【八年级】八年级数学上册1413函数图象教案新人教版

合集下载

八年级数学上册《14.1.3函数的图象(三)》教案 新人教版

八年级数学上册《14.1.3函数的图象(三)》教案  新人教版

14.1.3函数的图象(三)教学课题14.1.3函数的图象(三)年级学科八年级(上)数学教学课时第3课时课型新授课主备教师使用教师教学目标1、总结函数三种表示方法. 2、了解三种表示方法的优缺点.3、会根据具体情况选择适当方法.教学重点与难点重点:1.认清函数的不同表示方法,知道各自优缺点.2.能按具体情况选用适当方法.难点:函数表示方法的应用.教学准备及手段多媒体教学探究式教学教学过程动态修改部分Ⅰ.提出问题,创设情境我们在前几节课里已经看到或亲自动手用列表格.写式子和画图象的方法表示了一些函数.这三种表示函数的方法分别称为列表法、解析式法和图象法.思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?这就是我们这节课要研究的内容.Ⅱ.导入新课从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.表示方法全面性准确性直观性形象性列表法×∨∨×解析式法∨∨××图象法××∨∨从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.III 例题与练习例1:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时0 1 2 3 4 5 …y/米10 10.05 10.10 10.15 10.20 10.25 …1.由记录表推出这5小时中水位高度y(米)随时间t•(时)变化的函数解析式,并画出函数图象.2.据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?分析:记录表中已经通过6组数值反映了时间t与水位y之间的对应关系.•我们现在需要从这些数值找出这两个表量之间的一般联系规律,由它写出函数解析式来,再画出函数图象,进而预测水位.解:1.由表中观察到开始水位高10米,以后每隔1小时,水位升高0.05米,•这样的规律可以表示为: y=0.05t+10(0≤t≤7)这个函数的图象如下图所示:2.再过2小时的水位高度,就是t=5+2=7时,y=0.05t+10的函数值,从解析式容易算出:y=0.05×7+10=10.35从函数图象也能得出这个值数.2小时后,预计水位高10.35米.提出问题:1.函数自变量t的取值范围:0≤t≤7是如何确定的?2.2小时后的水位高是通过解析式求出的呢,还是从函数图象估算出的好?3.函数的三种表示方法之间是否可以转化?从题目中可以看出水库水位在5小时内持续上涨情况,•且估计这种上涨情况还会持续2小时,所以自变量t的取值范围取0≤t≤7,超出了这个范围,•情况将难以预计.2小时后水位高通过解析式求准确,通过图象估算直接、方便.•就这个题目来说,2小时后水位高本身就是一种估算,但为了准确而言,•还是通过解析式求出较好.从这个例子可以看出函数的三种不同表示法可以转化,因为题目中只给出了列表法,而我们通过分析求出解析式并画出了图象,所以可以相互转化.练习:1.用列表法与解析式法表示n边形的内角和m是边数n的函数.2.用解析式与图象法表示等边三角形周长L是边长a的函数.解析:1.因为n表示的是多边形的边数,所以,n是大于等于3的自然数.n 3 4 5 6 …m 180 360 540 720 …由表可看出,三角形内角和为180°,边数每增加1条,•内角和度数就增加180°.故此m、n函数关系可表示为:m=(n-2)·180°(n≥3的自然数).2.因为等边三角形的周长L是边长a的3倍.所以周长L与边长a•的函数关系可表示为:L=3a (a>0)我们可以用描点法来画出函数L=3a的图象.列表:a … 1 2 3 4 …L … 3 6 9 12 …描点、连线:3、甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.解:由题意可知:x秒后两车行驶路程分别是:甲车为:20x 乙车为:25x两车行驶路程差为:25x-20x=5x两车之间距离为:500-5x所以:y随x变化的函数关系式为:y=500-5x 0≤x≤100用描点法画图:x …10 20 30 40y …450 400 350 300x 50 60 70 80 …y 250 200 150 100 …Ⅳ.课堂小结通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化.其实函数图象与函数性质之间存在着必然联系,我们可以归纳如下:图象特征函数变化规律由左至右曲线呈上升状态.⇔y随x的增大而增大.由左至右曲线呈下降状态.⇔y随x的增大而减小.曲线上的最高点是(a,b).⇔x=a时,y有最大值b.曲线上的最低点是(a,b).⇔x=a时,y有最小值b.Ⅴ.布置作业必做题:作业本(1)14.1.3函数的图象(三)全品作业本14.1.3函数的图象(三)A、B选做题:全品作业本14.1.3函数的图象(三)C板书设计:§14.1.3 函数的图象(三)一、函数的三种表示方法二、不同表示方法的优缺点三、不同表示方法的具体选择四、随堂练习教后反思:。

新课标示范教案人教八年级数学上册1413函数的图象

新课标示范教案人教八年级数学上册1413函数的图象

教学过程设计
你从图象中能得到什么信息?
学生回答:
(1)这一天中凌晨4时气温最低为-3℃,14时气温最高为8℃.(2)从0时至4时气温呈下降状态,即温度随时间的增加而下
根据图象回答下列问题:
1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?
3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?
5.玉米地离小明家多远?小明从玉米地走回家平均速度是多四、小结归纳
五、作业设计
x =
x 2
=x 2=
.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,
乌龟还是先到达了终点.……”用
为时间,则下列图象中与故事情节
.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系。

请你
板书设
画函数图象的一般步骤
1、列表
2、描点
3、连线。

八年级数学上册《14.1.3函数图象》教案 新人教版

八年级数学上册《14.1.3函数图象》教案 新人教版

广东省广州市白云区汇侨中学八年级数学上册《14.1.3函数图象》教案新人教版一、教学目标1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.3.体会数形结合思想,并利用它解决问题,提高解决问题能力.二、重点难点重点:1.函数图象的画法.2.观察分析图象信息.难点:分析概括图象中的信息.三、合作探究Ⅰ.提出问题,创设情境我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.我们这节课就来解决如何画函数图象的问题及解读函数图象信息.Ⅱ.导入新课我们先来看这样一个问题:正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?计算并填写下表:Array一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph).•上图中的曲线即为函数S=x2(x>0)的图象.函数图象可以数形结合地研究函数,给我们带来便利.[活动一]活动内容设计:下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?教师活动:引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….活动结论:1.一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t的函数.2.这天中凌晨4时气温最低为-3℃,14时气温最高为8℃.3.从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.4.我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.5.如果长期观察这样的气温图象,我们就能得到更多信息,掌握更多气温变化规律. [活动二]下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?活动结论:1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出,•小明走到菜地用了15分钟.2.由平行线段的横坐标可看出,小明给菜地浇水用了10分钟.3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出,•小明从菜地到玉米地用了12分钟.4.由平行线段的横坐标可看出,小明给玉米地锄草用了18分钟.5.由纵坐标看出,玉米地离小明家2千米.由横坐标看出,•小明从玉米地走回家用了25分钟.所以平均速度为:2÷25=0.08(千米/分钟).四、精讲精练例1、:在下列式子中,对于x的每个确定的值,y有唯一的对应值,即y是x的函数.请画出这些函数的图象.1.y=x+0.5 2.y=6x(x>0)解:1.y=x+0.5从上式可看出,x取任意实数式子都有意义,所以x的取值范围是全体实数.从3.5根据表中数值描点(x,y),并用光滑曲线连结这些点.从函数图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.2.y=6x(x>0)自变量的取值为x>0的实数,即正实数.据表中数值描点(x,y)并用光滑曲线连结这些点,就得到图象.从函数图象可以看出,曲线从左向右下降,即当x由小变大时,y=6x随之减小.由以上例题可以知道:描点法画函数图象的一般步骤是第一步:列表.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.第二步:描点.在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点.第三步:连线.按照坐标由小到大的顺序把所有点用平滑曲线连结起来.练习(1)下图是一种古代计时器──“漏壶”的示意图,在壶内盛一定量的水,•水从壶下的小孔漏出,壶壁内画出刻度.人们根据壶中水面的位置计算时间.用x•表示时间,y表示壶底到水面的高度.下面的哪个图象适合表示y与x的函数关系?(2)a是自变量x取值范围内的任意一个值,过点(a,0)画y轴的平行线,•与图中曲线相交.下列哪个图中的曲线表示y是x的函数?为什么?五、课堂小结本节通过两个活动,学会了分析图象信息,解答有关问题.通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想.六、作业 P104 练习2、 3。

人教版数学八年级上册14.3《函数的图象》(第2课时)教学设计

人教版数学八年级上册14.3《函数的图象》(第2课时)教学设计

人教版数学八年级上册14.3《函数的图象》(第2课时)教学设计一. 教材分析《函数的图象》是人教版数学八年级上册第14.3节的内容,本节内容是在学生已经掌握了函数的概念和性质的基础上进行的。

函数的图象可以帮助我们更直观地理解和把握函数的性质,是研究函数的重要工具。

本节课的主要内容有:函数图象的性质,函数图象的变换,以及如何利用函数图象解决实际问题。

二. 学情分析八年级的学生已经具备了一定的函数基础知识,对函数的概念和性质有一定的了解。

但是,学生对函数图象的理解和应用能力还有待提高。

此外,由于函数图象的复杂性,学生可能对函数图象的性质和变换规律感到困惑。

三. 教学目标1.让学生理解函数图象的性质,能够识别和描述函数图象的基本特征。

2.让学生掌握函数图象的变换规律,能够进行简单的函数图象变换。

3.培养学生利用函数图象解决实际问题的能力。

四. 教学重难点1.函数图象的性质,如何识别和描述函数图象的基本特征。

2.函数图象的变换规律,如何进行简单的函数图象变换。

五. 教学方法采用讲授法、示范法、练习法、讨论法等多种教学方法相结合,引导学生通过观察、思考、操作、交流等活动,掌握函数图象的性质和变换规律。

六. 教学准备1.教学PPT,包括函数图象的性质和变换规律的讲解,以及相关的例题和练习题。

2.练习纸,用于学生进行函数图象的绘制和变换练习。

3.红色粉笔,用于板书和强调重点内容。

七. 教学过程1.导入(5分钟)利用红色粉笔在黑板上绘制一个简单的函数图象,如y=2x,让学生观察并描述这个函数图象的性质。

引导学生思考:函数图象有哪些基本的性质?2.呈现(15分钟)通过PPT呈现更多的函数图象,包括线性函数、二次函数、指数函数等,让学生观察并描述这些函数图象的性质。

同时,给出函数图象的定义和性质,让学生进行对比和理解。

3.操练(15分钟)让学生利用练习纸,绘制一些给定函数的图象,并进行函数图象的变换练习。

教师巡回指导,解答学生的问题。

人教版数学八年级上册14.3《函数的图象》教学设计

人教版数学八年级上册14.3《函数的图象》教学设计

人教版数学八年级上册14.3《函数的图象》教学设计一. 教材分析《函数的图象》是初中数学的重要内容,也是学生对函数概念的第一次深入接触。

人教版数学八年级上册14.3节主要介绍了函数图象的基本特征,包括线性函数、二次函数和反比例函数的图象。

这些内容不仅有助于学生更好地理解函数的本质,也为后续学习高中数学函数打下基础。

二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,但对函数图象的认识还相对较少。

因此,在教学过程中,需要引导学生从实际问题中抽象出函数关系,并通过图象来直观地理解函数的性质。

三. 教学目标1.理解函数图象的基本特征,包括线性函数、二次函数和反比例函数的图象。

2.能够从实际问题中抽象出函数关系,并通过图象来描述和分析函数的性质。

3.培养学生的抽象思维能力和直观表达能力。

四. 教学重难点1.重点:函数图象的基本特征,包括线性函数、二次函数和反比例函数的图象。

2.难点:如何从实际问题中抽象出函数关系,并通过图象来描述和分析函数的性质。

五. 教学方法采用问题驱动法和案例教学法,引导学生从实际问题中抽象出函数关系,并通过图象来直观地理解函数的性质。

同时,利用多媒体教学辅助工具,展示函数图象的动态变化,增强学生的直观感受。

六. 教学准备1.多媒体教学课件。

2.相关实际问题案例。

3.函数图象的动态演示软件。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何通过图象来描述和分析函数的性质。

例如,给定一个物体做直线运动,如何通过图象来描述其速度随时间的变化关系。

2.呈现(15分钟)利用多媒体教学课件,呈现线性函数、二次函数和反比例函数的图象。

通过对图象的观察,引导学生总结出这些函数图象的基本特征。

3.操练(15分钟)让学生通过函数图象的动态演示软件,亲自操作图象,观察图象的动态变化,进一步加深对函数图象特征的理解。

4.巩固(10分钟)给出一些实际问题,让学生尝试从问题中抽象出函数关系,并通过图象来描述和分析函数的性质。

人教新课标版初中八上第14章—函数图象一案三单设计

人教新课标版初中八上第14章—函数图象一案三单设计

函数图象教学设计【教材分析】《函数的图象》选自义务教育课程标准教科书《数学》(人教版)八年级上册。

本课的教学内容为“函数的图象”,是学生在掌握了变量概念和平面直角坐标系的基础上,结合实际问题,经历探索用图象表示函数的过程,进一步确立数形结合解决问题的思想,也是以后探索函数性质的重要途径。

【教学目标】根据《新课程》对本节课内容的要求,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:知识目标:了解函数图像的意义,会用描点法画简单函数的图像,会解答简单的实际问题过程与方法:学会从函数图像中获取相关信息情感态度:通过操作探究体验解析法与图像法表示函数关系的相互转化,感受数形结合的数学思想【重点与难点】、根据教材的内容及作用确定本节课的教学重点:学会用描点法画出一些简单的函数图像难点:理解函数图像上的点的坐标与函数解析式的对应关系【学生分析】1、学生通过前面的学习,已经掌握了用有序实数对表示点的坐标,这里只需要写出有序实数对即可2、班上的学生已经有了综合应用知识的意识,并且在学生学习氛围中有了想自己动手、运用知识解决实际问题的欲望。

【教学方法】课前布置学生进行预习,根据自己的学习,完成《问题导读评价单》,从而发现本节课存在的难点问题课上树立以学生为本的思想,利用《问题生成评价单》,组织学生用描点法画函数图象,体现教师是学生数学学习的组织者,引导者和合作者,使学生成为探求知识的主体。

在合作交流,共同探究的学习中,逐步熟悉图像语言,体会数学,正是源于生活中的实际问题。

最后通过《问题训练评价单》对学生本节课所学的知识点进行验证,做到查漏补缺【设计理念】本节课我是以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则。

情景引入,激发兴趣,学习过程体现自主,知识结构循序渐进,转化思想有机渗透,注重了师生互动共同发展的过程,给学生构建自主探究、合作交流的舞台,使他们在自主探究的过程中理解角的平分线的性质,并获得数学活动的经验,提高探究、发现和创新能力。

八年级数学上册《14.1.3函数的图像》教案(1) 新人教版

八年级数学上册《14.1.3函数的图像》教案(1) 新人教版

《14.1.3函数的图像(1)》教案教学目标:1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.3.提高识图能力、分析函数图象信息能力.4.体会数形结合思想,并利用它解决问题,提高解决问题能力.教学重点:1.函数图象的画法.2.观察分析图象信息.教学难点:分析概括图象中的信息.教学过程:Ⅰ.提出问题,创设情境问题:1、你能写出正方形的边长x与面积S的函数关系式,并确定自变量x的取值范围吗?2、你能利用在坐标系中画图的方法来表示S与x的关系吗?Ⅱ.导入新课活动一:函数图像的画法:1.列表:S=x2,(x>0)0.25 12.描点:在平面直角坐标系中以x为横坐标,以S为纵坐标描出上述点;3.连线:用平滑曲线连接这些点得到函数的图像。

总结:1. 一般来说,对于一个函数,如果把自变量和函数的每一对对应值分别作为点的横坐标和纵坐标,那么在坐标系面内由这些点组成的图形,叫做这个函数的图象.2. 画函数图象的步骤(1)列表:在自变量取值范围内取一些特殊自变量的值,计算出相应的函数值。

(2)描点:在平面直角坐标系中以自变量的值为横坐标,相应的函数值为纵坐标描出表中的点。

(3)连线:按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来。

活动二:例题:例1 画出函数y=x+0.5的图象1.列表:2.描点:3.连线:思考:你能从所画的图象中获取哪些信息?Ⅲ.随堂练习1.画出函数y=6/x (x>0)的图像。

2. 画出函数y=2x-1的图象思考:函数的图象是_______,函数y随x的增大而_____。

问题解决:1. 判断点A(-2.5,4) 、B(1,3) 、C(2.5,4)是否在函数y=2x-1的图象上;2. 点D(17,30)和点E(-8,-17)在函数y=2x-1的图象上吗?为什么?3. 已知点F(-3,a)和G(b,9)在函数y=2x-1的图象上,则a=_____,b=______.图像应用:观察:下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t的变化而变化,你从图中得到哪些信息?3 414 24归纳:(1)因为时间t对应气温T是唯一值,所以气温T是时间t的函数.(2)这一天4时气温最低,14时间气温最高。

人教版八年级上册14.1.3:函数的图像教学设计 (2)

人教版八年级上册14.1.3:函数的图像教学设计 (2)

人教版八年级上册14.1.3:函数的图像教学设计1. 教学目标本节课的教学目标是:•理解函数图像是如何描述数学函数的;•理解函数图像中的自变量、函数值和坐标轴之间的关系;•掌握一些简单函数的图像,如一次函数、二次函数、绝对值函数等;•能够根据函数公式和相关图像进行函数的分类和判断。

2. 教学重点本节课的教学重点是:•理解函数图像的概念、性质和应用;•掌握函数图像中常见函数的形态、特征和应用;•能够对函数进行分类和判断。

3. 教学准备1.PPT课件2.画板和彩色粉笔3.相关教具和实例。

4. 教学内容和步骤第一步:引入1.学生自我介绍2.通过生活常识,引出函数与图像的关系(如“小马过河”故事:已知小马速度为10km/h,河宽为200m,问小马需要多长时间才能过河。

以及通过函数图像解决这个问题的过程。

)第二步:导入1.师生对话,学生介绍自己在初中时学习过哪些函数。

2.让学生在小组内设计一个任务,总结一下所学函数的图像。

第三步:新知讲解1.数学函数的概念–函数的定义–自变量、函数值和坐标轴之间的关系–函数的图像–函数的性质2.常见函数图像的性质–一次函数的图像–二次函数的图像–绝对值函数的图像–指数函数的图像–对数函数的图像3.函数图像的应用–函数图像的分类–根据函数公式和函数图像进行分类和判断第四步:例题演练1.让学生上台,根据所给函数,画出它的图像,并根据图像进行分类。

2.让学生在小组内评价彼此的表现,并不断调整、优化策略和方法。

第五步:巩固反馈1.让学生总结此次课的收获和体验。

2.让学生预习下一节的内容。

5. 教学总结本节课通过引入故事和生活中的例子,将抽象的函数与图像串起来,使学生更好地理解了函数图像的概念、性质和应用,掌握了一些常见函数图像的形态、特征和应用,可以通过函数公式和相关图像进行函数的分类和判断。

同时,通过授权学生,提高了学生的动手能力和创造性,也激发了学生的学习兴趣和自信心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】八年级
广东省广州市白云区汇侨中学八年级数学上册《 新人教版
一、教学目标
1.学会用列表、描点、连线画函数图象.
2.学会观察、分析函数图象信息.
3.体会数形结合思想,并利用它解决问题,提高解决问题能力.
2、重点难点
重点: 1.函数图象的画法. 2.观察分析图象信息.
难点: 分析概括图象中的信息.
三、合作探究
Ⅰ.提出问题,创设情境
我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.
即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.
我们这节课就来解决如何画函数图象的问题及解读函数图象信息. Ⅱ.导入新课
我们先来看这样一个问题:
正方形的边长x 与面积S的函数关系是什么?其中自变量x 的取值范围是什么?计算并填写下表:
一般地,对于一个
函数,如果把自变量与函
数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象
(graph ).•上图中的曲线即为函数S=x2(x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利.
[活动一]
活动内容设计:
下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t 的变化而变化.你从图象中得到了哪些信息?
教师活动:
引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….
活动结论: x 0.5 1 1.5 2 2.5 3 3.5 S
1.一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t的函数.
2.这天中凌晨4时气温最低为,14时气温最高为.
3.从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.
4.我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.
5.如果长期观察这样的气温图象,我们就能得到更多信息,掌握更多气温变化规律.
[活动二]
下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.
根据图象回答下列问题:
1.菜地离小明家多远?小明走到菜地用了多少时间?
2.小明给菜地浇水用了多少时间?
3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?
4.小明给玉米地锄草用了多长时间?
5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?
活动结论:
1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出,•小明走到菜地用了15分钟.
2.由平行线段的横坐标可看出,小明给菜地浇水用了10分钟.
3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出,•小明从菜地到玉米地用了12分钟.
4.由平行线段的横坐标可看出,小明给玉米地锄草用了18分钟.
5.由纵坐标看出,玉米地离小明家2千米.由横坐标看出,•小明从玉米地走回家用了25分钟.所以平均速度为:2÷25=0.08(千米/分钟).
四、精讲精练
例1、:在下列式子中,对于x的每个确定的值,y有唯一的对应值,即y是x 的函数.请画出这些函数的图象.
1.y=x+0.5 2.y=(x>0)
解:1.y=x+0.5
从上式可看出,x取任意实数式子都有意义,所以x的取值范围是全体实数.从
y …-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
根据表中数值描点(x,y),并用光滑曲线连结这些点.
从函数图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.
2.y=(x>0)
自变量的取值为x>0的实数,即正实数.
x …0.5 1 1.5 2 2.5 3 3.5 4 …
y …12 6 4 3 2.4 2 1.7 1.5 …
据表中数值描点(x,y)并用光滑曲线连结这些点,就得到图象.
从函数图象可以看出,曲线从左向右下降,即当x由小变大时,y=6
x
随之减小.
由以上例题可以知道:描点法画函数图象的一般步骤是
第一步:列表.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.
第二步:描点.在直角坐标系中,以自变量
的值为横坐标,相应函数值为纵坐标,描出表中
对应各点.
第三步:连线.按照坐标由小到大的顺序把
所有点用平滑曲线连结起来.
练习
(1)下图是一种古代计时器──“漏壶”的示意图,在壶内盛一定量的水,•水从壶下的小孔漏出,壶壁内画出刻度.人们根据壶中水面的位置计算时间.用x•表示时间,y表示壶底到水面的高度.下面的哪个图象适合表示y与x的函数关系?
(2)a是自变量x取值范围内的任意一个值,过点(a,0)画y轴的平行线,•与图中曲线相交.下列哪个图中的曲线表示y是x的函数?为什么?
五、课堂小结
本节通过两个活动,学会了分析图象信息,解答有关问题.通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想.
六、作业 P104 练习2、3
此文档是由网络收集并进行重新排版整理.word可编辑版本!。

相关文档
最新文档