八年级数学第三章《图形的平移与旋转》
北师大版八年级数学下册 (简单的图案设计)图形的平移与旋转新课件

3. 如图,在CD上求一点P,使它到边OA,OB的距离相等, 则点P是( C ) A.线段CD的中点 B.CD与过点O作CD的垂线的交点 C.CD与∠AOB的平分线的交点 D.以上均不对
4.如图,在△ABC中,∠C=90°,AC=BC,AD平分 ∠CAB交BC于D,DE⊥AB于E,若AB=6 cm,则△DBE 的周长是_6_c_m__
求证:EB=FC.
A
证明: ∵AD是∠BAC的平分线,
DE⊥AB, DF⊥AC,
∴ DE=DF, ∠DEB=∠DFC=90 °.
在Rt△BDE 和 Rt△CDF中,
E
F
B
D
C
DE=DF,
BD=CD, ∴ Rt△BDE ≌ Rt△CDF(HL). ∴ EB=FC.
获取新知 知识点二:角平分线的判定 想一想:你能写出这个定理的逆命题吗?它是真命题吗?
获取新知 知识点一:角平分线的性质
还记得角平分线上的点有什么性质吗?你是怎样 得到的?请你尝试证明这性质,并与同伴交流.
角的平分线上的点到角的两边的距离相等
已知:如图,OC是∠AOB的平分线,点P在
OC上,PD丄OA, PE丄OB,垂足分别为D,E.
1
求证:PD=PE.
2
证明:∵PD丄OA,PE丄OB,垂足分别为D,E,
A.①
B.②
C.③
D.④
2. 下列图案中,可以由一个“基本图案”连续旋转45°得到的是( C )
3. 如图,它可以看作是由“ ”通过连续平移 3 次得到的, 还可以看作是由“ ”绕中心旋转 3 次,每次旋转 90 °
得到的.
4. 学校在艺术周上,要求学生制作一个精美的轴对称图形, 请你用所给出的几何图形:○○△△--(两个圆,两个等边三 角形,两条线段)为构件,构思一个独特、有意义的轴对称图 形,并写上一句简要的解说词.
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。
八年级数学第三章《图形的平移与旋转》回顾与思考

课堂小结
平移 图 形 变 换 定义
旋转
性质
图案设计
轴对称
作法
典型例题
图案设计的有关问题
例3、利用平移、旋转、轴对称设计一个图案, 说明你所表达的含义。
针对训练
6、利用一个圆、一个正三角形、通过2次旋转或 平移设计一个图案,说明你的设计意图。
针对训练
7、如图,A、B两点被大山阻隔,为了改善山区 的交通,现拟开凿一个贯穿A、B的隧道,修建 一条高速公路。请你设计出一个方案,利用平移 的有关知识测量出A、B之间的距离和隧道开凿 的方向。
பைடு நூலகம்
针对训练
4、如图,△ABC,△ADE均是顶角为42°的等 腰三角形,BC,DE分别是底边,图中的哪两个 三角形可以通过怎样的旋转而相互得到?
巩固练习 5、如图,D是等边三角形ABC的边BC上一点, 将△ABD绕点A旋转,使得旋转后点B的对应点 为点C。 (1) 在图中作出旋转后的图形;
巩固练习 5、如图,D是等边三角形ABC的边BC上一点, 将△ABD绕点A旋转,使得旋转后点B的对应点 为点C。 (2) 小明是这样做的:过点C作BA的平行线l,在 l上取CE=BC,连接AE,则△ACE即为旋转后的 图形。你能说说小明这样做的道理吗?
北师大版八年级(上)
回顾与思考
北师大版八年级(下)
回顾与思考
知识网络
平移 图 形 变 换 定义
旋转
性质
图案设计
轴对称
作法
典型例题
平移的有关问题
例1、如图所示的的图形向箭头方向平移了4cm, 请画出平移后的图形。
针对训练
1、火车在一段笔直的铁轨上行驶,这个过程可 以看成是车厢沿着铁轨的方向平移的过程。如果 火车驶入弯道,这时还可以看成是平移吗?说 说你的理由。
第3章《图形的平移与旋转》复习(教案)-北师大版数学八下

第三章复习图形的平移与旋转【学习目标】:1.掌握平移,旋转及中心对称的概念和性质;2.会运用平移和旋转设计图案及解决问题.【回顾与思考】:活动一:1平移是否改变图形的位置、形状、大小?通过实例说明.旋转呢?2.经过平移,对应点所连的线段之间有什么关系?为什么?经过旋转,每一对对应点与旋转中心之间有什么关系? 为什么?活动二:3.观察图中的菊花图案,(1)它可以看作是由哪个基本图形通过这样的变换得到?(2)该菊花图案绕中心旋转多少度后能和原来的图案互相重合?【知识应用】:1、如图,四边形EFGH是由四边形ABCD平移得到的,已知AD=5,∠B=700,则( )A. FG=5, ∠G=700B. EH=5, ∠F=700C. EF=5, ∠F=700D. EF=5. ∠E=7002.请你把先向右平移5格得到,再把绕点逆时针旋转900的得到.3、如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向方向旋转使点A与点C重合,这时P点旋转到G点。
(1)请画出旋转后的图形,你能说出此时△ABC以点B为旋转中心旋转了多少度吗?(2)求出PG的长度?(3)请你猜想△PGC的形状,并说明理由?(4)请你计算出的角度?【当堂反馈(小测)】:1、在括号内填上图形从甲到乙的变换关系:2、钟表的秒针匀速旋转一周需要60秒.20秒内,秒针旋转的角度是.3、下列图形中,不能由图形M经过一次平移或旋转得到的是.4、经过平移,△ABC的边AB移到了EF,作出平移后的三角形.5、在右图中作出“三角旗”绕O点按逆时针旋转90°后的图案.6、如图1,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为().图1 图2(A)45°,90°(B)90°,45°(C)60°,30°(D)30°,60°7、如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为 cm。
八年级数学上册《图形的平移与旋转》教案北师大版

八年级数学上册《图形的平移与旋转》教案北师大版一、教学目标:1. 让学生理解平移和旋转的概念,掌握它们的基本性质和特点。
2. 培养学生观察、分析、归纳和解决问题的能力。
3. 培养学生运用图形平移和旋转的知识解决实际问题的能力。
二、教学内容:1. 平移的概念和性质:平移的定义、平移的方向和距离、平移后的图形与原图形的形状和大小不变。
2. 旋转的概念和性质:旋转的定义、旋转的中心、旋转的角度、旋转后的图形与原图形的形状和大小不变。
三、教学重点与难点:1. 教学重点:平移和旋转的概念、性质及其在实际问题中的应用。
2. 教学难点:平移和旋转的性质的证明,以及如何在实际问题中灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生通过观察、思考、讨论和动手操作,探索平移和旋转的性质。
2. 运用多媒体课件辅助教学,直观展示平移和旋转的过程,提高学生的学习兴趣和理解能力。
3. 注重个体差异,鼓励学生提问和发表自己的观点,培养学生的参与意识和团队精神。
五、教学步骤:1. 导入新课:通过展示一些生活中的平移和旋转现象,如滑滑梯、翻书、旋转门等,引导学生思考这些现象与数学中的平移和旋转有何联系。
2. 探究平移的性质:让学生观察和分析一些平移的图形,引导学生发现平移后的图形与原图形的形状和大小不变,以及平移的方向和距离不变。
3. 探究旋转的性质:让学生观察和分析一些旋转的图形,引导学生发现旋转后的图形与原图形的形状和大小不变,以及旋转的中心、角度不变。
4. 应用平移和旋转的知识解决实际问题:让学生尝试解决一些实际问题,如设计图案、计算物体运动距离等,巩固所学知识。
六、教学拓展:1. 让学生了解平移和旋转在现实生活中的应用,如建筑设计、动画制作等。
2. 引导学生思考平移和旋转与其他几何变换(如轴对称、缩放等)的关系。
七、课堂练习:1. 完成教材中的相关练习题,巩固平移和旋转的概念和性质。
2. 选取一些实际问题,让学生运用平移和旋转的知识解决。
北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)考试范围:第三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,把图 ①中的⊙A经过平移得到⊙O(如图 ②),如果图 ①中⊙A上一点P的坐标为(m,n),那么平移后在图 ②中的对应点P′的坐标为.( )A. (m+2,n+1)B. (m−2,n−1)C. (m−2,n+1)D. (m+2,n−1)2. 如图,将周长为20的△ABC沿BC方向平移3个单位长度得到△DEF,则四边形ABFD的周长为.( )A. 22B. 24C. 26D. 283. 如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为( )A. 1.6B. 1.8C. 2D. 2.64. 如图,△ABC顺时针旋转角度α变成△A1B1C1,α的值是.( )A. 30∘B. 45∘C. 60∘D. 90∘5. 如图,这个图案是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是.( )A. 它是轴对称图形,但不是中心对称图形B. 它是中心对称图形,但不是轴对称图形C. 它既是轴对称图形,又是中心对称图形D. 它既不是轴对称图形,又不是中心对称图形6. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.7. 在俄罗斯方块游戏中,已拼好的图案如图所示,现又出现了一个小方格体正向下运动,为了使所有图案消失,你必须进行的操作是.( )A. 顺时针旋转90∘,向右平移B. 逆时针旋转90∘,向右平移C. 顺时针旋转90∘,向下平移D. 逆时针旋转90∘,向下平移8. 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是( )A. B. C. D.9. 如图,△ABC经过如下平移能得到△DEF的是.( )A. 把△ABC向左平移4个单位长度,再向下平移2个单位长度B. 把△ABC向右平移4个单位长度,再向下平移2个单位长度C. 把△ABC向右平移4个单位长度,再向上平移2个单位长度D. 把△ABC向左平移4个单位长度,再向上平移2个单位长度10. 将某图形各顶点的横坐标保持不变,纵坐标减2,可将该图形.( )A. 向左平移2个单位长度B. 向右平移2个单位长度C. 向上平移2个单位长度D. 向下平移2个单位长度11. 如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED 等于( )A. α2B. 23α C. α D. 180°−α12. 如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是( )A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 点P(−2,1)向右平移2个单位长度后到达点P1,则点P1关于x轴的对称点的坐标为.14. 如图,在△ABC中,∠BAC=105°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠AB′C′的度数为________.15. 如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别为16. 如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为______.三、解答题(本大题共9小题,共72.0分。
八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
b. 图形平移三要素:原位置、平移方向、平移距离。
2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。
注意:平移后,原图形与平移后的图形全等。
3简单的平移作图:平移作图要注意:①方向;②距离。
整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心;转动的角称为旋转角.关键:a。
旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。
b。
图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。
2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。
)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。
整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。
三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。
(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。
第三章 图形的平移与旋转

第三章图形的平移与旋转1.通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.认识并欣赏平移在自然界和现实生活中的应用.3.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.4.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.5.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.6.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.7.认识并欣赏自然界和现实生活中的中心对称图形.8.运用图形的平移、旋转、轴对称进行图案设计.1.经历有关平移与旋转的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.2.经历借助图形思考问题的过程,初步建立几何直观.3.通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转画图.4.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.5.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.6.了解中心对称、中心对称图形的概念,探索它的基本性质.1.在研究平移与旋转的过程中,进一步发展空间观念.2.认识并欣赏平移、旋转在自然界和现实生活中的应用,认识并欣赏自然界和现实生活中的中心对称图形.在前面的学习中学生已对诸如翻折、平移、旋转、轴对称等知识有了一定的认识与理解,只是平移和旋转的知识没有正式出现罢了,但这些变换的意识学生已经有了.学生学习了本章知识后对平移与旋转以及轴对称这三种常用的全等变换有了系统的认识,但学生把握这些全等变换的能力有待提升,特别是对组合图案的形成过程的分析是学生把握不好的地方,应加强训练.立足于学生已有的生活经验和初步的数学活动经验,首先从观察生活中的平移、旋转现象开始,直观的认识平移、旋转,并在此基础上,分析生活中的平移现象和旋转现象各自的规律,得到平移和旋转的基本性质;然后利用平移和旋转的基本性质进行简单的平移作图、旋转作图,通过分析简单平面图形的平移、旋转等变化关系,进一步体会平移、旋转的应用价值和丰富内涵;最后,通过简单的图案设计,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动中.具体地,教科书设计了4节内容:第1节“图形的平移”,立足于学生小学阶段的学习基础和已有的生活经验,通过分析各种平移现象的共性,直观地认识平移,探索平面图形平移的基本性质,利用平移的基本特征研究简单的平移画图.在此基础上,进一步研究沿坐标轴方向平移后的图形与原图形对应点坐标之间的关系,探索依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系.第2节“图形的旋转”,通过具体活动认识平面图形的旋转,探索平面图形旋转的基本性质,利用旋转的基本特征研究简单的旋转画图.第3节“中心对称”,认识中心对称,探索成中心对称的基本性质,利用中心对称的基本特征研究中心对称的画图,认识并欣赏自然界和现实生活中的中心对称图形.第4节“简单的图案设计”,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动之中.应当指出的是,本章不同于变换几何中的平移、旋转变换,而是先通过观察具体的平移、旋转现象,分析、归纳并概括出平移、旋转的整体规律和基本性质,然后在平移和旋转的图案设计、欣赏、简单应用中,进一步深化对图形的三种基本变换的理解和认识.【重点】1.平移的定义.2.平移的性质及应用.3.简单的平移作图.4.旋转的定义.5.旋转的性质及应用.6.简单的旋转作图.7.中心对称和中心对称图形.【难点】1.平移作图.2.旋转作图.3.中心对称和中心对称图形的区别和联系.4.利用平移、旋转、轴对称进行简单的图案设计.1.着眼于发展学生的空间观念.使学生具备良好的空间观念是义务教育阶段数学教育的一个重要目标,培养学生的空间观念必须使学生经历、体验图形运动变化的过程,本章所研究的平移、旋转及中心对称是反映空间观念的重要内容.为此,教科书设计了一系列的实验、探索活动,如“探索平移基本性质的实验活动”“探索旋转基本性质的实验活动”“探索中心对称基本性质的实验活动”及“图形平移与坐标变化的关系的探索活动”“简单的图案设计活动”等.在这些活动中,学生将会想象物体与物体之间的位置关系,描述图形的运动和变化,依据语言的描述画出图形等,所有这些都是空间观念的重要表现.因此,教师应想方设法鼓励学生积极参与这些活动,通过观察、操作、归纳、猜想、交流等获得结论,并运用自己的语言描述探索过程和所得到的结论,发展空间观念.需要指出的是,培养空间观念是一种个人体验,需要大量的实践活动,以被动听讲和练习为主的方式,是难以形成空间观念的.学生要有充分的时间和空间观察、动手操作,对周围环境和实物产生直接感知,这些都不仅需要自主探索、亲身实践,更离不开大家一起动手、共同参与.观察、操作、归纳、类比、猜想、直观思考等对形成空间观念具有重要作用,只有在学生共同探讨、合作解决问题的过程中才能不断生成和发展,并得到提升.2.重视学生的观察、操作、探索和交流活动.教师创设情境、设计问题,引导学生自主探索、合作交流,让学生经历观察、操作、探索和交流的过程,能有效地激发学生的思考,有助于真正落实学生在学习活动中的主体地位,有助于学生理解和掌握基本知识和基本技能,同时也有助于学生感悟数学思想,积累数学活动经验.本章有许多内容需要学生对图形进行观察、操作、探索和交流,教学时不宜用教师的课堂讲解和演示代替学生的动手操作、主动探究与讨论交流.例如,有关平移、旋转的性质,教科书都设计了相应的实验过程,力图让学生通过动手操作,配合直观的观察和理性的思考探索相关的结论.教学时可以让学生分组进行,每组选用的图形形状可以不同,每次变化的方式也可以不同.学生的这些实验结果为接下来进行的抽象概括提供了很好的素材.在此基础上,全班交流,概括出图形变化(平移、旋转)的基本性质.在这一过程中,学生的手、眼、脑等多种感官都能得到较为充分的运用,既有助于学生理解和掌握相关知识的内涵,也可以使学生在做的过程和思考的过程中积累一定的数学活动经验,并逐步感悟其中所蕴含的数学思想.3.创造性地利用与图形平移、旋转有关的资源进行教学.在教学中,教师应根据学生实际、教学实际和当地实际,充分挖掘和利用现实生活中大量存在的平移、旋转及中心对称现象,尤其是具有地方特色的素材(如北方地区的雪橇、辘轳,农村地区的水车、石碾、风车,城市里的缆车、电梯等),并引导学生对其中的一些共同特征加以分析、总结.4.合理运用现代信息技术,注重教学手段的多样化.本章主要研究图形的变化,对图形的动态展示的要求更为强烈.因此,在条件允许的情况下,教学中都应合理运用现代信息技术,注重信息技术与本章内容的整合,以便有效地改变教与学的方式,提高课堂教学的效率.需要说明的是,现代信息技术真正的价值在于实现原有的教学手段难以达到的甚至达不到的效果,它不应、也不可能完全替代常规的教学手段.例如,教师可以在学生动手实践的基础上,借助计算机、多媒体向学生展示更加丰富的几何图形的运动变化过程,这样不仅为学生理解和掌握相关知识提供形象的支持,有利于增强学生的空间观念,同时也可以让学生获得视觉上的愉悦,增强好奇心,激发学习兴趣.但不能用计算机、多媒体的演示完全取代学生的动手操作活动.5.关注学生情感态度的发展.教师要把落实情感态度的目标作为自己的责任和义务,努力把情感态度目标有机地融合在本章教学过程之中.例如,在设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:如何引导学生积极参与教学过程?如何组织学生观察、操作、探索、归纳?如何使学生愿意学、喜欢学,对本章内容感兴趣?如何让学生体验成功的喜悦,从而增强学好本章内容的自信心?如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?如何培养学生良好的学习习惯?1图形的平移3课时2图形的旋转2课时3中心对称1课时4简单的图案设计1课时回顾与思考1课时1图形的平移1.通过具体实例认识平移,理解平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.经历沿x轴、y轴方向和综合方向平移时位置和数量的关系,通过观察、分析以及抽象、概括等过程,发现平移时坐标变化的特点.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中图形平移的现象与学生自己设计的平移图案,使学生感受数学的美.【重点】探索和理解平移的基本性质.【难点】坐标变换和图形平移的关系.第课时1.认识平移,说出平移的定义,理解平移的基本内涵.2.理解并能说出平移的性质,即一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.感悟平移前后图形的变化,从点、线、角、位置、大小等不同角度说出平移前后图形的变化关系.通过探究,归纳平移的定义、特征、性质,积累数学活动经验,进一步发展空间观念,增强空间想象力.【重点】1.认识平移在现实生活中的广泛应用.2.探索和理解平移的基本性质.【难点】平移基本性质的探索和理解.【教师准备】实际生活中的平移图片.【学生准备】复习翻折、平移、旋转、轴对称等知识.导入一:1.同学们,你们小时候去过游乐园吗?在游乐园中你们玩过哪些游乐项目?在玩这些游乐项目时你们想过什么?你们想过它里面蕴含着数学知识吗?2.找一找这些项目中,哪些项目的运动形式是一样的,观看游乐园内的一些项目,引出第三章内容,并进行初步分类,引出本节课研究内容:板书课题——图形的平移.[设计意图]由学生喜闻乐见的游乐场引入课题,容易激发学生的学习兴趣.导入二:请你判断: 小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?[设计意图]较好地发挥了“情景导入”的作用,却又找不到足够的理由说服持有不同观点的同学.此情此景,在好奇心的驱动之下,学生欲罢不能,很容易就产生了继续学习、探索新知识的欲望.导入三:请大家仔细观察如图所示的图案,你觉得漂亮吗?这个图案的特点是由一个“基本图案”通过平移得到的,你能找到这个“基本图案”吗?这节内容我们就来研究一种几何变换——平移.一、平移的定义[过渡语](针对导入三)刚才我们看到的美丽图案,它是由12个完全一样的图形组成的,这个图案可以看成是由一个基本图形按照一定方式移动得到的.这样的图形运动称作什么呢?这就是我们本课时要研究的——图形的平移.思路一(1)我们再来感受一下平移.上面我们提到的游乐场中的滑梯等,你们在上面玩耍的时候,哪些方面是不变的?哪些方面是变化的?(2)什么是平移呢?引导学生探讨并在班内交流,达成共识后,得出平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.[设计意图]引导学生通过观察,发现图形间的变化规律,得出平移的定义.思路二教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程.(2)手扶电梯上人移动的过程.教师提问:①你能发现传送带上的箱子、手扶电梯上的人在移动前后什么没有改变,什么发生了改变吗?②在传送带上,如果箱子的某一部分向前移动了80 cm,那么箱子的其他部位向什么方向移动?移动了多少距离?学生自由发言,各抒己见.平移前后两个图形的形状和大小没有改变,位置发生了改变.根据上述分析,你能说明什么样的图形运动称为平移吗?平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.平移三要素: 基本图形,平移方向,平移距离.[设计意图]数学来源于实际生活,使学生感受到生活中处处有数学.利用课本上的两个实例,进一步感受平移的实质,渗透平移的三要素,即“基本图形、平移方向、平移距离”.如图所示,△ABC经过平移得到△A'B'C'.我们把点A与点A'叫做对应点,线段AB与线段A'B'叫做对应线段,∠A与∠A'叫做对应角.此时:点B的对应点是点B' ;点C的对应点是点C' ;线段AC的对应线段是线段A'C' ;线段BC的对应线段是线段B'C' ;∠B的对应角是∠B' ;∠C的对应角是∠C' .△ABC平移的方向就是由点B到点B'的方向,平移的距离就是线段BB'的长度.二、平移的性质[过渡语]一个图形和它经过平移所得到的图形中,对应点所连的线段有什么关系,对应线段和对应角有什么关系?同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化.教师提出问题:想一想,将左图的四边形硬纸片按某一方向平移一定的距离,右图画出了平移前的四边形ABCD和平移后的四边形EFGH.问题:(1)在上图中,线段AE,BF,CG,DH有怎样的关系?(2)图中每对对应线段之间有怎样的关系?(3)图中有哪些相等的线段、相等的角?学生分成四人一组,共同探讨平移的性质.讨论分析:①变换前后对应点所连线段平行(或在一条直线上)且相等.平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定距离,那么每一个点也沿着这个方向移动相同距离,所以对应点所连线段平行(或在一条直线上)且相等.②变换前后的图形全等.平移变换是由一个图形沿着某个方向移动一定距离,所以平移前后的图形是全等的.③变换前后对应角相等.④变换前后对应线段平行(或在一条直线上)且相等.学生归纳总结,教师板书平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.[设计意图]这个活动是探索平移的性质,对学生有点难度,通过设置问题的回答,使学生直接观察得出性质.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生能掌握得更好.三、例题讲解[过渡语]刚才我们了解了平移的相关概念和平移的基本性质,我们能用学到的知识解答一些问题吗?(1)指出平移的方向和平移的距离;(2)画出平移后的三角形;(3)请在图(2)中找出平行且相等的线段,以及相等的角(找出对应角即可).解:(1)如图(2)所示,连接AD,平移的方向是点A到点D的方向,平移的距离是线段AD的长度.(2)如图(2)所示,分别过点B,C按射线AD的方向作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形.(3)图中平行且相等的线段有:AB与DE,BC与EF,AC与DF,AD与BE,AD与CF,BE与CF;相等的角有:∠BAC与∠EDF, ∠ABC与∠DEF, ∠ACB与∠DFE.[设计意图]让学生进一步体会确定平移的两个要素:平移的方向和平移的距离,加深对平移性质的理解和应用.[知识拓展]平移作图.平移作图是平移基本性质的应用,利用平移可以得到许多美丽的图案.在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺序连接对应点.说明:平移作图实际上是平移基本性质的实际应用.注意:(1)平移作图的方法是由平移的性质而来,但必须注意两个条件,一是平移的方向,二是平移的距离.(2)平移的作图要抓住以下几个特征:①平移前后对应点连线平行(或共线)且相等.②对应线段平行(或共线)且相等.③对应角相等.1.平移是运动的一种形式,是图形变换的一种.2.图形的平移有两个要素:一是图形平移的方向;二是图形平移的距离.这两个要素是图形平移的依据.3.图形的平移是指图形整体的平移.经过平移后的图形与原图形相比,只改变了位置,而不改变图形的形状和大小,这个特征是得出图形平移的基本性质的依据.1.下列运动属于平移的是()A.急刹车时汽车在地面上的滑动B.冷水加热中,小气泡上升为大气泡C.随风飘动的风筝在空中的运动D.随手抛出的彩球的运动解析:A中汽车向前滑动,方向和大小都没有改变,属于平移;B中气泡大小发生了变化,不属于平移;C中风筝在空气中运动方向不断变化,不属于平移;D中彩球运动方向不能确定.故选A.2.如图所示,O是正六边形ABCDEF的中心,下列图形中可由三角形OBC平移得到的是 ()A.三角形OCDB.三角形OABC.三角形FAOD.以上都不对解析:根据平移的定义与特征知,平移后图形的形状、大小不改变,对应线段平行(或在一条直线上)且相等,对应角相等,三角形OBC是等边三角形,与其他五个三角形的形状、大小相同,关键是看其他三角形的对应边是否符合平移的特征.故选C.3.如图所示的四个小三角形都是等边三角形,边长都为1 cm,能通过平移三角形ABC得到三角形FAE 和三角形ECD吗?若能,请指出平移的方向和平移的距离.解析:三角形FAE与三角形ABC都是等边三角形,则有AF=BA=BC=AE=FE=AC,满足平移后图形的大小和形状不变.平移的方向为点A到点F的方向,平移的距离为AF的长度(1 cm).同理可得△ABC与△ECD 的关系.解:能.三角形ABC平移到三角形FAE的平移方向为点A到点F的方向,平移的距离为1 cm;三角形ABC平移到三角形ECD的平移方向为点A到点E的方向,平移的距离为1 cm.4.如图所示,图形ABCD平移到图形EFGH,试根据该图,回答下列问题.(1)在图中,线段AE与BF,CG与DH有怎样的位置关系?(2)图中线段AB与EF,AD与EH有怎样的位置关系?(3)说出图中相等的角(说出对应角即可).解析:AE,BF,CG,DH是对应点所连的线段,AB与EF,AD与EH是对应线段,由平移的特征可知它们的位置关系是平行.对应角相等.解:(1)平行.(2)平行.(3)∠BAD=∠FEH,∠ADC=∠EHG,∠DCB=∠HGF,∠ABC=∠EFG.5.经过平移,三角形ABC的边AB移到了A'B',作出平移后的三角形A'B'C'.解析:本题已知原图形和平移后的一条线段,就相当于已知原图形和平移的方向、平移的距离,所以根据平移前后两三角形全等可以作出平移后的三角形,具体的作法有很多种.解法1:如图(1)所示,分别过点A',B',作出与AC,BC平行且相等的线段A'C',B'C',两条线段相交于点C',三角形A'B'C'即为所求.解法2:如图(2)所示,分别以A',B'为圆心,以线段AC,BC的长为半径画弧,交于点C',连接A'C',B'C'即得△A'B'C'.解法3:如图(3)所示,连接AA',过点C按照射线AA'的方向作射线CC',使CC'∥AA'并截取CC'=AA',则连接A'C',B'C'所得的三角形A'B'C'即为所求作的三角形.第1课时一、平移的定义二、平移的性质三、例题讲解一、教材作业【必做题】教材第67页习题3.1的1,2题.【选做题】教材第68页习题3.1的3,4题.二、课后作业【基础巩固】1.下列说法正确的是()A.两个全等的图形可看做其中一个是由另一个平移得到的B.由平移得到的两个图形对应点连线互相平行(或共线)C.由平移得到的两个等腰三角形周长一定相等,但面积未必相等D.边长相等的两个正方形一定可以通过平移得到2.如图所示,下列每组图形中的两个三角形不是通过平移得到的是()3.下列现象:①电风扇的转动;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动.其中属于平移的是.【能力提升】4.如图所示,一张白色正方形纸片的边长是10 cm,被两张宽为2 cm的阴影纸条分为四个白色的长方形部分,请你利用平移的知识求出图中白色部分的面积.5.如图所示,AD∥BC,∠ABC=80°,∠BCD=50°,利用平移的知识讨论BC与AD+AB的数量关系.6.如图所示,将Rt△ABC沿直角边AB的方向向右平移2个单位长度得到△DEF,如果BG=CG,AB=4,∠ABC=90°,且△ABC的面积为6,求图中阴影部分的面积.7.如图所示,△ABC沿射线MN方向平移一定距离后成为△A'B'C'.找出图中相等的线段以及全等的三角形.8.A,B两点间有一条传输速度为每分钟5米的传送带,由A点向B点传送货物.一只蚂蚁不小心爬到了传送带上,它以每分钟1.5米的速度从A点爬向B点,3分钟后,蚂蚁爬到了B点,你能求出A,B两点间的距离吗? 【拓展探究】9.如图所示,∠BAC=30°,∠B'A'C'=45°,且AB∥A'B',直线AC与直线A'C'相交于点O,求∠COC''的度数.10.如图所示,有一条光滑曲线,画出将它沿数轴向左平移2个单位长度后的图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第三章)图形的平移与旋转
一、仔细选一选
1.下列数中仅由一个数字平移所得的数是()
A、2002
B、1999
C、8888
D、1414
2.下面A、B、C、D四个图形中的哪个图案可以通过旋转图案①得到()
3.下列每组大写字母中,旋转180°和原来形状一样的是()
A、H I O E
B、H I O N
C、H I O U
D、H I O B
4.利用一幅三角板,画平行线时,形成的同位角只可能是()
A、30° 60°
B、30° 45° 60°
C、30° 45° 60° 90°
D、可以是任意
的角°
5.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()
二、细心填一填
6.如图1,若△A`B`C`是由△ABC平移形成,若∠BCA=55°,∠BAC=70°,则∠C`B`A`= ,∠B`A`C`= 。
7.如图2所示,若△ABC和△CDE是等边三角形,则△ACD和△BCE可以绕点旋
转度得到。
8.电风扇在旋转过程中,旋转一周的周长为95cm,若电风扇旋转了1980°则,旋转的总长度为 m。
9.如图3所示,怎样将图案B变成图案A?
10.如图4所示,如果四边形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点有。
三、精心画一画
11.图5阴影部分表示城门的轮廓,请你作出向右平移6个格后的图。
12.如图6所示,请你将数字“5”按箭头指的方向平移3cm,作出平多后的图形。
四、用心做一做
13.如图7所示,怎样将①的图案变成②的图案呢?
14.如图8所示,左边这个打开着的信封,是右边五个信封中的第几个信封?
五、发挥你的想象,做一做!
15.如图9,两个正方形ABCD ,OEFG 的边长都是a ,其中O 是正方形ABCD 的中心。
① 请你说出图①到图③是怎样形成?图②中的四边形OMCN 的面积是多少?图③中
的△OBC 的面积是多少?
② 你能求出图④中四边形OMCN 的面积吗?
图8。