2020届高考数学大二轮复习专题中难提分突破特训三文

合集下载

2020届高考数学大二轮复习专题高难拉分攻坚特训三文

2020届高考数学大二轮复习专题高难拉分攻坚特训三文

高难拉分攻坚特训(三)1.若函数f (x )=ax -x 2-ln x 存在极值,且这些极值的和不小于4+ln 2,则a 的取值范围为( )A .[2,+∞)B .[22,+∞)C .[23,+∞)D .[4,+∞)答案 C解析 f ′(x )=a -2x -1x =-2x 2-ax +1x,因为f (x )存在极值,所以f ′(x )=0在(0,+∞)上有根,即2x 2-ax +1=0在(0,+∞)上有根,所以Δ=a 2-8≥0,显然当Δ=0时,f (x )无极值,不符合题意,所以Δ=a 2-8>0,即a >22或a <-2 2.记方程2x 2-ax +1=0的两根为x 1,x 2,由根与系数的关系得x 1x 2=12,x 1+x 2=a2,易知a >0,则f (x 1),f (x 2)为f (x )的极值,所以f (x 1)+f (x 2)=(ax 1-x 21-ln x 1)+(ax 2-x 22-ln x 2)=a (x 1+x 2)-(x 21+x 22)-(ln x 1+ln x 2)=a 22-⎝ ⎛⎭⎪⎫a 24-1+ln 2≥4+ln 2,所以a ≥2 3.综上,a 的取值范围为[23,+∞),选C.2.A ,B 为单位圆(圆心为O )上的点,O 到弦AB 的距离为32,C 是劣弧AB ︵(包含端点)上一动点,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤1,233解析 如图,以圆心O 为坐标原点建立直角坐标系,设A ,B 两点在x 轴上方且线段AB 与y 轴垂直,∵A ,B 为单位圆(圆心为O )上的点,O 到弦AB 的距离为32,∴点A ⎝ ⎛⎭⎪⎫-12,32,点B ⎝ ⎛⎭⎪⎫12,32,∴OA →=⎝ ⎛⎭⎪⎫-12,32,OB →=⎝ ⎛⎭⎪⎫12,32,即λOA →=⎝ ⎛⎭⎪⎫-λ2,3λ2,μOB →=⎝ ⎛⎭⎪⎫μ2,3μ2,∴OC →=λOA →+μOB →=⎝ ⎛⎭⎪⎫μ-λ2,3λ+μ2,又∵C 是劣弧AB ︵(包含端点)上一动点,设点C 坐标为(x ,y ),则⎩⎪⎨⎪⎧-12≤x ≤12,32≤y ≤1,∵OC →=⎝ ⎛⎭⎪⎫μ-λ2,3λ+μ2=(x ,y ),∴32≤y=3λ+μ2≤1,解得1≤λ+μ≤233,故λ+μ的取值范围为⎣⎢⎡⎦⎥⎤1,233.3.已知函数f (x )=x (a +ln x )有极小值-e -2. (1)求实数a 的值; (2)若k ∈Z ,且k <f xx -1对任意的x >1恒成立,求k 的最大值. 解 (1)f ′(x )=a +1+ln x ,令f ′(x )>0⇒x >e -a -1,令f ′(x )<0⇒0<x <e-a -1,故f (x )的极小值为f (e-a -1)=-e-a -1=-e -2,得a =1.(2)当x >1时,令g (x )=f x x -1=x +x ln xx -1, 则g ′(x )=x -2-ln x x -12,令h (x )=x -2-ln x ,∴h ′(x )=1-1x=x -1x>0, 故h (x )在(1,+∞)上是增函数.由于h (3)=1-ln 3<0,h (4)=2-ln 4>0,故存在x 0∈(3,4),使得h (x 0)=0. 则当x ∈(1,x 0)时,g ′(x )<0,g (x )为减函数;x ∈(x 0,+∞)时,g ′(x )>0,g (x )为增函数.∵h (x 0)=x 0-2-ln x 0=0,∴ln x 0=x 0-2, ∴g (x )min =g (x 0)=x 0+x 0ln x 0x 0-1=x 0,∴k <x 0,又x 0∈(3,4),∴k max =3.4.已知圆C :x 2+y 2-2x =0,圆P 在y 轴的右侧且与y 轴相切,与圆C 外切. (1)求圆心P 的轨迹Γ的方程;(2)过点M (2,0),且斜率为k (k ≠0)的直线l 与Γ交于A ,B 两点,点N 与点M 关于y 轴对称,记直线AN ,BN 的斜率分别为k 1,k 2,是否存在常数m ,使得1k 21+1k 22-mk2为定值?若存在,求出该常数m 与定值;若不存在,请说明理由.解 (1)圆C 的方程可化为(x -1)2+y 2=1, 则圆心C (1,0),半径r =1.设圆心P 的坐标为(x ,y )(x >0),圆P 的半径为R ,由题意可得⎩⎪⎨⎪⎧R =x ,R +1=|PC |,所以|PC |=x +1,即x -12+y 2=x +1,整理得y 2=4x .所以圆心P 的轨迹Γ的方程为y 2=4x (x >0).(2)由已知,直线l 的方程为y =k (x -2),不妨设t =1k,则直线l 的方程为y =1t(x -2),即x =ty +2.联立,得⎩⎪⎨⎪⎧y 2=4x ,x =ty +2,消去x ,得y 2-4ty -8=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-8.因为点M (2,0)与点N 关于y 轴对称,所以N (-2,0), 故k 1=y 1x 1+2,所以1k 1=x 1+2y 1=ty 1+2+2y 1=t +4y 1, 同理,得1k 2=t +4y 2,所以1k 21+1k 22-m k2=⎝ ⎛⎭⎪⎫t +4y 12+⎝ ⎛⎭⎪⎫t +4y 22-m k2=2t 2+8t ×⎝⎛⎭⎪⎫1y 1+1y 2+16×⎝⎛⎭⎪⎫1y 21+1y22-mt 2=2t 2+8t ×y 1+y 2y 1y 2+16×y 1+y 22-2y 1y 2y 1y 22-mt 2=2t 2+8t ×4t -8+16×4t2-2×-8-82-mt 2=2t 2+4-mt 2=(2-m )t 2+4,要使该式为定值,则需2-m =0,即m =2,此时定值为4. 所以存在常数m =2,使得1k 21+1k 22-mk2为定值,且定值为4.。

2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:中难提分突破特训(一) Word版含解析

2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:中难提分突破特训(一) Word版含解析

中难提分突破特训(一)1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足2c -b a =cos Bcos A . (1)求角A 的大小;(2)若D 为BC 边上一点,且CD =2DB ,b =3,AD =21,求a . 解 (1)由已知,得(2c -b )cos A =a cos B , 由正弦定理,得(2sin C -sin B )cos A =sin A cos B , 整理,得2sin C cos A -sin B cos A =sin A cos B , 即2sin C cos A =sin(A +B )=sin C .又sin C ≠0,所以cos A =12,因为A ∈(0,π),所以A =π3. (2)如图,过点D 作DE ∥AC 交AB 于点E ,又CD =2DB ,∠BAC =π3, 所以ED =13AC =1,∠DEA =2π3.由余弦定理可知,AD 2=AE 2+ED 2-2AE ·ED cos 2π3, 解得AE =4,则AB =6. 又AC =3,∠BAC =π3,所以在△ABC 中,由余弦定理,得a =BC =3 3.2.2017年9月支付宝宣布在肯德基的KPRO 餐厅上线刷脸支付,也即用户可以不用手机,单单通过刷脸就可以完成支付宝支付,这也是刷脸支付在全球范围内的首次商用试点.某市随机抽查了每月用支付宝消费金额不超过3000元的男女顾客各300人,调查了他们的支付宝使用情况,得到如下频率分布直方图:若每月利用支付宝支付金额超过2千元的顾客被称为“支付宝达人”,利用支付宝支付金额不超过2千元的顾客称为“非支付宝达人”.(1)若抽取的“支付宝达人”中女性占120人,请根据条件完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“支付宝达人”与性别有关;(2)支付宝公司为了进一步了解这600人的支付宝使用体验情况和建议,从“非支付宝达人”“支付宝达人”中用分层抽样的方法抽取8人.若需从这8人中随机选取2人进行问卷调查,求至少有1人是“支付宝达人”的概率.附:参考公式与参考数据如下K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解 (1)由频率分布直方图得,“支付宝达人”共有600×(0.3+0.2)×0.5=150人,故“支付宝达人”中男性为150-120=30人,2×2列联表如下:由表格数据,代入公式可得K 2=600×(270×120-180×30)2150×450×300×300=72>10.828.所以能在犯错误的概率不超过0.001的前提下认为“支付宝达人”与性别有关.(2)由题意及分层抽样的特点可知,抽取的比例为8600=175.所以抽取的8人中,“支付宝达人”有150×175=2人,分别记为A ,B ;“非支付宝达人”有6人,分别记为a ,b ,c ,d ,e ,f ,从这8人中随机选取2人,不同的取法有{A ,B },{A ,a },{A ,b },{A ,c },{A ,d },{A ,e },{A ,f },{B ,a },{B ,b },{B ,c },{B ,d },{B ,e },{B ,f },{a ,b },{a ,c },{a ,d },{a ,e },{a ,f },{b ,c },{b ,d },{b ,e },{b ,f },{c ,d },{c ,e },{c ,f },{d ,e },{d ,f },{e ,f },共28种.其中至少有1人是“支付宝达人”的取法有{A ,B },{A ,a },{A ,b },{A ,c },{A ,d },{A ,e },{A ,f },{B ,a },{B ,b },{B ,c },{B ,d },{B ,e },{B ,f },共13种.故所求事件的概率P =1328.3.如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,E ,F 分别为AB ,B 1C 1的中点.(1)求证:B 1E ∥平面ACF ; (2)求三棱锥B 1-ACF 的体积.解 (1)证明:取AC 的中点M ,连接EM ,FM ,在△ABC 中,∵E ,M 分别为AB ,AC 的中点, ∴EM ∥BC 且EM =12BC ,又F 为B 1C 1的中点,B 1C 1∥BC ,∴B 1F ∥BC 且B 1F =12BC , 即EM ∥B 1F 且EM =B 1F ,故四边形EMFB 1为平行四边形,∴B 1E ∥FM , 又MF ⊂平面ACF ,B 1E ⊄平面ACF , ∴B 1E ∥平面ACF . (2)设O 为BC 的中点,∵△ABC 为正三角形,∴AO ⊥BC , 又AB =2,∴AO = 3.在正三棱柱ABC -A 1B 1C 1中,平面BCC 1B 1⊥平面ABC ,由面面垂直的性质定理可得AO ⊥平面BCC 1B 1,即三棱锥A -B 1CF 的高为3,∴V 三棱锥B 1-ACF =V 三棱锥A -B 1CF =13×S △B 1CF ×AO =13×12 ×1×2×3=33.4.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =3+2sin α(α为参数),直线C 2的普通方程为y =33x .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |. 解 (1)由曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =3+2sin α(α为参数),得曲线C 1的普通方程为(x -3)2+(y -3)2=4,所以曲线C 1的极坐标方程为(ρcos θ-3)2+(ρsin θ-3)2=4, 即ρ2-6ρcos θ-6ρsin θ+14=0. 因为直线C 2过原点,且倾斜角为π6, 所以直线C 2的极坐标方程为θ=π6(ρ∈R ).(2)设点A ,B 对应的极径分别为ρ1,ρ2, 由⎩⎪⎨⎪⎧ρ2-6ρcos θ-6ρsin θ+14=0,θ=π6,得ρ2-(33+3)ρ+14=0, 所以ρ1+ρ2=33+3,ρ1ρ2=14, 又ρ1>0,ρ2>0,所以1|OA |+1|OB |=|OA |+|OB ||OA ||OB |=ρ1+ρ2ρ1ρ2=33+314.5.设f (x )=|x |+2|x -a |(a >0). (1)当a =1时,解不等式f (x )≤4; (2)若f (x )≥4,求实数a 的取值范围. 解 (1)当a =1时,f (x )=|x |+2|x -1|,当x <0时,由2-3x ≤4,得-23≤x <0; 当0≤x ≤1时,由2-x ≤4,得0≤x ≤1; 当x >1时,由3x -2≤4,得1<x ≤2. 综上,不等式f (x )≤4的解集为⎣⎢⎡⎦⎥⎤-23,2.(2)f (x )=|x |+2|x -a |=⎩⎨⎧2a -3x ,x <0,2a -x ,0≤x ≤a ,3x -2a ,x >a .可见,f (x )在(-∞,a ]上单调递减,在(a ,+∞)上单调递增.当x =a 时,f (x )取得最小值a . 所以,a 的取值范围为[4,+∞).。

2020版高考数学二轮复习教程中难提分突破特训(六)理

2020版高考数学二轮复习教程中难提分突破特训(六)理

中难提分突破特训(六)1.已知△ABC的内角A,B,C的对边分别为a,b,c,其面积为S,且错误!(b2+c2-a2)=4S.(1)求角A的大小;(2)若a=错误!,当b+2c取得最大值时,求cos B。

解(1)由已知3(b2+c2-a2)=4S=2bc sin A,由余弦定理得2错误!bc cos A=2bc sin A,所以tan A=错误!,因为A∈(0,π),故A=错误!。

(2)由正弦定理得错误!=错误!=错误!,即b=2sin B,c=2sin C,因此b+2c=2sin B+4sin C=2错误!=4sin B+2错误!cos B=2错误!sin(B +φ),其中φ∈错误!,tanφ=错误!,则sinφ=错误!=错误!,故b+2c≤2错误!,当且仅当B+φ=错误!,即B=错误!-φ时取等号,故此时cos B=sinφ=错误!.2.如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点.(1)若E为AB1上的一点,且DE与直线CD垂直,求错误!的值;(2)在(1)的条件下,设异面直线AB1与CD所成的角为45°,求直线DE与平面AB1C1所成角的正弦值.解(1)如图,取AB的中点M,连接CM,MD,有MD∥AB1,因为AC=BC,所以CM⊥AB,又因为三棱柱ABC-A1B1C1为直三棱柱,所以平面ABC⊥平面ABB1A1,又因为平面ABC∩平面ABB1A1=AB,所以CM⊥平面ABB1A1,又因为DE⊂平面ABB1A1,所以CM⊥DE,又因为DE⊥CD,CD∩CM=C,CD⊂平面CMD,CM⊂平面CMD,所以DE⊥平面CMD,又因为MD⊂平面CMD,所以DE⊥MD,因为MD∥AB1,所以DE⊥AB1,连接A1B,设A1B∩AB1=O,因为ABB1A1为正方形,所以A1B⊥AB1,又因为DE⊂平面AA1B1B,A1B⊂平面AA1B1B,所以DE∥A1B,又因为D为BB1的中点,所以E为OB1的中点,所以错误!=错误!.(2)如图,以M为坐标原点,分别以MA,MO,MC所在直线为x 轴、y轴、z轴,建立空间直角坐标系,设AB=2a,由题意可知∠CDM=45°,所以AB1=2错误!a,所以DM=CM=错误!a,所以A(a,0,0),B1(-a,2a,0),C1(0,2a,错误!a),D(-a,a,0),E错误!,所以错误!=(-2a,2a,0),错误!=(a,0,错误!a),错误!=错误!,设平面AB1C1的一个法向量为n=(x,y,z),则错误!即错误!得平面AB1C1的一个法向量为n=(2,错误!,-1).所以cos〈错误!,n〉=错误!=错误!=错误!。

2020届高考文科数学大二轮复习冲刺经典专题中难提分突破特训六2

2020届高考文科数学大二轮复习冲刺经典专题中难提分突破特训六2

( | |) | | | | b
b
b
b
|x+a|+ x- x- a+
所以 f(x)=2
3 + 3 ≥2 3 ,等号在 x=3时成立,
| | | | b
b
a+
a+
所以 f(x)的最小值为 2 3 ,从而 2 3 =2.
因为 a>0,b>0,所以 3a+b=3.
中难提分突破特训(六)
1.如图,△ABC 和△BCD 所在平面互相垂直,且 AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G 分别为 AC,DC,AD 的中点,连接 CG,EF,BG.
(1)求证:EF⊥平面 BCG; (2)求三棱锥 D-BCG 的体积. 解 (1)证明:∵AB=BC=BD=2,∠ABC=∠DBC=120°, ∴△ABC≌△DBC, ∴AC=DC,∵G 为 AD 的中点, ∴AD⊥CG,BG⊥AD,CG∩BG=G, ∴AD⊥平面 BCG, ∵E,F 分别为 AC,DC 的中点,∴EF∥AD, ∴EF⊥平面 BCG1. (2)过 E 作 EO⊥BC 于点 O,连接 GE,
( ] [ ) 1
3
1
3
1
-∞,- - ,+∞
所以|x+1|≥2,解得 x≤-2或 x≥-2,所以所求不等式的解集为
2∪ 2
.
(2)解法一:因为 f(x)=2|x+a|+|3x-b|
=Error!
( ) ( ) b
பைடு நூலகம்
b
b
-∞,
,+∞
所以函数 f(x)在
3 上为减函数,在 3
上为增函数,所以当 x=3时,函数 f(x)取得最
(2)将Error!代入 y2=2ax 得, t2-2 2at+8a=0,

(全国通用)2020版高考数学二轮复习专题提分教程中难提分突破特训 全集 理

(全国通用)2020版高考数学二轮复习专题提分教程中难提分突破特训 全集  理

中难提分突破特训(一)1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足2c -b a =cos Bcos A .(1)求角A 的大小;(2)若D 为BC 边上一点,且CD =2DB ,b =3,AD =21,求a . 解 (1)由已知,得(2c -b )cos A =a cos B , 由正弦定理,得(2sin C -sin B )cos A =sin A cos B , 整理,得2sin C cos A -sin B cos A =sin A cos B , 即2sin C cos A =sin(A +B )=sin C . 又sin C ≠0,所以cos A =12,因为A ∈(0,π),所以A =π3. (2)如图,过点D 作DE ∥AC 交AB 于点E ,又CD =2DB ,∠BAC =π3,所以ED =13AC =1,∠DEA =2π3.由余弦定理可知,AD 2=AE 2+ED 2-2AE ·ED cos2π3, 解得AE =4,则AB =6. 又AC =3,∠BAC =π3,所以在△ABC 中,由余弦定理,得a =BC =3 3.2.已知长方形ABCD 中,AB =1,AD = 2.现将长方形沿对角线BD 折起,使AC =a ,得到一个四面体A -BCD ,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD ,AD 与BC 能否垂直?若能垂直,求出相应的a 值;若不垂直,请说明理由;(2)当四面体A -BCD 的体积最大时,求二面角A -CD -B 的余弦值. 解 (1)若AB ⊥CD ,由AB ⊥AD ,AD ∩CD =D ,得AB ⊥平面ACD ,所以AB ⊥AC .所以AB 2+a 2=BC 2,即12+a 2=(2)2,所以a =1. 若AD ⊥BC ,由AD ⊥AB ,AB ∩BC =B ,得AD ⊥平面ABC ,所以AD ⊥AC ,所以AD 2+a 2=CD 2,即(2)2+a 2=12, 所以a 2=-1,无解,故AD ⊥BC 不成立. (2)要使四面体A -BCD 的体积最大, 因为△BCD 的面积为定值22, 所以只需三棱锥A -BCD 的高最大即可, 此时平面ABD ⊥平面BCD ,过点A 作AO ⊥BD 于点O ,则AO ⊥平面BCD ,以O 为坐标原点建立空间直角坐标系Oxyz (如图),则易知A ⎝ ⎛⎭⎪⎫0,0,63,C ⎝ ⎛⎭⎪⎫63,33,0,D ⎝ ⎛⎭⎪⎫0,233,0,显然,平面BCD 的一个法向量为OA →=⎝ ⎛⎭⎪⎫0,0,63.设平面ACD 的法向量为n =(x ,y ,z ).因为CD →=⎝ ⎛⎭⎪⎫-63,33,0,DA →=⎝⎛⎭⎪⎫0,-233,63,所以⎩⎨⎧6x =3y ,23y =6z ,令y =2,得n =(1,2,2).观察可知二面角A -CD -B 为锐二面角, 故二面角A -CD -B 的余弦值为|cos 〈OA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪26363×1+2+4=277.3.已知动点P 与两个定点O (0,0),A (3,0)的距离的比为12.(1)求动点P 的轨迹C 的方程;(2)过点B (-2,1)的直线l 与曲线C 交于M ,N 两点,求线段MN 长度的最小值; (3)已知圆Q 的圆心为Q (t ,t )(t >0),且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.解 (1)由题意,设P (x ,y ), 则|AP |=2|OP |,即|AP |2=4|OP |2, 所以(x -3)2+y 2=4(x 2+y 2), 整理得(x +1)2+y 2=4.所以动点P 的轨迹C 的方程为(x +1)2+y 2=4.(2)由(1)知轨迹C 是以C (-1,0)为圆心,以2为半径的圆. 又因为(-2+1)2+12<4,所以点B 在圆内, 所以当线段MN 的长度最小时,BC ⊥MN , 所以圆心C 到直线MN 的距离为 |BC |=(-2+1)2+(1-0)2=2, 此时,线段MN 的长为|MN |=2|CM |2-|BC |2=2×4-2=22, 所以,线段MN 长度的最小值为2 2.(3)因为点Q 的坐标为(t ,t )(t >0),且圆Q 与x 轴相切,所以圆Q 的半径为t , 所以圆Q 的方程为(x -t )2+(y -t )2=t 2. 因为圆Q 与圆C 有公共点, 又圆Q 与圆C 的两圆心距离为|CQ |=(t +1)2+(t -0)2=2t 2+2t +1, 所以|2-t |≤|CQ |≤2+t ,即(2-t )2≤2t 2+2t +1≤(2+t )2,解得-3+23≤t ≤3. 所以实数t 的取值范围是[-3+23,3].4.在平面直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3+2cos α,y =3+2sin α(α为参数),直线C 2的普通方程为y =33x .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |.解 (1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3+2cos α,y =3+2sin α(α为参数),得曲线C 1的普通方程为(x -3)2+(y -3)2=4,所以曲线C 1的极坐标方程为(ρcos θ-3)2+(ρsin θ-3)2=4, 即ρ2-6ρcos θ-6ρsin θ+14=0. 因为直线C 2过原点,且倾斜角为π6,所以直线C 2的极坐标方程为θ=π6(ρ∈R ).(2)设点A ,B 对应的极径分别为ρ1,ρ2,由⎩⎪⎨⎪⎧ρ2-6ρcos θ-6ρsin θ+14=0,θ=π6,得ρ2-(33+3)ρ+14=0, 所以ρ1+ρ2=33+3,ρ1ρ2=14, 又ρ1>0,ρ2>0,所以1|OA |+1|OB |=|OA |+|OB ||OA ||OB |=ρ1+ρ2ρ1ρ2=33+314.5.设f (x )=|x |+2|x -a |(a >0). (1)当a =1时,解不等式f (x )≤4; (2)若f (x )≥4,求实数a 的取值范围. 解 (1)当a =1时,f (x )=|x |+2|x -1|, 当x <0时,由2-3x ≤4,得-23≤x <0;当0≤x ≤1时,由2-x ≤4,得0≤x ≤1; 当x >1时,由3x -2≤4,得1<x ≤2.综上,不等式f (x )≤4的解集为⎣⎢⎡⎦⎥⎤-23,2. (2)f (x )=|x |+2|x -a |=⎩⎪⎨⎪⎧2a -3x ,x <0,2a -x ,0≤x ≤a ,3x -2a ,x >a .可见,f (x )在(-∞,a ]上单调递减,在(a ,+∞)上单调递增. 当x =a 时,f (x )取得最小值a . 所以,a 的取值范围为[4,+∞).中难提分突破特训(二)1.已知数列{a n }的前n 项和S n =n 2-2kn (k ∈N *),S n 的最小值为-9. (1)确定k 的值,并求数列{a n }的通项公式;(2)设b n =(-1)n·a n ,求数列{b n }的前2n +1项和T 2n +1. 解 (1)由已知得S n =n 2-2kn =(n -k )2-k 2, 因为k ∈N *,当n =k 时,(S n )min =-k 2=-9, 故k =3.所以S n =n 2-6n .因为S n -1=(n -1)2-6(n -1)(n ≥2),所以a n =S n -S n -1=(n 2-6n )-[(n -1)2-6(n -1)], 得a n =2n -7(n ≥2).当n =1时,S 1=-5=a 1,综上,a n =2n -7. (2)依题意,b n =(-1)n ·a n =(-1)n(2n -7), 所以T 2n +1=5-3+1+1-3+5+…+(-1)2n(4n -7)+2.已知具有相关关系的两个变量x ,y 的几组数据如下表所示:(1)请根据上表数据在网格纸中绘制散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^,并估计当x =20时,y 的值;(3)将表格中的数据看作5个点的坐标,则从这5个点中随机抽取3个点,记落在直线2x -y -4=0右下方的点的个数为ξ,求ξ的分布列以及期望.参考公式:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2,a ^=y --b ^x -. 解 (1)散点图如图所示.(2)依题意,x -=15×(2+4+6+8+10)=6,y -=15×(3+6+7+10+12)=7.6,∑i =15x 2i =4+16+36+64+100=220, ∑i =15x i y i =6+24+42+80+120=272,b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=272-5×6×7.6220-5×62=4440=1.1,∴a ^=7.6-1.1×6=1,∴线性回归方程为y ^=1.1x +1,故当x =20时,y ^=23.(3)可以判断,落在直线2x -y -4=0右下方的点满足2x -y -4>0,故符合条件的点的坐标为(6,7),(8,10),(10,12),故ξ的所有可能取值为1,2,3, P (ξ=1)=C 22C 13C 35=310,P (ξ=2)=C 12C 23C 35=610=35,P (ξ=3)=C 33C 35=110,故ξ的分布列为故E (ξ)=1×310+2×35+3×110=1810=95.3.已知四棱柱ABCD -A 1B 1C 1D 1中,DD 1⊥平面ABCD ,AD ⊥DC ,AD ⊥AB ,DC =2AD =2AB =2,AA 1=4,点M 为C 1D 1的中点.(1)求证:平面AB 1D 1∥平面BDM ;(2)求直线CD 1与平面AB 1D 1所成角的正弦值. 解 (1)证明:由题意得,DD 1∥BB 1,DD 1=BB 1, 故四边形DD 1B 1B 为平行四边形,所以D 1B 1∥DB , 由D 1B 1⊂平面AB 1D 1,DB ⊄平面AB 1D 1,故DB ∥平面AB 1D 1, 由题意可知AB ∥DC ,D 1C 1∥DC ,所以,AB ∥D 1C 1. 因为M 为D 1C 1的中点,所以D 1M =AB =1,所以四边形ABMD 1为平行四边形,所以BM ∥AD 1, 由AD 1⊂平面AB 1D 1,BM ⊄平面AB 1D 1,所以BM ∥平面AB 1D 1,又由于BM ,BD 相交于点B ,BM ,BD ⊂平面BDM , 所以平面BDM ∥平面AB 1D 1.(2)由题意,以D 为坐标原点,分别以D A →,D C →,DD 1→方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则点D 1(0,0,4),C (0,2,0),A (1,0,0),B 1(1,1,4),AD 1→=(-1,0,4),AB 1→=(0,1,4),设平面AB 1D 1的一个法向量为n =(x ,y ,z ), 有⎩⎪⎨⎪⎧AD 1→·n =0,AB 1→·n =0,即⎩⎪⎨⎪⎧-x +4z =0,y +4z =0,令z =1,则n =(4,-4,1),CD 1→=(0,-2,4), 令θ为直线CD 1与平面AB 1D 1所成的角, 则sin θ=|cos 〈CD 1→,n 〉|=|CD 1→·n ||CD 1→||n |=216555.4.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2:ρ-2cos θ=0.(1)求曲线C 2的直角坐标方程;(2)若曲线C 1上有一动点M ,曲线C 2上有一动点N ,求|MN |的最小值. 解 (1)由ρ-2cos θ=0,得ρ2-2ρcos θ=0. ∵ρ2=x 2+y 2,ρcos θ=x ,∴x 2+y 2-2x =0, 即曲线C 2的直角坐标方程为(x -1)2+y 2=1. (2)由(1)可知,圆C 2的圆心为C 2(1,0),半径为1. 设曲线C 1上的动点M (3cos θ,2sin θ), 由动点N 在圆C 2上可得|MN |min =|MC 2|min -1. ∵|MC 2|=(3cos θ-1)2+4sin 2θ =5cos 2θ-6cos θ+5,∴当cos θ=35时,|MC 2|min =455,∴|MN |min =|MC 2|min -1=455-1.5.已知不等式|2x -3|<x 与不等式x 2-mx +n <0(m ,n ∈R )的解集相同且非空. (1)求m -n ;(2)若a ,b ,c ∈(0,1),且ab +bc +ac =m -n ,求a 2+b 2+c 2的最小值. 解 (1)当x ≤0时,不等式|2x -3|<x 的解集为空集,不符合题意; 当x >0时,|2x -3|<x ⇒-x <2x -3<x ⇒1<x <3, ∴1,3是方程x 2-mx +n =0的两根,∴⎩⎪⎨⎪⎧1-m +n =0,9-3m +n =0,∴⎩⎪⎨⎪⎧m =4,n =3,∴m -n =1.(2)由(1)得ab +bc +ac =1, ∵a 2+b 22≥ab ,b 2+c 22≥bc ,a 2+c 22≥ac ,∴a 2+b2+c 2=a 2+b 22+b 2+c 22+a 2+c 22≥ab +bc +ac =1⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时取等号. ∴a 2+b 2+c 2的最小值是1.中难提分突破特训(三)1.如图,三棱柱ABC -A 1B 1C 1中,BC =BB 1,∠B 1BC =60°,B 1C 1⊥AB 1.(1)证明:AB =AC ;(2)若AB ⊥AC ,且AB 1=BB 1,求二面角A 1-CB 1-C 1的余弦值. 解 (1)证明:如图,取BC 的中点O ,连接AO ,OB 1.因为BC =BB 1,∠B 1BC =60°, 所以△BCB 1是等边三角形, 所以B 1O ⊥BC ,又BC ∥B 1C 1,B 1C 1⊥AB 1, 所以BC ⊥AB 1, 所以BC ⊥平面AOB 1,所以BC ⊥AO ,由三线合一可知△ABC 为等腰三角形, 所以AB =AC .(2)设AB 1=BB 1=2,则BC =BB 1=2. 因为AB ⊥AC ,所以AO =1. 又因为OB 1=3,所以OB 21+AO 2=AB 21,所以AO ⊥OB 1.以O 为坐标原点,向量OB →的方向为x 轴的正方向,建立如图所示的空间直角坐标系Oxyz ,则O (0,0,0),C (-1,0,0),A 1(-1,3,1),B 1(0,3,0),CA 1→=(0,3,1),CB 1→=(1,3,0),设平面A 1B 1C 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CA 1→·n =0,CB 1→·n =0,即⎩⎨⎧3y +z =0,x +3y =0,可取n =(3,-1,3),由(1)可知,平面CB 1C 1的法向量可取OA →=(0,0,1), 所以cos 〈OA →,n 〉=OA →·n |OA →||n |=217,由图示可知,二面角A 1-CB 1-C 1为锐二面角,所以二面角A 1-CB 1-C 1的余弦值为217. 2.已知函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π3.(1)求函数f (x )的单调递增区间;(2)锐角△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,角A 的平分线交BC 于D ,直线x =A 是函数f (x )图象的一条对称轴,AD =2BD =2,求边a .解 (1)∵f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π3, ∴f (x )=2sin x sin x ·12+2sin x cos x ·32=1-cos2x 2+32sin2x =32sin2x -12cos2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12.令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z . 即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π,k ∈Z .(2)∵x =A 是函数f (x )图象的一条对称轴, ∴2A -π6=π2+k π,k ∈Z .∴A =π3+k π2,k ∈Z .又△ABC 是锐角三角形,∴A =π3.在△ABD 中,∠BAD =π6,BD =2,AD =2,由正弦定理,得212=2sin B , ∴sin B =22.∴B =π4. ∴C =π-π3-π4=5π12.∠CDA =π4+π6=5π12.∴AC =AD =2.在△ABC 中,由正弦定理,得BCsin60°=2sin45°,∴BC =a = 6.3.绿水青山就是金山银山.某山村为做好水土保持,退耕还林,在本村的山坡上种植水果,并推出山村游等旅游项目.为预估今年7月份游客购买水果的情况,随机抽样统计了去年7月份100名游客的购买金额.分组如下:[0,20),[20,40),…,[100,120],得到如图所示的频率分布直方图:(1)请用抽样的数据估计今年7月份游客人均购买水果的金额(同一组中的数据用该组区间中点值作代表);(2)若把去年7月份购买水果不低于80元的游客,称为“水果达人”.填写下面列联表,并根据列联表判断是否有95%的把握认为“水果达人”与性别有关系?(3)为吸引顾客,商家特推出两种促销方案.方案一:每满80元可立减10元;方案二:金额超过80元可抽奖三次,每次中奖的概率为12,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.若每斤水果10元,你打算购买12斤水果,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.参考公式和数据:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .临界值表:解 (1)x -=(10×0.005+30×0.0075+50×0.010+70×0.0125+90×0.010+110×0.005)×20=62.估计今年7月份游客人均购买水果的金额为62元.(2)列联表如下:K 2=100×(10×30-20×40)250×50×30×70≈4.762>3.841,因此有95%的把握认为“水果达人”与性别有关系. (3)若选方案一:则需付款10×12-10=110元;若选方案二:设付款X 元,则X 的可能取值为84,96,108,120.P (X =84)=C 33⎝ ⎛⎭⎪⎫123=18, P (X =96)=C 23⎝ ⎛⎭⎪⎫122×12=38,P (X =108)=C 13×12×⎝ ⎛⎭⎪⎫122=38, P (X =120)=C 03⎝ ⎛⎭⎪⎫123=18, 所以E (X )=84×18+96×38+108×38+120×18=102.因为102<110,所以选择方案二更划算.4.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ+2(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)若直线l 1,l 2的极坐标方程分别为θ=π6(ρ∈R ),θ=2π3(ρ∈R ),设直线l 1,l 2与曲线C 的交点为O ,M ,N ,求△OMN 的面积.解 (1)由参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ+2(θ为参数),得普通方程为x 2+(y -2)2=4,所以C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ-4ρsin θ=0,即ρ=4sin θ.(2)不妨设直线l 1:θ=π6(ρ∈R )与曲线C 的交点为O ,M ,则ρM =|OM |=4sin π6=2,又直线l 2:θ=2π3(ρ∈R )与曲线C 的交点为O ,N ,则ρN =|ON |=4sin 2π3=2 3.又∠MON =π2,所以S △OMN =12|OM |·|ON |=12×2×23=2 3.5.已知函数f (x )=|3x +2|. (1)解不等式:f (x )<4-|x -1|;(2)已知m >0,n >0,m +n =1,若对任意的x ∈R ,m >0,n >0,不等式|x -a |-f (x )≤1m +1n(a >0)恒成立,求正数a 的取值范围.解 (1)由题意得不等式为|3x +2|+|x -1|<4.①当x ≥1时,原不等式化为4x +1<4,解得x <34,不符合题意;②当-23<x <1时,原不等式化为2x +3<4,解得x <12,∴-23<x <12;③当x ≤-23时,原不等式化为-4x -1<4,解得x >-54,∴-54<x ≤-23.综上可得-54<x <12,∴原不等式的解集为⎝ ⎛⎭⎪⎫-54,12. (2)∵m >0,n >0,m +n =1, ∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n (m +n )=2+n m +m n ≥2+2n m ·mn =4.当且仅当m n =nm且m +n =1,m >0,n >0,即m =n =12时等号成立,∴⎝ ⎛⎭⎪⎫1m +1n min =4. 由题意得|x -a |-|3x +2|≤4(a >0)恒成立,①当x ≥a 时,可得x -a -3x -2≤4恒成立,即-a ≤2x +6恒成立,∴-a ≤(2x +6)min=2a +6,由a >0,可得上式显然成立;②当-23<x <a 时,可得a -x -3x -2≤4恒成立,即a ≤4x +6恒成立,∵4x +6>103,∴a ≤103;③当x ≤-23时,可得a -x +3x +2≤4恒成立,即a ≤2-2x 恒成立,∴a ≤(2-2x )min =103.综上可得0<a ≤103,∴正数a 的取值范围是⎝⎛⎦⎥⎤0,103.中难提分突破特训(四)1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,其面积S =b 2sin A . (1)求c b的值;(2)设内角A 的平分线AD 交BC 于D ,AD =233,a =3,求b .解 (1)由S =12bc sin A =b 2sin A ,可知c =2b ,即c b =2.(2)由角平分线定理可知,BD =233,CD =33,在△ABC 中,cos B =4b 2+3-b22·2b ·3,在△ABD 中,cos B =4b 2+43-432·2b ·233, 即4b 2+3-b22·2b ·3=4b 2+43-432·2b ·233,解得b =1.2.现代社会,“鼠标手”已成为常见病,一次实验中,10名实验对象进行160分钟的连续鼠标点击游戏,每位实验对象完成的游戏关卡一样,鼠标点击频率平均为180次/分钟,实验研究人员测试了实验对象使用鼠标前后的握力变化,前臂表面肌电频率(sEMG)等指标.(1)10名实验对象实验前、后握力(单位:N)测试结果如下: 实验前:346,357,358,360,362,362,364,372,373,376 实验后:313,321,322,324,330,332,334,343,350,361完成下列茎叶图,并计算实验后握力平均值比实验前握力的平均值下降了多少N?(2)实验过程中测得时间t (分)与10名实验对象前臂表面肌电频率(sEMG)的中位数y (Hz)的9组对应数据(t ,y )为(0,87),(20,84),(40,86),(60,79),(80,78),(100,78),(120,76),(140,77),(160,75).建立y 关于时间t 的线性回归方程;(3)若肌肉肌电水平显著下降,提示肌肉明显进入疲劳状态,根据(2)中9组数据分析,使用鼠标多少分钟就该进行休息了?参考数据:∑9i =1(t i -t )(y i -y -)=-1800; 参考公式:回归方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为: b ^=∑ni =1 (t i -t )(y i -y -)∑ni =1(t i -t )2,a ^=y --b ^t . 解 (1)根据题意得到茎叶图如下图所示,由图中数据可得x -1=110×(346+357+358+360+362+362+364+372+373+376)=363,x -2=110×(313+321+322+324+330+332+334+343+350+361)=333,∴x -1-x -2=363-333=30(N), ∴故实验前后握力的平均值下降了30 N.(2)由题意得t =19×(0+20+40+60+80+100+120+140+160)=80,y -=19×(87+84+86+79+78+78+76+77+75)=80,∑9i =1(t i -t )2=(0-80)2+(20-80)2+(40-80)2+(60-80)2+(80-80)2+(100-80)2+(120-80)2+(140-80)2+(160-80)2=24000,又∑9i =1(t i -t )(y i -y -)=-1800, ∴b ^=∑9i =1(t i -t )(y i -y -)∑9i =1(t i -t )2=-180024000=-0.075, ∴a ^=y --b ^t =80-(-0.075)×80=86,∴y 关于时间t 的线性回归方程为y ^=-0.075t +86.(3)9组数据中40分钟到60分钟y 的下降幅度最大,提示60分钟时肌肉已经进入疲劳状态,故使用鼠标60分钟就该休息了.3.如图,四棱锥P -ABCD 中,AB ∥DC ,∠ADC =π2,AB =AD =12CD =2,PD =PB =6,PD⊥BC .(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为π3?若存在,求CMCP的值;若不存在,说明理由. 解 (1)证明:因为四边形ABCD 为直角梯形, 且AB ∥DC ,AB =AD =2,∠ADC =π2,所以BD =22,又因为CD =4,∠BDC =π4.根据余弦定理得BC =22, 所以CD 2=BD 2+BC 2,故BC ⊥BD .又因为BC ⊥PD ,PD ∩BD =D ,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD . (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连接PE ,因为PB =PD =6,所以PE ⊥BD ,PE =2,又因为平面ABCD ⊥平面PBD ,平面ABCD ∩平面PBD =BD , 所以PE ⊥平面ABCD .如图,以A 为坐标原点,分别以AD →,AB →,E P →的方向为x ,y ,z 轴正方向,建立空间直角坐标系Axyz ,则A (0,0,0),B (0,2,0),C (2,4,0),D (2,0,0),P (1,1,2), 假设存在M (a ,b ,c )满足要求, 设CM CP=λ(0≤λ≤1),即CM →=λCP →, (a -2,b -4,c )=λ(-1,-3,2),得a =2-λ,b =4-3λ,c =2λ, 则M (2-λ,4-3λ,2λ),易得平面PBD 的一个法向量为BC →=(2,2,0). 设n =(x ,y ,z )为平面ABM 的一个法向量, AB →=(0,2,0),AM →=(2-λ,4-3λ,2λ),由⎩⎪⎨⎪⎧n ·AB →=0,n ·AM →=0,得⎩⎪⎨⎪⎧2y =0,(2-λ)x +(4-3λ)y +2λz =0,不妨取n =(2λ,0,λ-2).因为平面PBD 与平面ABM 所成的锐二面角为π3,所以|cos 〈B C →,n 〉|=|4λ|22×4λ2+(λ-2)2=12, 解得λ=23,λ=-2(不符合题意,舍去).故存在点M 满足条件,且CM CP =23.4.在平面直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=21-cos θ.(1)求曲线C 2的直角坐标方程;(2)设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值. 解 (1)∵ρ=21-cos θ,∴ρ-ρcos θ=2,即ρ=ρcos θ+2. ∵x =ρcos θ,ρ2=x 2+y 2, ∴x 2+y 2=(x +2)2, 化简得y 2-4x -4=0.∴曲线C 2的直角坐标方程为y 2-4x -4=0.(2)∵⎩⎪⎨⎪⎧x =2t -1,y =-4t -2,∴2x +y +4=0.∴曲线C 1的普通方程为2x +y +4=0,表示直线2x +y +4=0. ∵M 1是曲线C 1上的点,M 2是曲线C 2上的点,∴|M 1M 2|的最小值等于点M 2到直线2x +y +4=0的距离的最小值. 不妨设M 2(r 2-1,2r ),点M 2到直线2x +y +4=0的距离为d ,则d =2|r 2+r +1|5=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫r +122+345≥325=3510,当且仅当r =-12时取等号.∴|M 1M 2|的最小值为3510.5.已知函数f (x )=|x -1|.(1)求不等式f (2x )-f (x +1)≥2的解集;(2)若a >0,b >0且a +b =f (3),求证:a +1+b +1≤2 2. 解 (1)因为f (x )=|x -1|, 所以f (2x )-f (x +1)=|2x -1|-|x |=⎩⎪⎨⎪⎧1-x ,x ≤0,1-3x ,0<x <12,x -1,x ≥12,由f (2x )-f (x +1)≥2得⎩⎪⎨⎪⎧x ≤0,1-x ≥2或⎩⎪⎨⎪⎧0<x <12,1-3x ≥2或⎩⎪⎨⎪⎧x ≥12,x -1≥2.解得x ≤-1或x ∈∅或x ≥3,所以不等式的解集为(-∞,-1]∪[3,+∞). (2)证明:a +b =f (3)=2,又a >0,b >0, 所以要证a +1+b +1≤22成立, 只需证(a +1+b +1)2≤(22)2成立, 即证a +b +2+2(a +1)(b +1)≤8, 只需证(a +1)(b +1)≤2成立, 因为a >0,b >0,所以根据基本不等式 (a +1)(b +1)≤(a +1)+(b +1)2=2成立,故命题得证.中难提分突破特训(五)1.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n ,b n =a nn. (1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解 (1)由a n +1=n +1n a n +n +12n ,得a n +1n +1=a n n +12n, 又b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,即b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1, ∴b n =2-12n -1.(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1, ①12T n =121+222+323+…+n2n , ② ①-②,得12T n =120+121+122+…+12n -1-n 2n=1-12n1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1.易知数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.2.如图,在直角梯形ABED 中,AB ∥DE ,AB ⊥BE ,且AB =2DE =2BE ,点C 是AB 的中点,现将△ACD 沿CD 折起,使点A 到达点P 的位置.(1)求证:平面PBC ⊥平面PEB ;(2)若PE 与平面PBC 所成的角为45°,求平面PDE 与平面PBC 所成锐二面角的余弦值. 解 (1)证明:∵AB ∥DE ,AB =2DE ,点C 是AB 的中点, ∴CB ∥ED ,CB =ED ,∴四边形BCDE 为平行四边形,∴CD ∥EB , 又EB ⊥AB ,∴CD ⊥AB ,∴CD ⊥PC ,CD ⊥BC ,∴CD ⊥平面PBC , ∴EB ⊥平面PBC ,又EB ⊂平面PEB ,∴平面PBC ⊥平面PEB . (2)由(1)知EB ⊥平面PBC ,∴∠EPB 即为PE 与平面PBC 所成的角, ∴∠EPB =45°,∵EB ⊥平面PBC ,∴EB ⊥PB , ∴△PBE 为等腰直角三角形, ∴EB =PB =BC =PC , 故△PBC 为等边三角形,取BC 的中点O ,连接PO ,则PO ⊥BC , ∵EB ⊥平面PBC ,又EB ⊂平面EBCD , ∴平面EBCD ⊥平面PBC ,又PO ⊂平面PBC , ∴PO ⊥平面EBCD ,以O 为坐标原点,过点O 与BE 平行的直线为x 轴,CB 所在的直线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系如图,设BC =2,则B (0,1,0),E (2,1,0),D (2,-1,0),P (0,0,3), 从而DE →=(0,2,0),PE →=(2,1,-3), 设平面PDE 的一个法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ·DE →=0,m ·PE →=0,得⎩⎨⎧2y =0,2x +y -3z =0,令z =2得m =(3,0,2),又平面PBC 的一个法向量n =(1,0,0),则cos 〈m ,n 〉=m ·n |m ||n |=37=217,所以,平面PDE 与平面PBC 所成锐二面角的余弦值为217. 3.有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在1至11 kg)频数分布表如下(单位:kg):以各组数据的中间值代表这组数据的平均值,将频率视为概率.(1)由种植经验认为,种植园内的水果质量X 近似服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2≈4.请估计该种植园内水果质量在(5.5,9.5)内的百分比;(2)现在从质量为[1,3),[3,5),[5,7)的三组水果中,用分层抽样方法抽取8个水果,再从这8个水果中随机抽取2个.若水果质量在[1,3),[3,5),[5,7)的水果每销售一个所获得的利润分别为2元、4元、6元,记随机抽取的2个水果总利润为Y 元,求Y 的分布列和数学期望.附:若ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544.解 (1)x -=1100×(2×10+4×30+6×40+8×15+10×5)=5.5,由正态分布知,P (5.5<X <9.5)=P (μ<ξ<μ+2σ)=12P (μ-2σ<ξ<μ+2σ)=12×0.9544=0.4772.该种植园内水果质量在(5.5,9.5)内的百分比为47.72%.(2)由题意知,从质量在[1,3),[3,5),[5,7)的三组水果中抽取的个数分别为1,3,4,Y 的取值为6,8,10,12.则P (Y =6)=C 11C 13C 28=328;P (Y =8)=C 23+C 11C 14C 28=728=14; P (Y =10)=C 13C 14C 28=1228=37;P (Y =12)=C 24C 28=628=314.所以Y 的分布列为E (Y )=6×328+8×14+10×37+12×314=192=9.5.4.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ=sin θ(ρ≥0,0≤θ<π).(1)写出曲线C 1的极坐标方程,并求C 1与C 2交点的极坐标;(2)射线θ=β⎝ ⎛⎭⎪⎫π6≤β≤π3与曲线C 1,C 2分别交于点A ,B (A ,B 异于原点),求|OA ||OB |的取值范围.解 (1)由题意可得曲线C 1的普通方程为x 2+(y -2)2=4,把x =ρcos θ,y =ρsin θ代入,得曲线C 1的极坐标方程为ρ=4sin θ,联立C 1,C 2的极坐标方程,得⎩⎪⎨⎪⎧ρ=4sin θ,ρcos 2θ=sin θ,得4sin θcos 2θ=sin θ,此时0≤θ<π,①当sin θ=0时,θ=0,ρ=0,得交点的极坐标为(0,0);②当sin θ≠0时,cos 2θ=14,当cos θ=12时,θ=π3,ρ=23,得交点的极坐标为⎝ ⎛⎭⎪⎫23,π3,当cos θ=-12时,θ=2π3,ρ=23,得交点的极坐标为⎝ ⎛⎭⎪⎫23,2π3,所以C 1与C 2交点的极坐标为(0,0),⎝⎛⎭⎪⎫23,π3,⎝ ⎛⎭⎪⎫23,2π3.(2)将θ=β代入C 1的极坐标方程,得ρ1=4sin β, 代入C 2的极坐标方程,得ρ2=sin βcos 2β,∴|OA ||OB |=4sin βsin βcos 2β=4cos 2β, ∵π6≤β≤π3,∴1≤4cos 2β≤3, ∴|OA ||OB |的取值范围为[1,3]. 5.已知函数f (x )=|2x +1|-|2x -3|,g (x )=|x +1|+|x -a |. (1)求f (x )≥1的解集;(2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ).求a 的取值范围.解 (1)∵函数f (x )=|2x +1|-|2x -3|, ∴f (x )≥1,等价于|2x +1|-|2x -3|≥1, 等价于⎩⎪⎨⎪⎧x <-12,-2x -1-(3-2x )≥1 ①或⎩⎪⎨⎪⎧-12≤x ≤32,2x +1-(3-2x )≥1②或⎩⎪⎨⎪⎧x >32,2x +1-(2x -3)≥1.③①无解,解②得34≤x ≤32,解③得x >32,综上可得,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥34. (2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ),可得g (x )min ≥f (x )max . ∵函数f (x )=|2x +1|-|2x -3|≤|2x +1-(2x -3)|=4, ∴f (x )max =4.∵g (x )=|x +1|+|x -a |≥|x +1-(x -a )|=|a +1|, 故g (x )min =|a +1|,∴|a +1|≥4,∴a +1≥4或a +1≤-4,解得a ≥3或a ≤-5, 故a 的取值范围为{a |a ≥3或a ≤-5}.中难提分突破特训(六)1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且3(b 2+c 2-a 2)=4S .(1)求角A 的大小;(2)若a =3,当b +2c 取得最大值时,求cos B .解 (1)由已知3(b 2+c 2-a 2)=4S =2bc sin A , 由余弦定理得23bc cos A =2bc sin A ,所以tan A =3, 因为A ∈(0,π),故A =π3.(2)由正弦定理得3sinπ3=b sin B =csin C ,即b =2sin B ,c =2sin C ,因此b +2c =2sin B +4sin C =2⎣⎢⎡⎦⎥⎤sin B +2sin ⎝⎛⎭⎪⎫B +π3=4sin B +23cos B =27sin(B +φ),其中φ∈⎝ ⎛⎭⎪⎫0,π2,tan φ=32,则sin φ=37=217,故b +2c ≤27,当且仅当B +φ=π2,即B =π2-φ时取等号,故此时cos B =sin φ=217. 2.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC ,AA 1=AB,D 为BB 1的中点.(1)若E 为AB 1上的一点,且DE 与直线CD 垂直,求EB 1AB 1的值; (2)在(1)的条件下,设异面直线AB 1与CD 所成的角为45°,求直线DE 与平面AB 1C 1所成角的正弦值.解 (1)如图,取AB 的中点M ,连接CM ,MD,有MD ∥AB 1,因为AC =BC ,所以CM ⊥AB ,又因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以平面ABC ⊥平面ABB 1A 1, 又因为平面ABC ∩平面ABB 1A 1=AB ,所以CM ⊥平面ABB 1A 1, 又因为DE ⊂平面ABB 1A 1, 所以CM ⊥DE ,又因为DE ⊥CD ,CD ∩CM =C ,CD ⊂平面CMD ,CM ⊂平面CMD , 所以DE ⊥平面CMD ,又因为MD ⊂平面CMD , 所以DE ⊥MD ,因为MD ∥AB 1,所以DE ⊥AB 1,连接A 1B ,设A 1B ∩AB 1=O ,因为ABB 1A 1为正方形, 所以A 1B ⊥AB 1,又因为DE ⊂平面AA 1B 1B ,A 1B ⊂平面AA 1B 1B , 所以DE ∥A 1B ,又因为D 为BB 1的中点,所以E 为OB 1的中点, 所以EB 1AB 1=14. (2)如图,以M 为坐标原点,分别以MA ,MO ,MC 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,设AB =2a ,由题意可知∠CDM =45°, 所以AB 1=22a , 所以DM =CM =2a ,所以A (a,0,0),B 1(-a,2a,0),C 1(0,2a ,2a ),D (-a ,a,0),E ⎝ ⎛⎭⎪⎫-12a ,32a ,0, 所以AB 1→=(-2a,2a,0),B 1C 1→=(a,0,2a ), DE →=⎝ ⎛⎭⎪⎫12a ,12a ,0,设平面AB 1C 1的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AB 1→·n =0,B 1C 1→·n =0,即⎩⎨⎧-2x +2y =0,x +2z =0,得平面AB 1C 1的一个法向量为n =(2,2,-1). 所以cos 〈DE →,n 〉=DE →·n |DE →||n |=222×5=255.所以直线DE 与平面AB 1C 1所成角的正弦值为255.3.在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >0,b >0)经过点A ⎝ ⎛⎭⎪⎫-62,2,且点F (0,-1)为其一个焦点.(1)求椭圆E 的方程;(2)设椭圆E 与y 轴的两个交点为A 1,A 2,不在y 轴上的动点P 在直线y =b 2上运动,直线PA 1,PA 2与椭圆E 的另外两个交点分别为M ,N ,证明:直线MN 通过一个定点,且△FMN 的周长为定值.解 (1)根据题意可得⎩⎪⎨⎪⎧32a 2+2b2=1,b 2-a 2=1,解得⎩⎨⎧a =3,b =2,∴椭圆E 的方程为x 23+y 24=1. (2)证明:不妨设A 1(0,2),A 2(0,-2).P (x 0,4)为直线y =4上一点(x 0≠0),M (x 1,y 1),N (x 2,y 2).直线PA 1的方程为y =2x 0x +2,直线PA 2的方程为y =6x 0x -2.点M (x 1,y 1),A 1(0,2)的坐标满足方程组⎩⎪⎨⎪⎧x 23+y 24=1,y =2x 0x +2,可得⎩⎪⎨⎪⎧x 1=-6x3+x 20,y 1=2x 20-63+x 20.点N (x 2,y 2),A 2(0,-2)的坐标满足方程组⎩⎪⎨⎪⎧x 23+y 24=1,y =6x 0x -2,可得⎩⎪⎨⎪⎧x 2=18x27+x 20,y 2=-2x 20+5427+x 20,即M ⎝ ⎛⎭⎪⎫-6x 03+x 20,2x 20-63+x 20,N ⎝ ⎛⎭⎪⎫18x 027+x 20,-2x 20+5427+x 20. 直线MN 的方程为y -2x 20-63+x 20=-x 20-96x 0⎝ ⎛⎭⎪⎫x +6x 03+x 20, 即y =-x 20-96x 0x +1.故直线MN 恒过定点B (0,1).又∵F (0,-1),B (0,1)是椭圆E 的焦点,∴△FMN 的周长=|FM |+|MB |+|BN |+|NF |=4b =8.4.在直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),直线l :⎩⎪⎨⎪⎧x =-2+22t ,y =22t(t 为参数).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解 (1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C :y 2=2ax ,由直线l :⎩⎪⎨⎪⎧x =-2+22t ,y =22t (t 为参数),消去t ,得直线l :x-y +2=0.(2)将⎩⎪⎨⎪⎧x =-2+22t ,y =22t 代入y 2=2ax 得,t 2-22at +8a =0,由Δ>0得a >4, 设M ⎝ ⎛⎭⎪⎫-2+22t 1,22t 1,N ⎝ ⎛⎭⎪⎫-2+22t 2,22t 2, 则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列, ∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5. 5.已知函数f (x )=2|x +a |+|3x -b |.(1)当a =1,b =0时,求不等式f (x )≥3|x |+1的解集; (2)若a >0,b >0,且函数f (x )的最小值为2,求3a +b 的值. 解 (1)当a =1,b =0时,由f (x )≥3|x |+1,得2|x +1|≥1, 所以|x +1|≥12,解得x ≤-32或x ≥-12,所以所求不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫-12,+∞.(2)解法一:因为f (x )=2|x +a |+|3x -b |=⎩⎪⎨⎪⎧-5x -2a +b ,x <-a ,-x +2a +b ,-a ≤x ≤b 3,5x +2a -b ,x >b3,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,b3上为减函数,在⎝ ⎛⎭⎪⎫b 3,+∞上为增函数,所以当x =b3时,函数f (x )取得最小值,为f ⎝ ⎛⎭⎪⎫b 3=2⎪⎪⎪⎪⎪⎪b 3+a =2. 因为a >0,b >0,所以3a +b =3.解法二:f (x )=2⎝ ⎛⎭⎪⎫|x +a |+⎪⎪⎪⎪⎪⎪x -b 3+⎪⎪⎪⎪⎪⎪x -b 3≥2⎪⎪⎪⎪⎪⎪a +b 3+⎪⎪⎪⎪⎪⎪x -b 3,等号在-a ≤x ≤b3时成立,因为当x =b3时,⎪⎪⎪⎪⎪⎪x -b 3的最小值为0,所以f (x )=2⎝ ⎛⎭⎪⎫|x +a |+⎪⎪⎪⎪⎪⎪x -b 3+⎪⎪⎪⎪⎪⎪x -b 3≥2⎪⎪⎪⎪⎪⎪a +b 3,等号在x =b3时成立,所以f (x )的最小值为2⎪⎪⎪⎪⎪⎪a +b 3,从而2⎪⎪⎪⎪⎪⎪a +b 3=2.因为a >0,b >0,所以3a +b =3.- 31 -。

2020届高考数学大二轮复习专题高难拉分攻坚特训一文

2020届高考数学大二轮复习专题高难拉分攻坚特训一文

高难拉分攻坚特训(一)2. .^X 2 , - 2 2 2. .1 •已知椭圆 M r + y = 1,圆C : x + y = 6- a 在第一象限有公共点P ,设圆C 在点Pak i处的切线斜率为k i ,椭圆M 在点P 处的切线斜率为k 2,则厂的取值范围为()k 2A . (1,6)B • (1,5)C • (3,6)D • (3,5) 答案 D2解析 由于椭圆 M :扌+ y 1 2 = 1,圆C : x 2 + y 2 = 6 - a 2在第一象限有公共点P ,所以x ox ok 12k 1所以k 1一 y-,k 2=-av 肓a,所以艺(3,5),故选D.2.已知数列{a n }的前 n 项和为 S,若a 1= 1, a 2= 2,勿工0, ( a n +1-2n )S+1= a n + 1S -1 —2nS (n 》2),设b n =血-1,数列{b n }的前n 项和为T n ,贝U 「00= ______________答案 9901解析 由(a n +1 — 2n ) S+1 = a n + 1S -1 — 2nS ( n 》2)整理得 a n +1 •( S+1 — S-1) = 2n(S +1 — S )?a n +1 + a n = 2n ,a n +1 •(a n +1 + a n ) = 2na n +1,艮卩 a n +1 + a n = 2n (n 》2),由两式相减得 a n + 2a n +2 + a n +1 = 2n + 2,—a n = 2(n 》2),故{b n }从第二项起是以 2为公差的等差数列,b 1 = a 1= 1,由于a 3 + a 2= 4,则13 .已知动点P 与两个定点 Q 0,0) , A (3,0)的距离的比为 (1) 求动点P 的轨迹C 的方程;(2) 过点耳一2,1)的直线I 与曲线C 交于M N 两点,求线段 Mt 长度的最小值;(3) 已知圆Q 的圆心为Qt , t )(t >0),且圆Q 与x 轴相切,若圆 Q 与曲线C 有公共点, 求实数t 的取值范围.解(1)由题意,设P (x , y ),22则 |AP = 2|OP ,即 | AP = 4|OP ,所以(x -3)2+ y 2= 4(x 2 + y 2),整理得(x + 1)2+ y 2 = 4. 所以动点P 的轨迹C 的方程为(x + 1)2 + y 2= 4.a 2>6 - a 2,6-a 2>1,解得3<a 2<5.设椭圆 2M^ + y 2= 1与圆Cx 2+ y 2= 6 — a 2在第一象限的公共点Rx o ,y o ),则椭圆M 在点P 处的切线方程为Xa X +y o y = 1,圆C 在P 处的切线方程为 2x o x + y °y = 6- a ,—99 X 98a3= 2,「. b2= a3= 2,故T i00= 1 + 2X 99+ 2 x2= 9901.(2) 由⑴知轨迹C是以q —1,0)为圆心,以2为半径的圆.2 2又因为(一2+ 1) + 1 <4,所以点B在圆内,所以当线段MN的长度最小时,BCL MN 所以圆心C 到直线MN的距离为| BQ = ;—2 + 1 2+ 1 —0 2= 2,此时,线段MN的长为|MN = 2 :|CM2-|BC2= 2X 4 —2= 2 .2所以,线段MN长度的最小值为2 2(3) 因为点Q的坐标为(t, t)( t >0),且圆Q与x轴相切,所以圆Q的半径为t, 所以圆Q的方程为(x —t)2+ (y —1)2= t2.因为圆Q与圆C有公共点,又圆Q与圆C的两圆心距离为|CQ = ; t + 1 2+ t —0 2= 2t2+ 2t + 1,所以|2 —1| w|CQ w 2+ t ,2 2 2即(2 —t) W2t + 2t + 1W (2 + t),解得—3+ 2 3 w t w 3.所以实数t的取值范围是[—3+ 2 3, 3].4.已知函数f (x) = (x —1)e x—ax2(e是自然对数的底数).(1) 讨论函数f (x)的极值点的个数,并说明理由;x 3(2) 若对任意的x>0, f(x) + e >x + x,求实数a的取值范围.解(1)f'(x) = x e x—2ax= x(e x—2a).当a W0 时,由f'(x)<0 得x<0,由f'( x)>0 得x>0,••• f(x)在(—a, 0)上单调递减,在(0,+^)上单调递增,••• f(x)有1个极值点;1当0<a<2时,由f '(x)>0 得x<ln (2 a)或x>0,由f '(x)<0 得In (2 a)<x<0,•f(x)在(—a, ln (2 a))上单调递增,在(In (2 a), 0)上单调递减,在(0,+)上单1调递增,• f (x)有2个极值点;当a=刁时,f '(x) >0,二f (x)在R上单调递增,•f(x)没有极值点;1当a>2时,由f'(x)>0 得x<0 或x>ln (2 a),由f '(x)<0 得0<x<ln (2 a),••• f(x )在(—8, 0)上单调递增,在(0, In (2 a ))上单调递减,在(In (2 a ) ,+^)上单 调递增,• f (x )有2个极值点.综上,当a <0时,f (x )有1个极值点;1当a >0且a z 2时,f (x )有2个极值点; 当a = 2时,f (x )没有极值点.(2)由 f (x ) + e x >x 3+ x 得 x e x — x 3— ax 2— x >0.x 2当 x >0 时,e — x — ax — 1 >0,设 h (x ) = e x — x — 1,贝U h '(x ) = e x — 1.•/ x >0,「. h '(x )>0 ,.•• h (x )在(0,+m )上单调递增,• h ( x )> h (0) = 0,即 e x >x + 1,• g (x )在(0,1)上单调递减,在(1 ,+m )上单调递增, • g (x ) >g (1) = e — 2, • a w e — 2, •实数a 的取值范围是(一m, e — 2].即a w•对任意的x >0恒成立.x(x)=xe — x — 1。

2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:高难拉分攻坚特训(三) Word版含解析

2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:高难拉分攻坚特训(三) Word版含解析

高难拉分攻坚特训(三)1.若函数f (x )=ax -x 2-ln x 存在极值,且这些极值的和不小于4+ln 2,则a 的取值范围为( )A .[2,+∞)B .[22,+∞)C .[23,+∞)D .[4,+∞)答案 C解析 f ′(x )=a -2x -1x =-2x 2-ax +1x ,因为f (x )存在极值,所以f ′(x )=0在(0,+∞)上有根,即2x 2-ax +1=0在(0,+∞)上有根,所以Δ=a 2-8≥0,显然当Δ=0时,f (x )无极值,不符合题意,所以Δ=a 2-8>0,即a >22或a <-2 2.记方程2x 2-ax +1=0的两根为x 1,x 2,由根与系数的关系得x 1x 2=12,x 1+x 2=a2,易知a >0,则f (x 1),f (x 2)为f (x )的极值,所以f (x 1)+f (x 2)=(ax 1-x 21-ln x 1)+(ax 2-x 22-ln x 2)=a (x 1+x 2)-(x 21+x 22)-(ln x 1+ln x 2)=a 22-⎝ ⎛⎭⎪⎫a 24-1+ln 2≥4+ln 2,所以a ≥2 3.综上,a 的取值范围为[23,+∞),选C.2.A ,B 为单位圆(圆心为O )上的点,O 到弦AB 的距离为32,C 是劣弧AB ︵(包含端点)上一动点,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤1,233解析 如图,以圆心O 为坐标原点建立直角坐标系,设A ,B 两点在x 轴上方且线段AB 与y 轴垂直,∵A ,B 为单位圆(圆心为O )上的点,O 到弦AB 的距离为32,∴点A ⎝ ⎛⎭⎪⎫-12,32,点B ⎝ ⎛⎭⎪⎫12,32,∴OA →=⎝ ⎛⎭⎪⎫-12,32,OB →=⎝ ⎛⎭⎪⎫12,32,即λOA →=⎝ ⎛⎭⎪⎫-λ2,3λ2,μOB →=⎝ ⎛⎭⎪⎫μ2,3μ2,∴OC →=λOA →+μOB →=⎝ ⎛⎭⎪⎫μ-λ2,3(λ+μ)2,又∵C 是劣弧AB ︵(包含端点)上一动点,设点C 坐标为(x ,y ),则⎩⎪⎨⎪⎧-12≤x ≤12,32≤y ≤1,∵OC→=⎝ ⎛⎭⎪⎫μ-λ2,3(λ+μ)2=(x ,y ),∴32≤y =3(λ+μ)2≤1,解得1≤λ+μ≤233,故λ+μ的取值范围为⎣⎢⎡⎦⎥⎤1,233.3.已知函数f (x )=x (a +ln x )有极小值-e -2. (1)求实数a 的值; (2)若k ∈Z ,且k <f (x )x -1对任意的x >1恒成立,求k 的最大值. 解 (1)f ′(x )=a +1+ln x ,令f ′(x )>0⇒x >e -a -1,令f ′(x )<0⇒0<x <e -a -1,故f (x )的极小值为f (e -a -1)=-e -a -1=-e -2,得a =1.(2)当x >1时,令g (x )=f (x )x -1=x +x ln xx -1, 则g ′(x )=x -2-ln x(x -1)2,令h (x )=x -2-ln x ,∴h ′(x )=1-1x =x -1x >0, 故h (x )在(1,+∞)上是增函数.由于h (3)=1-ln 3<0,h (4)=2-ln 4>0,故存在x 0∈(3,4),使得h (x 0)=0. 则当x ∈(1,x 0)时,g ′(x )<0,g (x )为减函数;x ∈(x 0,+∞)时,g ′(x )>0,g (x )为增函数.∵h (x 0)=x 0-2-ln x 0=0,∴ln x 0=x 0-2, ∴g (x )min =g (x 0)=x 0+x 0ln x 0x 0-1=x 0,∴k <x 0,又x 0∈(3,4),∴k max =3.4.已知圆C :x 2+y 2-2x =0,圆P 在y 轴的右侧且与y 轴相切,与圆C 外切. (1)求圆心P 的轨迹Γ的方程;(2)过点M (2,0),且斜率为k (k ≠0)的直线l 与Γ交于A ,B 两点,点N 与点M 关于y 轴对称,记直线AN ,BN 的斜率分别为k 1,k 2,是否存在常数m ,使得1k 21+1k 22-mk2为定值?若存在,求出该常数m 与定值;若不存在,请说明理由. 解 (1)圆C 的方程可化为(x -1)2+y 2=1, 则圆心C (1,0),半径r =1.设圆心P 的坐标为(x ,y )(x >0),圆P 的半径为R , 由题意可得⎩⎨⎧R =x ,R +1=|PC |,所以|PC |=x +1,即(x -1)2+y 2=x +1, 整理得y 2=4x .所以圆心P 的轨迹Γ的方程为y 2=4x (x >0).(2)由已知,直线l 的方程为y =k (x -2),不妨设t =1k , 则直线l 的方程为y =1t (x -2),即x =ty +2.联立,得⎩⎨⎧y 2=4x ,x =ty +2,消去x ,得y 2-4ty -8=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 1+y 2=4t ,y 1y 2=-8.因为点M (2,0)与点N 关于y 轴对称,所以N (-2,0), 故k 1=y 1x 1+2,所以1k 1=x 1+2y 1=ty 1+2+2y 1=t +4y 1, 同理,得1k 2=t +4y 2,所以1k 21+1k 22-m k 2=⎝ ⎛⎭⎪⎫t +4y 12+⎝ ⎛⎭⎪⎫t +4y 22-m k 2=2t 2+8t ×⎝ ⎛⎭⎪⎫1y 1+1y 2+16×⎝ ⎛⎭⎪⎫1y 21+1y 22-mt 2=2t 2+8t ×y 1+y 2y 1y 2+16×(y 1+y 2)2-2y 1y 2(y 1y 2)2-mt 2 =2t 2+8t ×4t-8+16×(4t )2-2×(-8)(-8)2-mt 2=2t2+4-mt2=(2-m)t2+4,要使该式为定值,则需2-m=0,即m=2,此时定值为4.所以存在常数m=2,使得1k21+1k22-mk2为定值,且定值为4.。

2020届高考数学大二轮专题复习冲刺方案-理数(经典版)文档:中难提分突破特训(五) Word版含解析

2020届高考数学大二轮专题复习冲刺方案-理数(经典版)文档:中难提分突破特训(五) Word版含解析

中难提分突破特训(五)1.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n ,b n =a nn . (1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .解 (1)由a n +1=n +1n a n +n +12n ,得a n +1n +1=a n n +12n ,又b n =a n n ,∴b n +1-b n =12n , 由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,即b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1, ∴b n =2-12n -1.(2)由(1)可知a n =2n -n2n -1,设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1, ①12T n =121+222+323+…+n 2n , ② ①-②,得12T n =120+121+122+…+12n -1-n2n=1-12n1-12-n2n =2-n +22n , ∴T n =4-n +22n -1.易知数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.2.如图,在直角梯形ABED 中,AB ∥DE ,AB ⊥BE ,且AB =2DE =2BE ,点C 是AB 的中点,现将△ACD 沿CD 折起,使点A 到达点P 的位置.(1)求证:平面PBC ⊥平面PEB ;(2)若PE 与平面PBC 所成的角为45°,求平面PDE 与平面PBC 所成锐二面角的余弦值.解 (1)证明:∵AB ∥DE ,AB =2DE ,点C 是AB 的中点, ∴CB ∥ED ,CB =ED ,∴四边形BCDE 为平行四边形,∴CD ∥EB , 又EB ⊥AB ,∴CD ⊥AB ,∴CD ⊥PC ,CD ⊥BC ,∴CD ⊥平面PBC , ∴EB ⊥平面PBC ,又EB ⊂平面PEB ,∴平面PBC ⊥平面PEB . (2)由(1)知EB ⊥平面PBC ,∴∠EPB 即为PE 与平面PBC 所成的角, ∴∠EPB =45°,∵EB ⊥平面PBC ,∴EB ⊥PB , ∴△PBE 为等腰直角三角形, ∴EB =PB =BC =PC , 故△PBC 为等边三角形,取BC 的中点O ,连接PO ,则PO ⊥BC , ∵EB ⊥平面PBC ,又EB ⊂平面EBCD , ∴平面EBCD ⊥平面PBC ,又PO ⊂平面PBC , ∴PO ⊥平面EBCD ,以O 为坐标原点,过点O 与BE 平行的直线为x 轴,CB 所在的直线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系如图,设BC =2,则B (0,1,0),E (2,1,0),D (2,-1,0),P (0,0,3), 从而DE→=(0,2,0),PE →=(2,1,-3),设平面PDE 的一个法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ·DE →=0,m ·PE →=0,得⎩⎨⎧2y =0,2x +y -3z =0,令z =2得m =(3,0,2),又平面PBC 的一个法向量n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=37=217,所以,平面PDE 与平面PBC 所成锐二面角的余弦值为217.3.有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在1至11 kg)频数分布表如下(单位:kg):以各组数据的中间值代表这组数据的平均值,将频率视为概率.(1)由种植经验认为,种植园内的水果质量X 近似服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2≈4.请估计该种植园内水果质量在(5.5,9.5)内的百分比;(2)现在从质量为[1,3),[3,5),[5,7)的三组水果中,用分层抽样方法抽取8个水果,再从这8个水果中随机抽取2个.若水果质量在[1,3),[3,5),[5,7)的水果每销售一个所获得的利润分别为2元、4元、6元,记随机抽取的2个水果总利润为Y 元,求Y 的分布列和数学期望.附:若ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544.解 (1)x -=1100×(2×10+4×30+6×40+8×15+10×5)=5.5, 由正态分布知,P (5.5<X <9.5)=P (μ<ξ<μ+2σ)=12P (μ-2σ<ξ<μ+2σ)=12×0.9544=0.4772. 该种植园内水果质量在(5.5,9.5)内的百分比为47.72%.(2)由题意知,从质量在[1,3),[3,5),[5,7)的三组水果中抽取的个数分别为1,3,4, Y 的取值为6,8,10,12.则P (Y =6)=C 11C 13C 28=328;P (Y =8)=C 23+C 11C 14C 28=728=14;P (Y =10)=C 13C 14C 28=1228=37;P (Y =12)=C 24C 28=628=314.所以Y 的分布列为E (Y )=6×328+8×14+10×37+12×314=192=9.5.4.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ=sin θ(ρ≥0,0≤θ<π).(1)写出曲线C 1的极坐标方程,并求C 1与C 2交点的极坐标;(2)射线θ=β⎝ ⎛⎭⎪⎫π6≤β≤π3与曲线C 1,C 2分别交于点A ,B (A ,B 异于原点),求|OA ||OB |的取值范围.解 (1)由题意可得曲线C 1的普通方程为x 2+(y -2)2=4,把x =ρcos θ,y =ρsin θ代入,得曲线C 1的极坐标方程为ρ=4sin θ,联立C 1,C 2的极坐标方程,得⎩⎨⎧ρ=4sin θ,ρcos 2θ=sin θ, 得4sin θcos 2θ=sin θ,此时0≤θ<π,①当sin θ=0时,θ=0,ρ=0,得交点的极坐标为(0,0);②当sin θ≠0时,cos 2θ=14,当cos θ=12时,θ=π3,ρ=23,得交点的极坐标为⎝ ⎛⎭⎪⎫23,π3, 当cos θ=-12时,θ=2π3,ρ=23,得交点的极坐标为⎝ ⎛⎭⎪⎫23,2π3,所以C 1与C 2交点的极坐标为(0,0),⎝ ⎛⎭⎪⎫23,π3,⎝ ⎛⎭⎪⎫23,2π3.(2)将θ=β代入C 1的极坐标方程,得ρ1=4sin β,代入C 2的极坐标方程,得ρ2=sin βcos 2β, ∴|OA ||OB |=4sin βsin βcos 2β=4cos 2β, ∵π6≤β≤π3,∴1≤4cos 2β≤3, ∴|OA ||OB |的取值范围为[1,3].5.已知函数f (x )=|2x +1|-|2x -3|,g (x )=|x +1|+|x -a |. (1)求f (x )≥1的解集;(2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ).求a 的取值范围. 解 (1)∵函数f (x )=|2x +1|-|2x -3|, ∴f (x )≥1,等价于|2x +1|-|2x -3|≥1, 等价于⎩⎪⎨⎪⎧x <-12,-2x -1-(3-2x )≥1 ①或⎩⎪⎨⎪⎧-12≤x ≤32,2x +1-(3-2x )≥1②或⎩⎪⎨⎪⎧x >32,2x +1-(2x -3)≥1.③①无解,解②得34≤x ≤32,解③得x >32,综上可得,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥34. (2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ),可得g (x )min ≥f (x )max . ∵函数f (x )=|2x +1|-|2x -3|≤|2x +1-(2x -3)|=4, ∴f (x )max =4.∵g (x )=|x +1|+|x -a |≥|x +1-(x -a )|=|a +1|, 故g (x )min =|a +1|,∴|a +1|≥4,∴a +1≥4或a +1≤-4,解得a ≥3或a ≤-5, 故a 的取值范围为{a |a ≥3或a ≤-5}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中难提分突破特训(三)
1 •绿水青山就是金山银山•某山村为做好水土保持,退耕还林,在本村的山坡上种植水果,并推出山村游等旅游项目•为预估今年7月份游客购买水果的情况,随机抽样统计了去年7月份100名游客的购买金额.分组如下:[0,20) , [20,40),…,[100,120],得到如图所示的频率分布直方图:
(1)请用抽样的数据估计今年7月份游客人均购买水果的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把去年7月份购买水果不低于80元的游客,称为“水果达人”. 填写下面列联表, 并根据列联表判断是否有95%勺把握认为“水果达人”与性别有关系?
参考公式和数据:K> n ad-bc 2
= a+ b c + d a+ c b+ d ,
n= a + b+ c+ d.
临界值表:
解(1) x = (10 X 0.005 + 30X 0.00 75 + 50X 0.010 + 70X 0.0125 + 90X 0.010 + 110X 0.005) X 20= 62.
估计今年7月份游客人均购买水果的金额为62元.
(2)列联表如下:
=A 是函数f (x )图象的一条对称轴, AD= 2BD= 2,求边a .
» n
解 (1) T f (x ) = 2sin x sin x + —,
r
1 \[3
f (x ) = 2sin x sin x • + 2sin x cos x •三 1 — cos2 x 3 3 1 1
= 2 ---- +~2sin2 x = 〒sin2 x — ^cos2x +
n 1
=sin 2x - 6 + 2

n n n

令-◎+ 2k n<2x -訂 T +2k n ,k € z ,得
n
n
即函数f (x )的单调递增区间为 一—+ k n, — + k n , k €乙
⑵•/ x = A 是函数f (x )图象的一条对称轴,
n n
n k n
• 2A -〒= :+ k n, k € 乙 • A ==+〒, k € 乙
6 2
3 2
在^ ABD 中, Z BAD=nn -, BD= ,2 , AD= 2, 由正弦定理,得 —2 =—三, sin
B =¥. • B =n .
1
sin B 2 4
2
K 2=
水果达人
非水果达人
合计 男 10 40 50 女 20 30 50 合计
30
70
100
2
100X 10X 30-20X 40
50X 50X 30X 70~
4.762>3.841 ,
因此有95%勺把握认为“水果达人”与性别有关系.
n
2.已知函数 f (x ) = 2sin x sin x + 3 .
(1)求函数f (x )的单调递增区间;
⑵锐角△ ABO 的角A , B, C 所对的边分别是
a , b, c ,角A 的平分线交 BC 于
直线x
• C =n-
n 5 n 4 = 12
n n
Z
CD =G + 石=
5 n 12 .
n
x < — + k n, k €乙
又厶ABC 是锐角三角形,
••• AC= AD= 2.在厶ABC中,由正弦定理,
口BC 2 厂
得= ,…BC= a= 76.
sin 60 sin45
3.如图,在四棱锥P- ABCD中,底面ABCD^菱形,/ BAD= 60°, PA= PD= AD= 2,点
M在线段PC上,且PM= 3MC O N, Q分别为BD AD PA的中点.
(1) 求证:OQ/平面PBC
(2) 若平面PADL平面ABCD求三棱锥P- NBM勺体积.
解(1)证明:如图,连接AC
则AC与BD交于点Q易知OQ%A APC勺中位线,
所以OQ PC又OQ平面PBC PQ平面PBC所以OQ/平面PBC
(2)因为平面PADL平面ABCD平面PADn平面ABC= AD PA= PD
N为AD的中点,所以PNL AD所以PN丄平面ABCD所以PN丄NB
又四边形ABCD^菱形,/ BAD= 60° , PA= PD= AD= 2,所以PN= NB= 3 ,
- 1 厂厂3
所以S A PNE= 2X 3x 3 = 2 ,
又BNL AD PN L AD BNH PN= N,所以ADL平面PNB AD// BC
所以BC丄平面PNB
又PM= 3MC所以V三棱锥P-NBM= V 三棱锥M- PBN=
3-V4 三棱锥C- PBN=
即三棱锥P- NBM勺体积为扌.
4
x = 2cos 0 ,
4. 在平面直角坐标系xOy中,曲线C的参数方程为(0为参数),以坐
y = 2sin 0 + 2
标原点为极点,x轴正半轴为极轴建立极坐标系.
(1) 求C的极坐标方程;
n 2 n
(2) 若直线l 1, l 2的极坐标方程分别为0 = —( p € R), 0 =〒(p € R),设直线I 1, I 2
与曲线C的交点为O, M N,求厶OM的面积.
x= 2cos 0 ,
(0为参数),
解⑴由参数方程y= 2sin 0+ 2
得普通方程为X2+ (y —2)2= 4,
2 2 2 2
所以C的极坐标方程为p cos 0 + p sin 0 —4p sin 0 = 0,
即p = 4sin 0 .
n (
(2)不妨设直线11: 0 ="6(p € R)与曲线C的交点为O, M
n
则p M= | OM = 4sin 6 = 2,
2 n
又直线1 2: 0 =-—( p € R)与曲线C的交点为O N,
3
2 n n
贝V p N= | ON = 4sin —= 2』3.又/ MOW-—, 3 2
1 1 所以S^OM= OM •丨ON = 2X 2X2; 3= 2“j3.
5. 已知函数f(x) =|3X+ 2|.
(1) 解不等式:f(x)<4 —| x—1| ;
1 1
(2) 已知m>0, n>0, n=1,若对任意的x €
R, m>0, n>0,不等式|x —a| —f(x) < +
m n (a>0)恒成立,求正数a的取值范围.
解⑴由题意得不等式为|3x+ 2| + |x —1|<4.
3
①当x>1时,原不等式化为4x+ 1<4,解得x<4,不符合题意;
2
②当—3<x<1时,原不等式化为2x + 3<4,
1
解得x<2,
2 1
/•—<x<—;
3 2'
2
③当x w —3时,原不等式化为—4x —1<4,
5 5 2
解得x>—;,•••—-<x w —7.
4 4 3
5 1
综上可得—4<x<2,
5 1
•原不等式的解集为一4,—.
(2) v m>0, n>0, m+ n= 1,
当且仅当m =丄且n = 1, n >0, n >0, 即卩m= n = 1时等号成立, n m 2
1 1
二 一 + 一 min = 4・
m n
由题意得| x — a | — |3x +2| w 4( a >0)恒成立,
① 当x >a 时,可得x — a -3x — 2W4恒成立,即—a <2x + 6恒成立,
— a w (2 x + 6) min = 2a + 6,
由a >0,可得上式显然成立;
2
② 当—3<x <a 时,可得a — x — 3x —2<4恒成立,即a <4x + 6恒成立,
3 10 10
T 4x + 6>§,二 a w 3;
2
③ 当x w — 3时,可得a — x + 3x + 2W4恒成立,
3 即a w 2— 2x 恒成立, ••• a w (2 — 2x )min = 10.
10 ,亠 10
综上可得0<a w —,•.正数a 的取值范围是
0,—.
• _+ _= m n
m + n (m n)。

相关文档
最新文档