nn=22,即C2n +C1n+C0n=22,∴n=6.∴第4项的二项式系数最大.∴C36(x x lg)3=20000,即x3lg x=1000.∴x=10或x=101.培养能力6.若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:(1)a1+a2+a3+…+a11;(2)a0+a2+a4+…+a10.解:(1)(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.令x=1,得a0+a1+a2+…+a11=-26,①又a0=1,所以a1+a2+…+a11=-26-1=-65.(2)再令x=-1,得a0-a1+a2-a3+…-a11=0.②①+②得a0+a2+…+a10=21(-26+0)=-32.评述:在解决此类奇数项系数的和、偶数项系数的和的问题中常用赋值法,令其中的字母等于1或-1.7.在二项式(ax m+bx n)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项.(1)求它是第几项;(2)求ba的范围.解:(1)设T1r =C r12(ax m)12-r·(bx n)r=C r12a12-r b r x m(12-r)+nr为常数项,则有m (12-r )+nr =0,即m (12-r )-2mr =0,∴r =4,它是第5项.(2)∵第5项又是系数最大的项,C 412a 8b 4≥C 312a 9b 3,① C 412a 8b 4≥C 512a 7b 5.②由①得2349101112⨯⨯⨯⨯⨯a 8b 4≥23101112⨯⨯⨯a 9b 3,∵a >0,b >0,∴49b ≥a ,即ba≤49.由②得b a ≥58,∴58≤b a≤49.8.在二项式(x +421x)n 的展开式中,前三项的系数成等差数列,求展开式中的有理项.分析:根据题意列出前三项系数关系式,先确定n ,再分别求出相应的有理项.解:前三项系数为C 0n ,21C 1n ,41C 2n ,由已知C 1n =C 0n +41C 2n ,即n 2-9n +8=0,解得n =8或n =1(舍去).T 1+r =C r8(x )8-r(24x )-r=C r8·r21·x434r -.∵4-43r ∈Z 且0≤r ≤8,r ∈Z ,∴r =0,r =4,r =8.∴展开式中x 的有理项为T 1=x 4,T 5=835x ,T 9=2561x -2.评述:展开式中有理项的特点是字母x 的指数4-43r ∈Z 即可,而不需要指数4-43r ∈N.∴探究创新 9.有点难度哟!求证:2<(1+n1)n <3(n ≥2,n ∈N *).证明:(1+n 1)n =C 0n +C 1n ×n 1+C 2n (n1)2+…+C nn (n1)n =1+1+C 2n ×21n +C 3n ×31n +…+C nn×n n 1=2+!21×2)1(n n n -+!31×3)2)(1(n n n n --+…+!1n ×nnn n 12)1(⨯⨯⨯-⨯ <2+!21+!31+!41+…+!1n <2+21+221+321+…+121-n =2+211])21(1[211---n =3-(21)1-n <3.显然(1+n1)n =1+1+C 2n ×21n +C 3n ×31n +…+C n n ×nn 1>2.所以2<(1+n1)n <3.●思悟小结1.在使用通项公式T 1+r =C r nr n a -br时,要注意:(1)通项公式是表示第r +1项,而不是第r 项.(2)展开式中第r +1项的二项式系数C r n 与第r +1项的系数不同. (3)通项公式中含有a ,b ,n ,r ,T 1+r 五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n 是正整数,r 是非负整数且r ≤n .2.证明组合恒等式常用赋值法. ●教师下载中心 教学点睛1.要正确理解二项式定理,准确地写出二项式的展开式.2.要注意区分项的系数与项的二项式系数.3.要注意二项式定理在近似计算及证明整除性中的应用.4.通项公式及其应用是二项式定理的基本问题,要熟练掌握.拓展题例【例题】求(a-2b-3c)10的展开式中含a3b4c3项的系数.解:(a-2b-3c)10=(a-2b-3c)(a-2b-3c)…(a-2b-3c),从10个括号中任取3个括号,从中取a;再从剩余7个括号中任取4个括号,从中取-2b;最后从剩余的3个括号中取-3c,得含a3b4c3的项为C310a3C47·(-2b)4C33(-3c)3=C310C47C4332(-3)3a3b4c3.所以含a3b4c3项的系数为-C310C47×16×27.。
2013届高考数学第一轮数列专项复习教案5

习题课(1) 课时目标 1.熟练掌握等差数列的概念、通项公式、前n 项和公式,并能综合运用这些知识解决一些问题.2.熟练掌握等差数列的性质、等差数列前n 项和的性质,并能综合运用这些性质解决相关问题.1.若S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧n =1 , n ≥2. 2.若数列{a n }为等差数列,则有:(1)通项公式:a n =__________;(2)前n 项和:S n =______________=_________________________________________.3.等差数列的常用性质(1)若{a n }为等差数列,且m +n =p +q (m ,n ,p ,q ∈N +),则______________________.(2)若S n 表示等差数列{a n }的前n 项和,则S k ,S 2k -S k ,____________成等差数列.一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( )A .24B .22C .20D .-82.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( )A .24B .25C .26D .273.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-374.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120 B.105C.90 D.755.若{a n}为等差数列,S n为其前n项和,若a1>0,d<0,S4=S8,则S n>0成立的最大自然数n为()A.11 B.12C.13 D.146.在等差数列{a n}中,a1=-2 008,其前n项和为S n,若S2 0082 008-S2 0062 006=2,则S2 012等于()A.-2 012 B.2 012C.6 033 D.6 036二、填空题7.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为________.8.设等差数列{a n}的前n项和为S n,若S p=S q(p,q∈N+且p≠q),则S p+q=________.9.等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n是______.10.已知数列{a n}中,a1=20,a n+1=a n+2n-1,n∈N+,则数列{a n}的通项公式a n=________.三、解答题11.甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?12.已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3·a4=117,a2+a5=22.(1)求数列{a n}的通项公式a n;(2)若数列{b n}是等差数列,且b n=S nn+c,求非零常数c.能力提升13.在等差数列{a n}中,a10<0,a11>0,且|a10|<a11,S n为{a n}的前n项的和,则下列结论正确的是()A.S1,S2,…,S10都小于零,S11,S12,…都大于零B.S1,S2,…,S5都小于零,S6,S7,…都大于零C.S1,S2,…,S20都小于零,S21,S22,…都大于零D.S1,S2,…,S19都小于零,S20,S21,…都大于零14.把自然数1,2,3,4,…按下列方式排成一个数阵.12 345 6789101112131415……………………………根据以上排列规律,数阵中第n (n≥3)行从左至右的第3个数是______________.1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n 项和公式的出发点.2.通项公式与前n 项和公式联系着五个基本量:a 1、d 、n 、a n 、S n .掌握好本部分知识的内在联系、结构,以便灵活运用.3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.习题课(1)答案知识梳理1.S 1 S n -S n -1 2.(1)a 1+(n -1)d (2)na 1+n (n -1)d 2 n (a 1+a n )23.(1)a m +a n =a p +a q(2)S 3k -S 2k作业设计 1.A2.C [∵a 3+a 7+a 11=6,∴a 7=2,∴S 13=13(a 1+a 13)2=13a 7=26.]3.C [设数列{a n },{b n }的公差分别为d ,d ′,则a 2+b 2=(a 1+d )+(b 1+d ′)=(a 1+b 1)+(d +d ′)=100. 又∵a 1+b 1=100,∴d +d ′=0.∴a 37+b 37=(a 1+36d )+(b 1+36d ′)=(a 1+b 1)+36(d +d ′)=100.]4.B [∵a 1+a 2+a 3=3a 2=15,∴a 2=5.∵a 1=5-d ,a 3=5+d ,d >0,∴a 1a 2a 3=(5-d )·5·(5+d )=80,∴d =3,a 1=2.∴a 11+a 12+a 13=3a 12=3(a 1+11d )=3a 1+33d =3×2+33×3=105.]5.A [S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0,又a 1>0,d <0,S 12=(a 1+a 12)·122=0,n <12时,S n >0.]6.D [S n n =a 1+(n -1)d 2,∴S 2 0082 008-S 2 0062 006=a 1+2 008-12d -a 1-2 006-12d =d =2. ∴S 2 012=2 012×(-2 008)+2 012×2 0112×2=2 012×3=6 036.]7.80解析 a 6+a 7+…+a 10=S 10-S 5=111-31=80.8.0解析 设S n =an 2+bn ,由S p =S q .知ap 2+bp =aq 2+bq ,∴p +q =-b a .∴S p +q =a (p +q )2+b (p +q )=a (-b a )2+b (-b a )=b 2a -b 2a =0.9.5或6解析 d <0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>….∴当n =5或6时,S n 取到最大值.10.n 2-2n +21解析 ∵a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,…,a n -a n -1=2n -3,n ≥2.∴a n -a 1=1+3+5+…+(2n -3).∴a n =20+(n -1)(2n -2)2=n 2-2n +21. 11.解 (1)设n 分钟后第1次相遇,依题意,有2n +n (n -1)2+5n =70,整理得n 2+13n -140=0.解之得n =7,n =-20(舍去).第1次相遇是在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意,有2n +n (n -1)2+5n =3×70,整理得n 2+13n -420=0.解之得n =15,n =-28(舍去).第2次相遇是在开始运动后15分钟.12.解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3·a 4=117,又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧ a 1=1d =4,∴a n =4n -3. (2)由(1)知,S n =n ·1+n (n -1)2·4=2n 2-n ,∴b n =S n n +c =2n 2-n n +c. ∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12 (c =0舍去).13.D [∵S 19=19(a 1+a 19)2=19a 10<0, S 20=20(a 1+a 20)2.而a 1+a 20=a 10+a 11, ∵a 10<0,a 11>0且|a 10|<a 11,∴a 10+a 11>0,∴S 20=20(a 1+a 20)2=10(a 10+a 11)>0. 又∵d =a 11-a 10>0.∴S n >0 (n ≥20).]14.n 22-n 2+3解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1 (n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n 2+3.。
2013届高考数学第一轮例题专项复习教案3

一、选择题(共6个小题,每小题5分,满分30分)1.函数f (x )=2x 4-3x 2+1在区间[12,2]上的最大值和最小值分别是( )A .21,-18B .1,-18C .21,0D .0,-18答案:A2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A .增函数 B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增. 答案:A3.f (x )的导函数f ′(x )的图象如图所示,则函数f (x )的图象最有可能的是图中的( )解析:∵x ∈(-∞,-2)∪(0,+∞)时f ′(x )<0,∴在(-∞,-2)和(0,+∞)上f (x )是减函数,排除B 、C 、D. 答案:A4.函数f (x )=x 3+3x 2+4x -a 的极值点的个数是( ) A .2B .1C .0D .由a 确定解析:f ′(x )=3x 2+6x +4=3(x +1)2+1>0,则f (x )在R 上是增函数,故不存在极值点.答案:C5.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是( ) A .0 B .1 C .2D .3解析:f ′(x )=3x 2-a ≥0在[1,+∞)上恒成立, 即:a ≤3x 2在[1,+∞)上恒成立,而(3x 2)min =3×12=3. ∴a ≤3,故a max =3. 答案:D6.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )解析:∵xf ′(x )+f (x )≤0, 又f (x )≥0,∴xf ′(x )≤-f (x )≤0, 设y =f x x ,则y ′=xfx -f xx 2≤0,故y =f xx为减函数或常函数. 又a <b ,∴f a a ≥f bb, 而a ,b >0,则af (b )≤bf (a ). 答案:A二、填空题(共3小题,每小题5分,满分15分) 7.函数f (x )=12x 2-ln x 的最小值为________.解析:⎩⎪⎨⎪⎧f x =x -1x >0,x >0,得x >1,⎩⎪⎨⎪⎧fx ,x >0,得0<x <1.∴f (x )在x =1时取最小值f (1)=12-ln1=12.答案:128.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.解析:f ′(x )=3x 2+2ax +b ,由题意⎩⎪⎨⎪⎧f =10,f=0,即⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,得a =4或a =-3.但当a =-3时,f ′(x )=3x 2-6x +3≥0,故不存在极值, ∴a =4,b =-11,f (2)=18. 答案:189.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是________.(把你认为正确的序号都填上)①f (x )=sin x +cos x ;②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:对于①,f ″(x )=-(sin x +cos x ),x ∈(0,π2)时,f ″(x )<0恒成立;对于②,f ″(x )=-1x 2,在x ∈(0,π2)时,f ″(x )<0恒成立;对于③,f ″(x )=-6x ,在x ∈(0,π2)时,f ″(x )<0恒成立;对于④,f ″(x )=(2+x )·e x在x ∈(0,π2)时f ″(x )>0恒成立,所以f (x )=x e x不是凸函数. 答案:④三、解答题(共3小题,满分35分)10.已知函数f (x )=13x 3+ax 2-bx (a ,b ∈R).若y =f (x )图象上的点(1,-113)处的切线斜率为-4,求y =f (x )的极大值.解:(1)∵f ′(x )=x 2+2ax -b ,∴由题意可知:f ′(1)=-4且f (1)=-113,即⎩⎪⎨⎪⎧1+2a -b =-4,13+a -b =-113,解得⎩⎪⎨⎪⎧a =-1,b =3.∴f (x )=13x 3-x 2-3x ,f ′(x )=x 2-2x -3=(x +1)(x -3).令f ′(x )=0,得x 1=-1,x 2=3.由此可知,当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗∴当x =-1时,f (x )取极大值53.11.已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)讨论关于x 的方程f (x )-m =0(m ∈R)的解的个数. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )=0,得x =1e.当x ∈(0,+∞)时,f ′(x ),f (x )的变化情况如下:↘↗所以,f (x )在(0,+∞)上最小值是f ⎝ ⎛⎭⎪⎫1e =-1e .(2)当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f (x )单调递减且f (x )的取值范围是⎝ ⎛⎭⎪⎫-1e ,0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f (x )单调递增且f (x )的取值范围是⎝ ⎛⎭⎪⎫-1e ,+∞. 下面讨论f (x )-m =0的解: 当m <-1e时,原方程无解;当m =-1e 或m ≥0时,原方程有唯一解;当-1e <m <0时,原方程有两个解.12.已知函数f (x )=(a +1)ln x +ax 2+1.(1)讨论函数f (x )的单调性;(2)设a <-1.如果对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围.解:(1)f (x )的定义域为(0,+∞).f ′(x )=a +1x +2ax =2ax 2+a +1x.当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; 当-1<a <0时,令f ′(x )=0,解得x = -a +12a. 则当x ∈(0,-a +12a)时,f ′(x )>0; x ∈( -a +12a,+∞)时,f ′(x )<0. 故f (x )在(0,-a +12a)上单调递增,在( -a +12a,+∞)上单调递减. (2)不妨假设x 1≥x 2.而a <-1, 由(1)知f (x )在(0,+∞)上单调递减, 从而∀x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|等价于∀x 1,x 2∈(0,+∞),f (x 2)+4x 2≥f (x 1)+4x 1.① 令g (x )=f (x )+4x ,则g ′(x )=a +1x+2ax +4. ①等价于g (x )在(0,+∞)上单调递减, 即a +1x+2ax +4≤0在(0,+∞)上恒成立. 从而a ≤-4x -12x 2+1=x -2-4x 2-22x 2+1=x -22x 2+1-2. 故a 的取值范围为(-∞,-2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(共6个小题,每小题5分,满分30分)
1.函数f (x )=2x 4-3x 2
+1在区间[12,2]上的最大值和最小值分别是( )
A .21,-18
B .1,-1
8
C .21,0
D .0,-1
8
答案:A
2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A .增函数 B .减函数
C .在(0,π)上增,在(π,2π)上减
D .在(0,π)上减,在(π,2π)上增
解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增. 答案:A
3.f (x )的导函数f ′(x )的图象如图所示,则函数f (x )的图象最有可能的是图中的( )
解析:∵x ∈(-∞,-2)∪(0,+∞)时f ′(x )<0,
∴在(-∞,-2)和(0,+∞)上f (x )是减函数,排除B 、C 、D. 答案:A
4.函数f (x )=x 3
+3x 2
+4x -a 的极值点的个数是( ) A .2
B .1
C .0
D .由a 确定
解析:f ′(x )=3x 2
+6x +4=3(x +1)2
+1>0,则f (x )在R 上是增函数,故不存在极值点.
答案:C
5.已知f (x )=x 3
-ax 在[1,+∞)上是单调增函数,则a 的最大值是( ) A .0 B .1 C .2
D .3
解析:f ′(x )=3x 2-a ≥0在[1,+∞)上恒成立, 即:a ≤3x 2
在[1,+∞)上恒成立,而(3x 2
)min =3×12
=3. ∴a ≤3,故a max =3. 答案:D
6.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )
A .af (b )≤bf (a )
B .bf (a )≤af (b )
C .af (a )≤f (b )
D .bf (b )≤f (a )
解析:∵xf ′(x )+f (x )≤0, 又f (x )≥0,∴xf ′(x )≤-f (x )≤0, 设y =f x x ,则y ′=xf ′ x -f x
x 2≤0, 故y =
f x
x
为减函数或常函数. 又a <b ,∴
f a a ≥f b
b
, 而a ,b >0,则af (b )≤bf (a ). 答案:A
二、填空题(共3小题,每小题5分,满分15分) 7.函数f (x )=12x 2
-ln x 的最小值为________.
解析:⎩⎪⎨
⎪⎧
f ′ x =x -1x >0,x >0,
得x >1,⎩
⎪⎨
⎪⎧
f ′ x <0,
x >0,得0<x <1.
∴f (x )在x =1时取最小值f (1)=12-ln1=1
2.
答案:1
2
8.已知函数f (x )=x 3
+ax 2
+bx +a 2
在x =1处取极值10,则f (2)=________.
解析:f ′(x )=3x 2
+2ax +b ,
由题意⎩⎪⎨
⎪⎧
f 1 =10,f ′ 1 =0,
即⎩⎪⎨⎪⎧
1+a +b +a 2
=10,
3+2a +b =0,
得a =4或a =-3.
但当a =-3时,f ′(x )=3x 2
-6x +3≥0,故不存在极值, ∴a =4,b =-11,f (2)=18. 答案:18
9.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π
2)上不是凸函数的是________.(把你认
为正确的序号都填上)
①f (x )=sin x +cos x ;②f (x )=ln x -2x ; ③f (x )=-x 3
+2x -1;④f (x )=x e x
.
解析:对于①,f ″(x )=-(sin x +cos x ),x ∈(0,π
2
)时,
f ″(x )<0恒成立;
对于②,f ″(x )=-1x 2,在x ∈(0,π
2)时,f ″(x )<0恒成立;
对于③,f ″(x )=-6x ,在x ∈(0,π
2)时,f ″(x )<0恒成立;
对于④,f ″(x )=(2+x )·e x
在x ∈(0,π2)时f ″(x )>0恒成立,
所以f (x )=x e x
不是凸函数. 答案:④
三、解答题(共3小题,满分35分)
10.已知函数f (x )=13x 3+ax 2
-bx (a ,b ∈R).若y =f (x )图象上的点(1,-113)处的切
线斜率为-4,求y =f (x )的极大值.
解:(1)∵f ′(x )=x 2
+2ax -b ,
∴由题意可知:f ′(1)=-4且f (1)=-11
3,
即⎩⎪⎨⎪⎧
1+2a -b =-4,13
+a -b =-11
3,解得⎩⎪⎨
⎪⎧
a =-1,
b =3.
∴f (x )=13
x 3-x 2
-3x ,
f ′(x )=x 2-2x -3=(x +1)(x -3).
令f ′(x )=0,得x 1=-1,x 2=3.
由此可知,当x 变化时,f ′(x ),f (x )的变化情况如下表:
∴当x =-1时,f (x )取极大值5
3.
11.已知函数f (x )=x ln x . (1)求f (x )的最小值;
(2)讨论关于x 的方程f (x )-m =0(m ∈R)的解的个数. 解:(1)f (x )的定义域为(0,+∞),
f ′(x )=ln x +1,令f ′(x )=0,得x =1e
.
当x ∈(0,+∞)时,f ′(x ),f (x )的变化情况如下:
所以,f (x )在(0,+∞)上最小值是f ⎝ ⎛⎭
⎪⎫1e =-1e .
(2)当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f (x )单调递减且f (x )的取值范围是⎝ ⎛⎭⎪⎫-1e ,0;
当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f (x )单调递增且f (x )的取值范围是⎝ ⎛⎭
⎪⎫-1e ,+∞. 下面讨论f (x )-m =0的解: 当m <-1
e
时,原方程无解;
当m =-1
e 或m ≥0时,原方程有唯一解;
当-1
e
<m <0时,原方程有两个解.
12.已知函数f (x )=(a +1)ln x +ax 2
+1. (1)讨论函数f (x )的单调性;
(2)设a <-1.如果对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围.
解:(1)f (x )的定义域为(0,+∞).
f ′(x )=a +1x +2ax =2ax 2
+a +1
x
.
当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; 当-1<a <0时,令f ′(x )=0,解得x = -
a +1
2a
. 则当x ∈(0,
-
a +1
2a
)时,f ′(x )>0; x ∈( -
a +1
2a
,+∞)时,f ′(x )<0. 故f (x )在(0,
-
a +1
2a
)上单调递增,在( -
a +1
2a
,+∞)上单调递减. (2)不妨假设x 1≥x 2.而a <-1, 由(1)知f (x )在(0,+∞)上单调递减, 从而∀x 1,x 2∈(0,+∞),
|f (x 1)-f (x 2)|≥4|x 1-x 2|等价于∀x 1,x 2∈(0,+∞),f (x 2)+4x 2≥f (x 1)+4x 1.① 令g (x )=f (x )+4x ,则g ′(x )=
a +1
x
+2ax +4. ①等价于g (x )在(0,+∞)上单调递减, 即
a +1
x
+2ax +4≤0在(0,+∞)上恒成立. 从而a ≤-4x -12x 2+1= 2x -1 2
-4x 2
-22x 2+1= 2x -1
2
2x 2
+1-2. 故a 的取值范围为(-∞,-2].。