【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)
高中数学 排列组合的常见题型及其解法解题思路大全

排列组合的常见题型及其解法排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。
复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。
一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)。
三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
排列组合经典题型及解法

排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。
下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。
2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。
3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。
4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。
5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。
以上是一些常见的排列组合题型及其解法。
在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。
(完整版)高中数学搞定排列组合方法各种问题大全

go od fo r s 例29、某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻两个区域不能同色,不同的栽种方法有_____种. (用数字作答)解法1:①首先栽种第1部分,有种栽种方法;14C ②然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分(如右图所示),对扇形2有3种栽种方法,扇形3有2种栽种方法,扇形4也有2种栽种方法,扇形5也有2种栽种方法,扇形6也有2种栽种方法.于是,共有种不同的栽种方法。
但是,这种栽种方法可能出现432⨯区域2与6着色相同的情形,这是不符合题意的,因此,答案应从中减去这些不符合题意的432⨯栽种方法。
这时,把2与6看作一个扇形,其涂色方法相当于用3种颜色的花对4个扇形区域栽种(这种转换思维相当巧妙)。
综合①和②,共有种。
1412433[32(2211)]4(4818)430120C C A ⋅⨯-⨯⨯+⨯⨯=⨯-=⨯=解法2:依题意只能选用4种颜色,要分5类(1)②与⑤同色、④与⑥同色,则有;44A (2)③与⑤同色、④与⑥同色,则有;(3)②与⑤同色、③与⑥同色,则有;44A 44A (4)③与⑤同色、②与④同色,则有;(5)②与④同色、③与⑥同色,则有;44A 44A 所以根据加法原理得涂色方法总数为5 =120(种)44A 23取鞋成双问题例7 10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双;(2) 4只鞋子恰好成双;(3) 4只鞋子有2只成双,另2只不成双。
(方法,先取双后取单)练习2. 从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有( )(A) 480种(B )240种 (C )180种 (D )120种练习3 从6双不同颜色的手套中任取4只,其中至少有一双同色手套的不同取法共有____种24.排列组合混合问题先选后排策略。
排列组合题型总结

排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。
在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。
1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。
解决排列问题时,可以使用如下的排列公式。
公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。
2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。
解决组合问题时,可以使用如下的组合公式。
公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。
3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。
解决重复排列问题时,可以使用如下的重复排列公式。
公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。
4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。
解决重复组合问题时,可以使用如下的重复组合公式。
公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。
排列组合的常见题型及其解法(good)

排列、组合问题,在高考中所占比重不大,但试题都具有一定的灵活性、机敏性和综合性,在“倡导创新体系,提高素质教育”的今天,该类试题是最好的体现,由于有些问题比较抽象,且题型繁多,解法独特,再加上限制条件,容易产生错误。
本文就排列、组合问题的常见题型的求解方法加以归纳,供大家参考。
1、特殊元素——优先法:对于含有限定条件的排列、组合问题,一般应先考虑特殊元素,再考虑其它元素。
例1,用0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有多少个?[解析]因组成的三位数为偶数,末尾的数字必须是偶数,又0不能排在首位,故0是其中的特殊元素应优先安排。
①当0排在末尾时,有 24A 个;②当0不排在末尾时,有 141312A A A 个,根据分类记数原理,其中偶数共有3014131224=+A A A A 个。
例2,1名老师和4名获奖学生排成一排照相留念,若老师不排在两端,则共有不同的排法多少种。
[解析]优先考虑对特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上来排,有 13A 种。
剩下的位置由4名学生全排列,有 44A 种。
因此共有 724413=A A 种不同的排法。
2、相邻问题——捆绑法:对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起看作一个元素与其它元素进行排列,然后再对这几个元素进行全排列。
例3,5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有 种。
[解析]将3名老师捆绑起来看成一个元素,与5名学生排列,有 66A 种排法;而3名老师之间又有 33A 种排法,故满足条件的排法共有 43203366=A A 种。
例4,计划展出10幅不同的画,其中一幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有多少种?[解析]把每种画捆绑在一起,看成一个整体,又水彩画较特殊,应优先安排。
高中数学排列组合几种常见题型及解法

高中数学排列组合几种常见题型及解法摘要:排列、组合问题是高中数学的重要知识之一,或单独命题,或与概率内容相结合,一般以较易题出现,但由于解这类问题时方法灵活,切入点多,且抽象性极强,在解题过程中发生重复或遗漏现象不易被发现,所以又成为学习的难点之一。
故在解题过程中通过分类、分步把复杂问题分解,运用化归思想、比较分类思想和模型化思维方法,将问题简单化、常规化。
关键词:分类计数原理、分步计数原理、特殊元素、特殊位置、捆绑法、插空法、隔板法排列组合的学习虽然注意发散思维、逆向思维能力的培养,但如果能够掌握一些常见题型及其解题策略,则会降低学习这部分知识的难度。
本文就排列组合的基本题型、基本思路做以简略介绍:一、排列组合的基本思路1、排列、组合的应用问题(1)无限制条件的简单排列、组合应用问题,可直接用公式求解。
(2)有限制条件的排列组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。
2、排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式:“在”与“不在”“相邻”与“不相邻”在解决问题时要掌握基本的解题思想和方法:①“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排特殊元素或特殊位置。
②“相邻”问题在解题时常用“捆绑法”,即可以把两个或两个以上的元素当做一个元素来看,这是处理相邻问题最常用的方法。
③“不相邻”问题在解题时最常用的是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中。
④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。
(2)限制条件的组合问题常见命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”。
(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复、不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列组合问题的最基本,也是最重要的思想方法。
排列组合难题21种题型及方法

高考数学排列组合难题21 种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
1. 分类计数原理(加法原理)完成一件事,有n类办法,在第 1 类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,⋯,在第n 类办法中有m n种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第 1 步有m1种不同的方法,做第2步有m2种不同的方法,⋯,做第n步有m n种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行, 确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例 1. 由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解: 由于末位和首位有特殊要求, 应该优先安排, 以免不合要求的元素占了这两个位置.先排末位共有C31然后排首位共有C41 最后排其它位置共有A43C41A34 C13由分步计数原理得C41C13A43288位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法, 若以元素分析为主, 需先安排特殊元素, 再处理其它元素.若以位置分析为主,需先满足特殊位置的要求, 再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件1练习题:7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)一、基本原理1.加法原理:如果做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:如果做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:当做一件事时,元素或位置允许重复使用时,常用基本原理求解。
二、排列从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An公式:Anm=n(n-1)(n-2)…(n-m+1)=n!/(n-m)!规定:0!=1性质:1.n!=n×(n-1)。
(n+1)×n!=(n+1)!2.n×n!=[(n+1)-1]×n!=(n+1)×n!-n!=(n+1)!-n!3.n(n+1)/2-1=n(n-1)/2三、组合从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作C nm。
公式:Cnm=n!/m!(n-m)! 性质:1.若Cn1=m,则Cnm=Cnm-1+Cn-1m-1规定:Cn1=Cnn=12.Cn0+Cn1+。
+C nn=2^n3.Crr+1+Crr+2+。
+C rn=Cr+1n4.CnC1nCnn=2^n四、处理排列组合应用题1.明确要完成的是一件什么事(审题);2.确定有序还是无序,分步还是分类;3.解排列、组合题的基本策略:1)直接法;2)间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
3)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
3.排列应用题:一种解法是穷举法,即将所有满足题设条件的排列和组合逐一列举出来。
另一种解法是特殊元素和特殊位置优先考虑。
对于相邻问题,可以使用捆绑法,将相邻的元素看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★绝密 备战2014专题主编:冷世平排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
◆处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。
◆处理排列组合应用题的规律⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。
排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。
同时排列组合问题历来就是一个老大难的问题。
因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。
首先,谈谈排列组合综合问题的一般解题规律:⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
⑵排列与组合定义相近,它们的区别在于是否与顺序有关。
⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。
⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。
⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。
总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。
下面介绍几种常用的解题方法和策略。
【策略1】特殊元素(位置)用优先考虑把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。
【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种;A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有25A种方法,共计有480种。
个人作全排列有44用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。
30【策略2】相邻问题用捆绑法将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。
【例2】5个男生和3个女生排成一排,3个女生必须排在一起,有 种不同排法。
4320【解析】把3个女生视为一个元素,与5个男生进行排列,共有65432⨯⨯⨯⨯种,然后女生内部再进行排列,有6种,所以排法共有4320种。
↓7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有 种不同的排法。
【解析】可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同不相邻问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
【例3】7人排成一排,甲、乙、丙3人互不相邻有种排法。
【解析】先将其余4人排成一排,有4321⨯⨯⨯种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有543⨯⨯种,所以排法共有1440种。
1.★7人排成一排,甲、乙、丙3人不相邻有 种排法。
【解析】不相邻包括两类情况:一是三个人互不相邻;二是三个人中有两个人相邻,故从正面做,有43242453454320A A A A A +=种方法;从反面考虑,共有7357354320A A A -=种方法。
2.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有种。
【解析】分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种。
3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30【提示】26A4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法的种数为 425.1【策略4】定序问题用消序法对于在排列中,当某些元素次序一定时,可用此法。
解题方法是:先将n 个元素进行全排列有!n 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到消序的作用,即若n 个元素排成一列,其中m 个元素次序一定,则有n n m mA A 种排列方法。
【例4】由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有个。
300【解析】不考虑限制条件,组成的六位数有1555C A ⋅种,其中个位与十位上的数字一定,所以所求的六位数有15552C A ⋅个。
↓10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有 种排法。
510C 或10105555A A A ⋅ 【策略5】分组问题与分配问题平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以nn A (n 为均分的组数)避免重复计数;非均匀分组,组合处理。
【例5】有9个不同的文具盒:⑴将其平均分成三组;⑵将其分成三组,每组个数2,3,4。
上述问题各有多少种不同的分法?【解析】⑴此题属于分组问题:先取3个为第一组,有39C 种分法,再取3个为第二组,有36C 种分法,剩下3个为第三组,有33C 种分法,由于三组之间没有顺序,故有33396333C C C A 种分法;⑵同⑴,共有234974C C C 种分法,因三组个数各不相同,故不必再除以33A 。
1.有9本不同的书:⑴分给甲2本,乙3本,丙4本;⑵分给三个人,分别得2本,3本,4本。
上述问题各有多少种不同的分法?【解析】⑴此题是定额分配问题,先让甲选,有29C 种;再让乙选,有37C 种;剩下的给丙,有44C 种,共有234974C C C 种不同的分法;⑵此题是随机分配问题:先将9本书分成2本,3本,4本共有三堆,再将三堆分给三个人,共有23439743...C C C A 种不同的分法。
【评述】本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列。
2.将13个球队分成3组,一组5个队,其它两组4个队, 有 种分法。
544213842/C C C A 3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______2224262290C C A A = 4.1【策略6】分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。
【例6】9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有 种。
【解析】9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有99A 种。
8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有 排法。
【解析】8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种【策略7】同元问题用隔板法常用于解决整数分解型排列、组合的问题。
【例7】(指标分配问题)有10个三好学生名额,分配到6个班,每班至少1个名额,共有 种不同的分配方案。
【解析】6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有59C 种。
1.(放球问题)5个相同小球放到4个不同盒子里,每盒至少有1个,共有 种放法。
【法一】每盒先放入1球,剩下1球任选1盒,共有144C =种放法。
【法二】(第一隔板法)5个小球可形成6个空隙,由于每盒至少放1个小球,所以除去两边空隙还剩4个空,只要在这4个位置上隔进3个板,即可满足要求。
所以有344C =种放法。
2.将5个相同小球放到4个不同盒子里(盒子可空),共有 种放法。
【法一】(分类法)第一类:全部放入1个盒子里,有144C =种放法;第二类:放入2个盒子里,有24424C ⨯=种放法;第三类:放入3个盒子里,有34624C ⨯=种放法;第四类:放入4个盒子里,有4种放法。
所以,共有42424456+++=种放法。
【法二】(第二隔板法)将4个盒子与5个小球看成9个相同元素,除去两边形成8个空隙,将这8个空隙隔进3个板,即有3856C =种放法。
3.方程100x y z w +++=自然数解有 组;非负整数解有 组;正整数解 组。
33310310399,,C C C4.★方程1231023x x x x ++++= 的非负整数整数解有多少组?【解析】①当10x =时,转化为3个相同的小球装入9个不同的盒子,可以有空盒,有311165C =种;②当11x =时,转化为1个小球装入9个不同的盒子,可以有空盒,有199C =种;所以该方程有1659174+=组非负整数整数解。
5.10125()x x x ++⋅⋅⋅+展开式中共有 项。