专升本数学模拟试题(一)

合集下载

《高等数学(一)》(专升本)2024年福建省全真模拟试题含解析

《高等数学(一)》(专升本)2024年福建省全真模拟试题含解析

《高等数学(一)》(专升本)2024年福建省全真模拟试题一、单选题(每题4分)1、设x2是f(x)的一个原函数,则f(x)=()2、()A.收敛B.发散C.收敛且和为零D.可能收敛也可能发散3、设z=z3-3x-y,则它在点(1,0)处( )A.取得极大值B.取得极小值C.无极值D.无法判定4、5、()A.0或1B.0或-1C.0或2D.1或-16、设b≠0,当x→0时,sinbx是x2的( )A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量7、A.xex2B.一xex2C.Xe-x2D.一xe-x28、A.充分必要条件B.充分条件C.必要条件D.既非充分也非必要条件9、10、A.0B.1C.2D.+∞二、填空题(每题4分)11、12、13、设y=5+lnx,则dy=_______。

14、求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.15、设ex-ey=siny,求y'16、17、18、函数y=cosx在[0,2x]上满足罗尔定理,则ξ= .19、20、设函数z=x2ey。

则全微分dz= .三、解答题(每题10分)21、22、23、求微分方程y”-5y'-6y=0的通解.24、25、26、27、求微分方程y''-y'-2y=0的通解.参考答案一、单选题(每题4分)1、【正确答案】:A【试题解析】:由于x2为f(x)的一个原函数,由原函数的定义可知f(x)=(x2)'=2x,故选A.2、【正确答案】:D【试题解析】:本题考查了数项级数收敛的必要条件的知识点.3、【正确答案】:C【试题解析】:本题考查了函数在一点处的极值的知识点.(1,0)不是驻点,故其处无极值.4、【正确答案】:B【试题解析】:由级数收敛的定义可知B正确,C不正确.由于极限存在的数列不一定能保证极限为0,可知A不正确.极限存在的数列也不一定为单调数列,可知D也不正确.5、【正确答案】:A【试题解析】:本题考查了定积分的知识点.k2-k3=k2(1-k)=0.所以k=0或k=1.6、【正确答案】:D【试题解析】:本题考查了无穷小量的比较的知识点.7、【正确答案】:B【试题解析】:本题考查了变上限积分的性质的知识点.8、【正确答案】:C【试题解析】:由级数收敛的必要条件可知C正确,D不正确.9、【正确答案】:D【试题解析】:10、【正确答案】:B【试题解析】:所给级数为不缺项情形。

专升本(高等数学一)模拟试卷120(题后含答案及解析)

专升本(高等数学一)模拟试卷120(题后含答案及解析)

专升本(高等数学一)模拟试卷120(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,无穷小x+sinx是比x 【】A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:本题考查了无穷小量阶的比较的知识点.因=2,所以选C.2.设函数f(x)在点x0的某邻域内可导,且f(x0)为f(x)的一个极小值,则等于【】A.—2B.0C.1D.2正确答案:B解析:本题考查了函数的极值的知识点.因f(x)在x=x0处取得极值,且可导,于是f′(x0)=0,又=2f′(x0)=0.3.设函数f(x)=e—x2,则f′(x)等于【】A.—2e—x2B.2e—x2C.—2xe—x2D.2xe—x2正确答案:C解析:本题考查了一元函数的一阶导数的知识点.因f(x)=e—x2,则f′(x)=e —x2.(—2x)= —2xe—x2.4.函数y=x—arctanx在(—∞,+∞)内【】A.单调增加B.单调减少C.不单调D.不连续正确答案:A解析:本题考查了函数的单调性的知识点.因y=x—arctanx,则y′=1—≥0,于是函数在(—∞,+∞)内单调增加.5.设∫f(t)dx=ex+C,则∫xf(1—x2)dx为【】A.xe1—x2+CB.(1—x2)2+CC.e1—x2+CD.e1—x2+C正确答案:D解析:本题考查了换元积分法求不定积分的知识点.另解:将∫f(x)dx=ex+C两边对x求导得f(x)=ex,则∫xf(1—x2)dx=∫xe1—x2dx=.6.设Φ(x)=∫0x2tantdt,则Φ′(x)等于【】A.tanx2B.tanxC.sec2x2D.2xtanx2正确答案:D解析:本题考查了复合函数(变上限积分)求导的知识点.因Φ(x)=∫0x2tantdt 是复合函数,于是Φ′(x)=tanx2.2x=2xtanx2.7.下列反常积分收敛的【】A.∫1+∞B.∫0+∞C.∫1+∞D.∫1+∞正确答案:D解析:本题考查了反常积分的敛散性的知识点.由当p≤1时发散,p>1时收敛,可知应选D.注:本题容易看出A选项发散.而B选项,故此积分发散.对于C选项,由=∫1+∞lnxd(lnx)==+∞,故此积分发散.8.级数是【】A.绝对收敛B.条件收敛C.发散D.无法确定敛散性正确答案:C解析:本题考查了p级数的敛散性的知识点.级数的通项为an=,此级数为p级数.又因,所以级数发散.9.方程x2+y2=R2表示的二次曲面是【】A.椭球面B.圆柱面C.圆锥面D.旋转抛物面正确答案:D解析:本题考查了二次曲面(圆柱面)的知识点.由方程特征知,方程x2+y2=R2表示的二次曲面是圆柱面.10.曲线y=【】A.有水平渐近线,无铅直渐近线B.无水平渐近线,有铅直渐近线C.既有水平渐近线,又有铅直渐近线D.既无水平渐近线,也无铅直渐近线正确答案:C解析:本题考查了曲线的渐近线的知识点.对于曲线y=,因=1,故有水平渐近线y=1;又= —∞,故曲线有铅直渐近线y= —1.填空题11.函数F(x)=(x>0)的单调递减区间是________.正确答案:0<x<解析:本题考查了函数的单调区间的知识点.由F(x)=令F′(x)=0,得,故当0<x<时,F′(x)<0,F(x)单调递减.12.设f″(x)连续,z==________.正确答案:yf″(xy)+f′(x+y)+yf″(x+y)解析:本题考查了二元函数的混合偏导数的知识点.13.设I=x2ydxdy,D是圆域x2+y2≤a2,则I=________.正确答案:0解析:本题考查了利用极坐标求二重积分的知识点.用极坐标计算I=x2ydxdy=∫02πdθ∫0ar3cos2θsinθ.rdr=∫02πcos2θsinθdθ∫0ar4dr=—∫02πcos2θdcosθ∫0ar4dr==0.注:本题也可用对称性求出.由于D为x2+y2≤a关于x轴对称,且f(x,y)=x2y关于y为奇函数,则=0.14.设f(x)=ax3—6ax2+b在区间[—1,2]的最大值为2,最小值为—29,又知a>0,则a,b的取值为________.正确答案:解析:本题考查了函数的最大、最小值的知识点.f′(x)=3ax2—12ax,f′(x)=0,则x=0或x=4,而x=4不在[一1,2]中,故舍去.f″(x)=6ax—12a,f″(0)= —12a,因为a>0,所以f″(0)<0,所以x=0是极值点.又因f(—1)= —a —6a+b=b—7a,f(0)=b,f(2)=8a—24a+b=b—16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b—16a= —29,即16a=2+29=31,故a=.15.设曲线y=,则该曲线的铅直渐近线为________.正确答案:x= —1解析:本题考查了曲线的铅直渐近线的知识点.故铅直渐近线为x= —1.16.当p________时,级数收敛.正确答案:>1解析:本题考查了利用比较判别法求函的敛散性的知识点.因当p>1时收敛,由比较判别法知p>1时,收敛.17.求=________正确答案:解析:本题考查了不定积分的知识点.18.幂级数的收敛半径R=________.正确答案:1解析:本题考查了幂级数的收敛半径的知识点.19.方程y″—2y′+5y=exsin2x的特解可设为y*=________.正确答案:xex(Asin2x+Bcos2x)解析:本题考查了二元常系数微分方程的特解形式的知识点.由特征方程为r2—2r+5=0,得特征根为l±2i,而非齐次项为exsin2x,因此其特解应设为y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).20.=________.正确答案:解析:本题考查了反常积分的知识点.解答题21.设sin(t.s)+ln(s—t)=t,求的值.正确答案:在sin(t.s)+ln(s—t)=t两边对t求导,视s为t的函数,有cos(t.s)(s+t.s′)+.(s′—1)=1,而当t=0时,s=1,代入上式得=1.22.设f(x)=∫x0te—t2dt,求f(x)在[1,2]上的最大值.正确答案:∵f′(x)= —xe—x2,∴f(x)在[1,2]上单调递减,∴它的最大值是f(1),而23.如果,试求∫f(x)dx.正确答案:24.求sinx3sin2xdx.正确答案:25.计算,其中D为圆域x2+y2≤9.正确答案:26.计算,其中D是由y=x和y2=x围成.正确答案:注:本题若按另一种次序积分,即这个积分很难求解,因此可知,二重积分化成二次积分求解时,要注意选择适当的顺序.27.设2sin(x+2y—3z)=x+2y—3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y—3z)=x+2y—3z两边对x求导,则有2cos(x+2y—3z).,注:本题另解如下:记F(x,y,z)=2sin(x+2y—3z)—x—2y+3z,则=2cos(x+2y—3z).(—3)+3,=2cos(x+2y—3z).2—2,=2cos(x+2y—3z)—1,28.讨论曲线y=的单调性、极值、凸凹性、拐点.正确答案:y=,令y′=0得x=e.而y″=,而y″=0,得x=e2.当x→1时,y→∞,则x=1为垂直渐近线.当0<x<1时,y′<0,y″<0,故y单调下降,上凸.当1<x<e时,y′<0,y″>0,故y单调下降,下凸.当e<x<e2时,y′>0,y″>0,故y单调上升,下凸.当e2<x<+∞时,y′>0,y″<0,故f(x)单调上升,上凸.当x=e时,y有极小值2e,且(e2,e2)是拐点.。

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)在x0处不连续,则( )A.f’(x0)必存在B.f’(x0)必不存在C.f(x)必存在D.f(x)必不存在正确答案:B解析:f(x)在x0处不连续,是指连续性的三要素之一不满足,因此C、D都不对,由于可导必连续,则不连续必不可导,所以A不对,故选B.知识模块:一元函数微分学2.设函数f(x)=|x3一1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的( )。

A.充分必要条件B.充分但非必要条件C.必要但非充分条件D.既非充分又非必要条件正确答案:A解析:由φ(1)=0可知即f+’(1)=f -’(1)=0,所以,f’(1)=0.设f(x)在x=1处可导,因为f(1)=0,所以(x2+x+1)φ(x)=3φ(1),知识模块:一元函数微分学3.设函数f(x)在x=0处可导,且f(0)=0,则=( ) A.一2f’(0)B.一f’(0)C.f’(0)D.0正确答案:B解析:由于f(x)在x=0处可导,且f(0)=0,则=f’(0)一2f’(0)=一f’(0).知识模块:一元函数微分学4.若f(x一1)=x2一1,则f’(x)等于( )A.2x+2B.x(x+1)C.x(x一1)D.2x一1正确答案:A解析:因f(x一1)=x2一1=(x—1)(x一1+2),故f(x)=x2+2x,则f’(x)=2x+2.知识模块:一元函数微分学5.函数y=f(x)可导,则y=f{f[f(x)]}的导数为( )A.f’{[f(x)]}B.f’{f’[f’(x)]}C.f’{f[f(x)]}f’(x)D.f’{f[f(x)]}f’[f(x)]f’(x)正确答案:D解析:y’(x)=(f{f[f(x)]})’=f’{f[f(x)]}f’[f(x)]f’(x),故选D.知识模块:一元函数微分学6.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f’(x)<0,则下列结论成立的是( )A.f(0)<0B.f(1)>0C.f(1)>f(0)D.f(1)<f(0)正确答案:D解析:因f’(x)<0,x∈(0,1),可知f(x)在[0,1]上是单调递减的,故f(1)<f(0).知识模块:一元函数微分学7.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f(x)在(a,b) ( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B解析:由题意知,f(x)在(a,b)上单调递增,且f(a).f(b)<0,则由零点定理以及单调性可得y=f(x)在(a,b)内存在唯一零点.知识模块:一元函数微分学8.曲线y=( )A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线,又有铅直渐近线正确答案:D解析:因=1,所以y=1为水平渐近线,又因=∞,所以x=0为铅直渐近线.知识模块:一元函数微分学9.下列函数在给定区间满足罗尔定理条件的有( )A.f(x)=B.y=C.y=xex,[0,1]D.y=x2一1,[一1,1]正确答案:D解析:A选项中,函数在x=5处不连续;B选项中,函数在x=1处不连续;C选项中,y(0)≠y(1);D选项中,函数在[一1,1]连续,在(一1,1)可导,y(-1)=y(1),符合罗尔定理条件,故选D.知识模块:一元函数微分学10.要制作一个有盖铁桶,其容积为V,要想所用铁皮最省,则底面半径和高的比例为( )A.1:2B.1:1C.2:1D.正确答案:A解析:设底面半径为r,高为h,则有V=πr2h,S=2πrh+2πr2=+2πr2,S’(r)=一+4πr=,由于驻点唯一,必是最值点,此时h=,则r:h=1:2.知识模块:一元函数微分学填空题11.设函数y=sin(x一2),则y’’=________.正确答案:一sin(x一2)解析:因为y=sin(x一2),y’=cos(x一2),y’’=一sin(x一2).知识模块:一元函数微分学12.设函数f(x)有连续的二阶导数且f(0)=0,f’(0)=1,f’’(0)=一2,则=_______.正确答案:一1解析:=一1.知识模块:一元函数微分学13.y=y(x)是由方程xy=ey-x确定的函数,则dy=_______.正确答案:解析:方程两边对x求导,注意y是x的函数,有y+xy’=ey-x(y’一1),所以y’=.知识模块:一元函数微分学14.函数y=cosx在[0,2π]上满足罗尔定理,则ξ=_________.正确答案:π解析:y’=一sinx,因函数在[0,2π]上满足罗尔定理,故存在ξ∈(0,2π),使一sinξ=0,故ξ=π.知识模块:一元函数微分学15.若函数f(x)在[0,1]上满足f’’(x)>0,则f’(0),f’(1),f(1)一f(0)的大小顺序为_________.正确答案:f’(1)>f(1)一f(0)>f’(0)解析:f’’(x)>0,则f’(x)单调递增,又有拉格朗日中值定理得f(1)一f(0)=f’(ξ)(1一0)=f’(ξ),ξ∈(0,1).故有f’(1)>f’(ξ)>f’(0),即f’(1)>f(1)一f(0)>f’(0).知识模块:一元函数微分学解答题16.设f(x)=其中a、b、A为常数,试讨论a、b、A为何值时,f(x)在x=0处可导?正确答案:若函数f(x)在x=0可导,则函数f(x)也连续,故有=f(0),f+’(0)=f-’(0),涉及知识点:一元函数微分学17.设y=,求y’.正确答案:涉及知识点:一元函数微分学18.设=a,且f’(0)存在,求f’(0).正确答案:∴f’(0)=a.涉及知识点:一元函数微分学19.求函数x=cosxy的导数.正确答案:等式两边关于x求导,可得1=一(sinxy)(xy)’=一(sinxy)(y+xy’),整理后得(xsinxy)y’=一1一ysinxy,从而y’=.涉及知识点:一元函数微分学20.已知y=,f’(x)=arctanx2,计算.正确答案:令y=f(μ),μ=,则涉及知识点:一元函数微分学21.讨论曲线y=的单调性、极值、凸凹性、拐点.正确答案:y=,令y’=0得x=e.而y’’=,令y’’=0,得x=e2.当x→1时,y→∞,则x=1为垂直渐近线.当0<x<1时,y’<0,y’’<0,故y单调下降,且是凸的.当1<x<e时,y’<0,y’’>0,故y单调下降,且是凹的.当e<x<e2时,y’>0,y’’>0,故y单调上升,且是凹的.当e2<x<+∞时,y’>0,y’’<0,故y单调上升,且是凸的.当x=e时,y有极小值2e,且(e2,e2)是拐点.涉及知识点:一元函数微分学22.设f(x)在[1,e]可导,且f(1)=0,f(e)=1,试证f’(x)=在(1,e)至少有一个实根.正确答案:设F(x)=f(x)一lnx,F(1)=0,F(e)=0,由罗尔定理,至少存在一点ξ∈(1,e)使F’(ξ)=0,即f’(ξ)一=0,所以f’(x)=在(1,e)至少有一个实根.涉及知识点:一元函数微分学23.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的正数a及b,在(0,1)内必存在不相等的x1,x2,使=a+b.正确答案:因a,b>0,故0<<1,又因f(x)在[0,1]上连续,且f(0)=0,f(1)=1,由介值定理,必存在ζ∈(0,1),使f(ζ)=.又分别在[0,ζ],[ζ,1]上用拉格朗日中值定理,得f(ζ)一f(0)=(ζ一0)f’(x1),f(1)一f(ζ)=(1一ζ)f’(x2)(其中0<x1<ζ<x2<1)即有=1-ζ.考虑到1-,并将上两式相加,得=1,即存在不相等的x1,x2使=a+b.涉及知识点:一元函数微分学24.利用拉格朗日中值定理证明:当x>1时,ex>ex.正确答案:令f(μ)=eμ,μ∈[1,x].容易验证f(μ)在[1,x]上满足拉格朗日中值定理的条件,故存在ξ∈(1,x),使=f’(ξ),即=eξ,因为ξ∈(1,x),所以eξ>e.即>e,整理得,当x>1时,ex>ex.涉及知识点:一元函数微分学25.设a>b>0,n>1,证明:nbn-1(a一b)<an一bn<nan-1(a一b).正确答案:构造函数f(x)=xn(n>1),因为f(x)=xn在[a,b]上连续,在(a,b)内可导,所以,存在一点ξ∈(a,b)使得f’(ξ)==nξn-1,又0<a<ξ<b,故an-1<ξn-1<bn-1,所以nan-1<nξn-1<nbn-1,即nan-1<<nbn-1,整理得nan-1(b一a)<bn一an<nbn-1(b一a).两边取负号得nbn-1(a一b)<an一bn<nan-1(a一b).涉及知识点:一元函数微分学已知函数f(x)=.26.证明:当x>0时,恒有f(x)+;正确答案:则可知F(x)=C,C为常数.当x=1时,F(1)=C=f(1)+f(1)=,故当x>0时,F(x)=f(x)+恒成立;涉及知识点:一元函数微分学27.试问方程f(x)=x在区间(0,+∞)内有几个实根?正确答案:令g(x)=f(x)一x,则g‘(x)=一1<0,故g(x)在(0,+∞)上单调递减,又则g(x)=0在(0,+∞)上有且仅有一个实根,即f(x)=x在(0,+∞)上只有一个实根.涉及知识点:一元函数微分学28.假设某企业在两个互相分割的市场上出售同一种产品,两个市场的销售量分别是Q1=,Q2=12一x,其中x为该产品在两个市场的价格(万元/吨),该企业生产这种产品的总成本函数是C=2(Q1+Q2)+5,试确定x的值,使企业获得最大利润,并求出最大利润.正确答案:由已知条件得利润函数为L=(Q1+Q2)x—C=(Q1+Q2)x一2(Q1+Q2)一5=[+(12-x)](x-2)一5=x2+24x一47,求导得L’=一3x+24,令L’=0,得驻点x=8.根据实际情况,L存在最大值,且驻点唯一,则驻点即为最大值点.Lmax=.82+24.8—47=49.故当两个市场价格为8万元/吨时,企业获得最大利润,此时最大利润为49万元.涉及知识点:一元函数微分学。

专升本(高等数学一)模拟试卷95(题后含答案及解析)

专升本(高等数学一)模拟试卷95(题后含答案及解析)

专升本(高等数学一)模拟试卷95(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(0)=0,且f’(0)存在,则A.f’(0)B.2f’(0)C.f(0)D.正确答案:B解析:此极限属于型,可用洛必达法则,即2.设有直线l1:,当直线l1与l2平行时,λ=A.1B.0C.D.一1正确答案:C解析:本题考查的知识点为直线间的关系.直线其方向向量分别为s1={1,2,λ},s2={2,4,一1}.又l1∥l2,则.故选C3.设∫0xf(t)dt=xsinx,则f(x)= ( )A.sin x+xcos xB.sin x—xcos xC.xcos x—sin xD.一(sin x+xcosx)正确答案:A解析:在∫0xf(t)dt=xsin x两侧关于x求导数,有f(x)=sin x+xcos x.故选A 4.设f’(x)=sin2x,则f’(0)= ( )A.一2B.一1C.0D.2正确答案:D解析:由f(x)=sin2x可得f’(x)=cos2x.(2x)’=2cos2x,f’(0)=2cos0=2.故选D5.设z=xy+y,A.e+1B.C.2D.1正确答案:A解析:因为=elne+1=e+1.故选A6.设函数f(x)在区间[x,1]上可导,且f’(x)>0,则( )A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)与f(0)的值不能比较正确答案:A解析:由f’(x)>0说明f(x)在[0,1]上是增函数,因为1>0,所以f(1)>f(0).故选A7.曲线y=x-3在点(1,1)处的切线斜率为( )A.一1B.一2C.一3D.一4正确答案:C解析:由导数的几何意义知,若y=f(x)可导,则曲线在点(x0,f(x0))处必定存在切线,且该切线的斜率为f’(x0).由于y=x-3,y’=一3x-4,y’|x=1=一3,可知曲线y=x-3在点(1,1)处的切线斜率为一3.故选C8.方程x2+2y2一z2=0表示的二次曲面是( )A.椭球面B.锥面C.旋转抛物面D.柱面正确答案:B解析:对照二次曲面的标准方程,可知所给曲面为锥面.故选B9.设y1,y2为二阶线性常系数微分方程y”+p1y’+p2y=0的两个特解,则C1y1+C2y2 ( )A.为所给方程的解,但不是通解B.为所给方程的解,但不一定是通解C.为所给方程的通解D.不为所给方程的解正确答案:B解析:如果y1,y2这两个特解是线性无关的,即≠C,则C1y1+C2y2是其方程的通解.现在题设中没有指出是否线性无关,所以可能是通解,也可能不是通解.故选B10.设un≤avn(n=1,2,…)(a>0),且A.必定收敛B.必定发散C.收敛性与a有关D.上述三个结论都不正确正确答案:D解析:由正项级数的比较判定法知,若un≤vn,则当发散时,则也发散,但题设未交待un与vn 的正负性,由此可分析此题选D填空题11.正确答案:2解析:由于所给极限为型极限,由极限的四则运算法则有12.比较积分大小:∫12ln xdx__________∫12(ln x)3dx.正确答案:>解析:因为在[1,2]上ln x>(ln x)3,所以∫12ln xdx>∫12(ln x)3dx.13.设,则y’=_______.正确答案:解析:14.设z=y2x,则正确答案:2xy2x-1解析:只需将x看作常数,因此y2x可看作是幂函数,故15.设y=,则其在区间[0,2]上的最大值为_______.正确答案:解析:所以y在[0,2]上单调递减.于是ymax=y|x=0=16.微分方程y”+y’+y=0的通解为________.正确答案:(其中C1,C2为任意常数)解析:征方程为r2+r+1=0,解得:17.设曲线y=f(x)在点(1,f(1))处的切线平行于x轴,则该切线方程为_________.正确答案:y=f(1)解析:因为曲线y=f(x)在(1,f(1))处的切线平行于x轴,所以y’(1)=0,即斜率k=0,则此处的切线方程为y-f(1)=0(x-1)=0,即y=f(1).18.过点M0(1,一2,0)且与直线垂直的平面方程为_________.正确答案:3(x一1)一(y+2)+z=0(或3x—y+z=5)解析:因为直线的方向向量s={3,一1,1},且平面与直线垂直,所以平面的法向量n={3,一1,1}.由点法式方程有平面方程为:3(x一1)一(y+2)+(z一0)=0,即3(x一1)一(y+2)+z=0.19.级数的收敛区间为______.(不包括端点)正确答案:(1,3)解析:即当|x一2|<1时收敛,所以有一1<x一2<1,即1<x<3.故收敛区间为(1,3).20.设二元函数z=ln(x+y2),则正确答案:dx解析:由于函数z=ln(x+y2)的定义域为x+y2>0.在z的定义域内为连续函数,因此dz存在,且解答题21.求函数,在点x=0处的导数y’|x=0.正确答案:22.正确答案:利用洛必达法则:23.设,求所给曲线的水平渐近线与铅直渐近线.正确答案:由,可知y=2为水平渐近线;由可知x=0为铅直渐近线.24.求由曲线y=2一x2,y=x(x≥0)与直线x=0所围成的平面图形绕x轴旋转一周所生成的旋转体体积.正确答案:由平面图形a≤x≤b,0≤y≤y(x)所围成的平面图形绕x轴旋转一周所生成的旋转体体积为Vx=π∫aby2(x)dx.画出平面图形的草图(如图所示),则所求体积为0≤x≤1,0≤y≤2一x2所围成的平面图形绕x轴旋转一周所生成的旋转体体积减去0≤x≤1,0≤y≤x所围成的平面图形绕x轴旋转一周所生成的旋转体体积.V=π∫01[(2一x2)2-x2]dx=π∫01(4—5x2+x4)dx25.将f(x)=展开为x的幂级数.正确答案:所给f(x)与标准展开级数中的形式不同,由于26.计算,其中D如图所示,由y=x,y=1与y轴围成.正确答案:27.证明方程3x一1一=0在区间(0,1)内有唯一的实根.正确答案:令f(x)=则f(x)在区间[0,1]上连续.根据连续函数的介值定理,函数f(x)在区间(0,1)内至少有一个零点,即所给方程在(0,1)内至少有一个实根.又,当0≤x≤1时,f’(x)>0.因此,f(x)在[0,1]上单调增加,由此知f(x)在区间(0,1)内至多有一个零点.综上可知,方程在区间(0,1)内有唯一的实根.28.设f(x)=x3+1一x∫0xf(t)dt+∫0xtf(t)dt,其中f(x)为连续函数,求f(x).正确答案:将所给表达式两端关于x求导,得f’(x)=3x2一∫0xf(t)dt-xf(x)+xf(x)=3x2一∫0xf(t)dt,两端关于x再次求导,得f”(x)=6x一f(x)即f”(x)+f(x)=6x.将此方程认作为二阶常系数非齐次线性微分方程,相应的齐次微分方程的特征方程为r2+1=0.特征根为r1=i,r2=-i.齐次方程的通解为C1cos x+C2sin x.设非齐次方程的一个特解为f0(x).由于α=0不为特征根,可设f0(x)=Ax,将f0(x)代入上述非齐次微分方程可得A=6.因此f0(x)=6x.非齐次方程的通解为f(x)=C1cosx+C2sin x+6x由初始条件f(0)=1,f’(0)=0,可得出C1=1,C2=一6.故f(x)=cosx一6sin x+6x为所求函数.。

2024年成考专升本高等数学(一)-模拟押题卷

2024年成考专升本高等数学(一)-模拟押题卷

2024年成考专升本高等数学(一)-模拟卷一、选择题:1~12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 221lim x x x x →∞+=+ ( )A. -1B. 0C. 12 D. 12. 设函数 3()5sin f x x x =+, 则 (0)f '= ( )A. 5B. 3C. 1D. 03. 设函数 ()ln f x x x =-, 则 ()f x '= ( )A. xB. 1x -C. 1x D. 11x -4. 函数 32()293f x x x =-+ 的单调递减区间是 ( )A. (3,)+∞B. (,)-∞+∞C. (,0)-∞D. (0,3) 5. 23 d x x =⎰ ( ) A. 23x C + B. 5335x C + C. 53x C + D. 13x C +6. 设函数 ()||f x x =, 则 11()d f x x -=⎰ ( )A. -2B. 0C. 1D. 27. 设 ()f x 为连续函数, 且满足 0()d e 1xx f t t =-⎰, 则 ()f x =() A. x e B. x e 1- C. e 1x + D. 1x +8. 设 ()2214z x y =+, 则 2zx y ∂=∂∂ ( ) A. 2xB. 0C. 2yD. x y +9. (2,1,2),(1,21)=--=-a b , 则 ⋅=a b ( )A. -1B. -3C. 3D. 210. 余弦曲线 cos y x = 在 0,2π⎡⎤⎢⎥⎣⎦ 上与 x 轴所围成平面图形的面积为 ( ) A. 0 B. 1 C. -1 D. 211. 若 lim 0n n a →∞=, 则数项级数 1n n a ∞=∑ ( )A. 收敛B. 发散C. 收玫且和为零D. 可能收玫也可能发散12. 如果区域 D 被分成两个子区域 12,D D , 且12(,)5,(,)1D D f x y dxdy f x y dxdy ==⎰⎰⎰⎰,则 (,)D f x y dxdy =⎰⎰ ( )A. 5B. 4C. 6D. 1二、填空题:13~15小题,每小题7分,共21分13. 32234x t y t ⎧=+⎨=-⎩ 在 1t = 相应的点处切线斜率为 . 14. 求 2x x y = 的全微分 .15. {(,)01,03}D x y x y x =≤≤≤≤-∣, 求D d σ=⎰⎰ .三、解答题:16~18小题,每小题15分,共45分.解答应写出文字说明、证明过程或演算步骤16. 求微分方程 220x y y e'--= 的通解. 17. 求由方程 2y y xe -= 所确定的隐函数 ()y y x = 的导数 0x dydx =.18. 证明: 当 0x 时, 2ln(1)2x x x +-.参考答案1.【答案】D【考情点拨】本题考查了函数极限的知识点.【解析】 222111lim lim 111x x x x x x x →∞→∞++==++. 2. 【答案】 A【解析】可求得 2()35cos f x x x '=+, 则 (0)5f '=.3. 【答案】D【解析】 1()(ln )1f x x x x''=-=-. 4.【答案】D【解析】由题可得 2()6186(3)f x x x x x '=-=-, 令 ()0f x '<, 得 03x <<, 故单调墄区间为 (0,3).5.【答案】B 【解析】 25333 d 5x x x C =+⎰. 6.【答案】C【解析】 01101221101011()d ()d ?d 122f x x x x x x x x ---=-+=-+=⎰⎰⎰. 7.【答案】A【解析】 0()d e 1xx f t t =-⎰ 两边同时求导, 得 ()()e 1e x x f x '=-=. 8. 【答案】B【解析】 12z x x ∂=∂, 所以 20z x y ∂=∂∂. 9.【答案】D【解析】 a 21(1)2(2)(1)2⋅=⨯+-⨯+-⨯-=b10.【答案】B【解析】由题意得 2200cos sin 1S xdx x ππ===⎰, 故选 B. 11.【答案】D 【解析】 lim 0n n a →∞= 是级数 1n n a ∞=∑ 收敛的必要条件, 但不是充分条件, 从例子 211n n ∞=∑收敛可知 B 错误, 由11n n ∞=∑ 发散可知 A, C 错误, 故选 D. 12.【答案】C 【解析】根据二重积分的可加性, (,)6D f x y dxdy =⎰⎰, 应选 C.13.【答案】 13【解析】 212,6,3dy dx dy dy dt t t dt dt dx dt dx t ===⋅=, 当1t =时, 13dy dx =, 故切线的斜率为 1314.【答案】 22xydx x dy +【解析】 22z z dz dx dy xydx x dy x y∂∂=+=+∂∂. 15.【答案】 52【解析】积分区域为梯形区域,此二重积分的一样即为求梯形面积,故 (23)1522D d σ+⨯==⎰⎰. 16.【答案】 22x x y xe Ce =+ (C 为任意常数)【解析】由通解公式可得,()(2)(2)222222dx dx x x x x x x y e e e dx C e e e dx C xe Ce ----⎡⎤⎰⎰=⋅+=⋅+=+⎢⎥⎣⎦⎰⎰ ( C 为任意常数). 17.【答案】 2e【解析】方程两边同时关于 x 求导得 0y y y e xe y ''--⋅=, 当 0x = 时, 2y =,代人得 200x x dyy e dx '==== 。

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.极限等于( )A.eB.ebC.eabD.eab+b正确答案:C解析:由于,故选C。

知识模块:极限和连续2.在空间直角坐标系中,方程x2-4(y-1)2=0表示( )A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面正确答案:A解析:由于所给曲面方程x2-4(y-1)2=0中不含z,可知所给曲面为柱面,但是由于所给方程可化为x2=4(y-1)2,进而可以化为x=2(y-1)与-z=2(y-1),即x-2y+2=0,x+2y-2=0,为两个平面,故选A。

知识模块:空间解析几何3.级数是( )A.绝对收敛B.条件收敛C.发散D.收敛性不能判定正确答案:A解析:依前述判定级数绝对收敛与条件收敛的一般原则,常常先判定的收敛性,由于的p级数,知其为收敛级数,因此所给级数绝对收敛,故选A。

知识模块:无穷级数填空题4.若函数在x=0处连续,则a=________。

正确答案:-2解析:由于(无穷小量乘有界变量),而f(0)=a+2,由于f(x)在x=0处连续,应有a+2=0,即a=-2。

知识模块:极限和连续5.若f’(x0)=1,f(x0)=0,则=________。

正确答案:-1解析:由于f’(x0)存在,且f(x0)=0,由导数的定义有知识模块:一元函数微分学6.设y=xe+ex+lnx+ee,则y’=________。

正确答案:y’=ee-1+ex+解析:由导数的基本公式及四则运算规则,有y’=ee-1+ex+。

知识模块:一元函数微分学7.曲线y=ex+x上点(0,1)处的切线方程为________。

正确答案:由曲线y=f(x)在其上点(x0,f(x0))的切线公式y-f(x0)=f’(x0)(x-x0),可知y-1=2(x-0),即所求切线方程为y=2x+1。

解析:注意点(0,1)在曲线y=ex+x上,又y’=ex+1,因此y’|x=0=2。

(完整)专升本高等数学模拟试卷(一)

(完整)专升本高等数学模拟试卷(一)

专升本高等数学模拟试卷(一)一、选择题1、函数)3lg(1)(x xx f +=的定义域为 A ,0≠x 且3-≠x B ,0>x C,3->x D,3->x 且0≠x2、下列各对函数中相同的是:A,4,4162+=--=x y x x y B ,x y x y ==,2C ,x y x y lg 4,lg 4== D ,31334)1(,-=-=x x y x x y3、当∞→x 时,xx x f 1sin 1)(=A ,是无穷小量B ,是无穷大量C ,有界,但不是无穷小量D ,无界,但不是无穷大量4、111111)(---+=x x x x x f 的第二类间断点个数为:A ,0B ,1C ,2D ,35、设⎩⎨⎧>+≤=11)(2x bax x x x f 在1=x 处连续且可导,则b a ,的值分别为A ,1,2-=-=b aB ,1,2=-=b aC ,1,2-==b a D,1,2==b a 6、下列函数在0=x 处可导的是A ,x y sin 3=B ,x y ln 3=C ,x y 5= D,x y cos 6= 7、下列函数在[]e ,1满足拉格朗日定理的是 A ,x -22 B,)5ln(-x C,xe ln 32- D,32-x 8、)2(3-=x x y 共有几个拐点A ,1B ,2C ,3D ,无拐点 9、xe y 12+=的渐近线:A ,只有水平渐近线B ,只有垂直渐近线C ,既有水平又有垂直渐近线D ,无渐近线10、下列函数中是同一函数的原函数的是:A ,x x 3lg ,lg 3B ,x x arcsin ,arccosC ,x x 2sin ,sin 2D ,2cos 2,2cos x 11、设31)(31)(0-=⎰x f dt t f x,且1)0(=f ,则=)(x fA ,x e 3 B,x e 3+1 C ,3xe 3 D ,31xe 3 12、下列广义积分收敛的是 A ,dx e x⎰+∞B ,dx x x e⎰+∞ln 1C,dx x⎰+∞11 D , dx x ⎰∞+-13513、设)(x f 在[]b a ,上连续,则)(x f 与直线0,,===y b y a x 所围成的平面图形的面积等于 A ,⎰badx x f )( B ,⎰badx x f )( C ,),())((b a a b f ∈-ξξ D ,⎰badx x f )(14、直线37423-=+=+zy x 与平面03224=---z y x 的位置关系是 A ,直线垂直平面 B ,直线平行平面 C,直线与平面斜交 D ,直线在平面内 15、方程2223z y x =+在空间直角坐标系下表示的是 A ,柱面 B ,椭球面 C 圆锥面 D 球面 16、=++-+→yx y x y x 11lim)0,0(),(A ,2B ,0C ,∞D ,—2 17、设yx z =,则=)1,2(dzA ,dy dx +B ,dy dx 2ln 2+C ,2ln 31+D ,0 18、),(y x f z =在点),(00y x 处的两个偏导数都存在,则A ,),(y x f z =在),(00y x 可微B ,),(y x f z =在),(00y x 连续C ,),(y x f z =在),(00y x 不连续 D,和在),(00y x 处是否连续无关 19、)1ln(2x y +=的凸区间为A ,)1,(--∞B ,)1,1(-C ,),1(+∞D ,)1,(--∞⋃),1(+∞ 20、0),(,0),(0000='='y x f y x f y x 是函数),(y x f 在),(00y x 点取得极值的 A ,无关条件 B ,充分条件 C,充要条件 D ,必要条件 21、函数1663223++--=y x y x z 的极值点为A ,(1,1)B ,(—1,1)C ,(1,1)和(—1,1)D ,(0,0) 22、设D :922≤+y x ,则=+⎰⎰Ddxdy y x f )(222A ,⎰3)(4rdr r f πB ,⎰30)(2rdr r f π C ,⎰32)(4rdr r f π D,⎰32)(4dr r r f π23、交换积分次序,=+⎰⎰⎰⎰--xx xxdy y x f dx dy y x f dx 24110),(),(A ,⎰⎰+2022),(y ydx y x f dy B ,⎰⎰-+2122),(y ydx y x f dyC,⎰⎰+4022),(y y dx y x f dy D ,⎰⎰+222),(y y dx y x f dy24、设L 为沿圆周x y x 222=+的上半部分和x 轴闭区域边界正方向围成,则=++⎰Lxx dy x y e ydx e )cos 2(sin 2A ,π B,21 C ,21π D ,不存在 25、若∑∞=1n nv收敛,则( )也必收敛A ,11+∞=∑n n n vvB ,∑∞=12n nvC ,∑∞=-1)1(n n nv D,∑∞=++11)(n n n v v26、若a 为常数,则级数∑∞=-133)1sin (n nn a A ,绝对收敛 B ,条件收敛 C ,发散 D 收敛性与a 有关 27、设)11ln()1(nu nn +-=,则级数A ,∑∞=1n nu与∑∞=12n nu都收敛 B ,∑∞=1n nu与∑∞=12n nu都发散C,∑∞=1n nu收敛,∑∞=12n nu发散 D ,∑∞=1n nu发散,∑∞=12n nu收敛28、x x y y x +='-''32的通解为A ,c x x x y ++-=324312141 B , 324312141x x x y +-= C ,23124312141c x c x x y ++-= D ,3124312141x c x x y +-=29、x y y cos =+''的特解应设为:A ,)sin cos (x b x a x +B ,)sin cos (2x b x a x +C ,x b x a sin cos +D ,x a cos 30、x x y y 2sin +=+''的特解应设为A ,x b ax x 2sin )(++B ,x d x c b ax x 2cos 2sin )(+++C ,x d x c b ax 2cos 2sin +++ C ,)2cos 2sin (x d x c x b ax +++ 二、填空题1、设=>=)(),0()(x f x x e f x 则2、=+→x x x sin 2)31(lim3、=-+⎰→xx dt t t xx sin )1ln(lim304、函数12+=x x y 的垂直渐进线为5、若⎪⎪⎩⎪⎪⎨⎧=≠-=⎰,0,)1()(32x a x xdt e x f xt ,在0=x 连续,则=a 6、设==-dxdy y e y x x 则,sin 22 7、设)sin (ln x f y =,且)(x f 可微,则=dxdy 8、曲线xy 1=在点(1,1)的法线方程为 9、函数)1ln()(2x x x f +-=在[—1,2]上的最大值为 10、=⋅⎰-dx e x x 334sin11、两平面0722=-++z y x 与08354=+++z y x 的夹角为 12、广义积分dx xq⎰+111,当 时候收敛13、=⎰⎰≤+ydxdy x y x 122214、微分方程0,≠=+'m n my y ,则满足条件0)0(=y 的特解为 15、已知a u n n =∞→lim ,则∑∞=1n )(1+-n n u u =三、计算题1、xx x x x cos sin 13lim2-+→2、设2cos x xy x+=,求y '3、求⎰xdx e x sin4、求⎰3arctan xdx5、设),(y x xy f z =,求yz x z ∂∂∂∂, 6、设D 是由03,032,1=-+=+-=y x y x y 所围成的区域,求⎰⎰-Ddxdy y x )2(7、将x y 2sin 3=展开成麦克劳林级数 8、求x y y x ln ='+''的通解 四、应用题1、 某服装企业计划生产甲、乙两种服装,甲服装的需求函数为126p x -=,乙服装的需求函数 为24110p y -=,生产这两种服装所需总成本为1002),(22+++=y xy x y x C ,求取得最大利润时的甲乙两种服装的产量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一东北数学试题(一)一、选择题:本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1.设,则等于()A. B.C. D.2. 已知为常数,,则等于()A. B. C. D. 03. 已知,则等于()A. B.C. D.4. 已知,则等于()A. B. C. D.5. 已知,则等于()A. B. C. D.6. 设的一个原函数为,则下列等式成立的是()A. B. C. D.7. 设为连续函数,则等于()A. B.C. D.8.广义积分等于 ( )A. B.C. D.9. 设,则等于()A. B. C. D.10. 若事件与为互斥事件,且,则等于()A. 0.3B. 0.4C. 0.5D.0.6二、填空题:本大题共10个小题,每小题4分,共40分,把答案填在题中横线上。

11.设,则 .12. .13.设,则 .14.函数的驻点为 .15.设,则 .16. .17.设,则 .18.若,则 .19.已知,则 .20.已知,且都存在,则 .三、解答题:本大题共8个小题,共70分。

解答应写出推理、演算步骤。

21.(本题满分8分)计算.22. (本题满分8分)设函数,求.23. (本题满分8分)计算.24. (本题满分8分)甲、乙二人单独译出某密码的概率分别为0.6.和0.8,求此密码被破译的概率.25. (本题满分8分)计算.26.(本题满分10分)设函数在点处取得极小值-1,且点(0,1)为该函数曲线的拐点,试求常数.27.(本题满分10分)设函数是由方程所确定的隐函数,求函数曲线,过点(0,1)的切线方程.28.(本题满分10分)求函数在条件下的极值.二 高等数学(二)命题预测试卷(二)1、 选择题(本大题共5个小题,每小题4分,共20分。

)1.下列函数中,当时,与无穷小量相比是高阶无穷小的是( )A. B.C. D.2.曲线在内是( )A.处处单调减小 B.处处单调增加C.具有最大值 D.具有最小值3.设是可导函数,且,则为( )A.1 B.0C.2 D.4.若,则为( )A. B.C.1 D.5.设等于( )A. B.C. D.2、 填空题:本大题共10个小题,10个空,每空4分,共40分6.设,则= .7.设,则 .8.,则 .9.设二重积分的积分区域D是,则 .10.= .11.函数的极小值点为 .12.若,则 .13.曲线在横坐标为1点处的切线方程为 .14.函数在处的导数值为 .15. .三、解答题:本大题共13小题,共90分,解答应写出推理、演算步骤。

16.(本题满分6分)求函数的间断点.17.(本题满分6分)计算.18.(本题满分6分)计算.19.(本题满分6分)设函数,求.20.(本题满分6分)求函数的二阶导数.21.(本题满分6分)求曲线的极值点.22.(本题满分6分)计算.23.(本题满分6分)若的一个原函数为,求.24.(本题满分6分)已知,求常数的值.25.(本题满分6分)求函数的极值.26.(本题满分10分)求,其中D是由曲线与所围成的平面区域.27.(本题满分10分)设,且常数,求证:.28.(本题满分10分)求函数的单调区间、极值、此函数曲线的凹凸区间、拐点以及渐近线并作出函数的图形.三普通高校专升本《高等数学》试卷姓名:_________________准考证号:______________________报考学校报考专业:------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------一、填空题:(本题共有8个小题,每一小题3分,共24分)1. 曲线 在 处的切线方程为 .2. 已知 在 内连续 , , 设 , 则= .3. 设 为球面 () 的外侧 , 则= .4. 幂级数 的收敛域为 .5. 已知 阶方阵 满足 , 其中 是 阶单位阵, 为任意实数 , 则 = .6. 已知矩阵 相似于矩阵 , 则 .7. 已知 , 则 = .8. 设 是随机变量 的概率密度函数 , 则随机变量 的概率密度函数 = .二.选择题. (本题共有8个小题,每一小题3分,共24分)1. = ( ).() () ()()2. 微分方程的通解为 ( ). (C 为任意常数)() ()() ()3. = ( ) .() ()() ()4. 曲面 , 与 面所围成的立体体积为 ( ).() () () ()5. 投篮比赛中,每位投手投篮三次, 至少投中一次则可获奖.某投手第一次投中的概率为 ; 若第一次未投中, 第二次投中的概率为 ; 若第一, 第二次均未投中, 第三次投中的概率为 , 则该投手未获奖的概率为 ( ).() () () ()6. 设 是 个 维向量 , 则命题 “ 线性无关 ”与命题 ( ) 不等价 。

(A) 对 , 则必有 ;(B) 在 中没有零向量 ;(C) 对任意一组不全为零的数 , 必有 ;(D) 向量组中任意向量都不可由其余向量线性表出 。

7. 已知二维随机变量 在三角形区域 上服从均匀分布, 则其条件概率密度函数 是 ( ).(). 时 ,(). 时 ,() 时 ,() 时 ,8. 已知二维随机变量 的概率分布为:,则下面正确的结论是 ( ).() 是不相关的()() 是相互独立的() 存在 ,使得三.计算题:(计算题必须写出必要的计算过程,本题共9个小题,每小题7分,共63分)1. 计算 , (,).2. 设直线 : 在平面 上,而平面 与曲面相切于点 , 求 , 的值.3. 计算 .姓名:_________________准考证号:______________________报考学校报考专业:---------------------------密封线---------------------------------------------------------------------------------------------------4. 设 具有二阶导数 , 且 满足等式 ,若 , , 求 的表达式.5. 将函数 展开成 的幂级数.6. 已知矩阵 , 且 , 其中 为的伴随矩阵 , 求矩阵7. 已知 为 6 阶方阵,且 , ,, 求 .8. 已知随机事件 , 满足 , 定义随机变量,求 (1) 二维随机变量 的联合概率分布 ; (2) .9. 设随机变量 是相互独立的 , 且均在 上服从均匀分布.令 , 求 的近似值 。

(四.应用题: (本题共3个小题,每小题8分,共24分)1.假定足球门宽为 4 米, 在距离右门柱 6 米处一球员沿垂直于底线的方向带球前进(如图) . 问: 他在离底线几米的地方将获得最大的射门张角 ?姓名:________________准考证号:______________________报考学校报考专业:封线---------------------------------------------------------------------------------------------------2.已知 , 且 , 求方程组 的通解 .3.已知随机变量 满足 , 且. 令 , 求 的值使 最小 .五.证明题: (本题共2个小题,第一小题8分,第二小题7分,共15分)1.设 在 内连续,且 , 证明: 总存在一点 , 使得 .2. 已知 均为 阶方阵 , 且 及 的每一个列向量均为方程组的解 , 证明 : .四武汉科技学院一、填空题(4×3分=12分)1.设存在,则2. 函数在上的最大值为 .3. 逐次积分更换积分次序后为_______________________.4. 微分方程的通解为 .二、单项选择题(4×3分=12分)1.设函数在处连续,若为的极值点,则必有(A) (B)(C)或不存在 (D)不存在2.设是[0,+]上的连续函数,时,=(A) (B) (C) (D)3、 已知三点,,,则(A) (B) (C) (D)4、函数在点(1,1)处的梯度为_______(A) (B) (C) (D)三、计算题(每小题7分,共56分)1.计算极限2. 求曲面在点处的切平面及法线方程.3.设,而,求4. 设,求5. 计算不定积分6. 计算二重积分,其中D是由直线,及曲线在第一象限内所围成的闭区域.7. 求微分方程的通解.8. A, B为何值时,平面垂直于直线?四、(10分)求抛物线及其在点和处的切线所围成的图形的面积.五、(10分)设在[,]上可导,且0<<,试证明在(,)内至少存在一点,使报考学校:______________________报考专业:______________________姓名:-密封线---------------------------------------五2008年浙江省普通高校“专升本”联考《高等数学(一)》试卷1、考试时间为150分钟;2、满分为150分;一. 选择题(本题共有5个小题,每小题4分,共20分)1.函数是( ).奇函数 偶函数有界函数 周期函数2.设函数,则函数在处是( ).可导但不连续 不连续且不可导连续且可导 连续但不可导3.设函数在上,,则成立( ).4.方程表示的二次曲面是( ).椭球面 柱面圆锥面 抛物面5.设在上连续,在内可导,, 则在内,曲线上平行于轴的切线().至少有一条 仅有一条不一定存在 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)1.计算2.设函数在可导, 且,则.3.设函数则4.曲线的拐点坐标5.设为的一个原函数,则6.7.定积分8.设函数,则9. 交换二次积分次序10. 设平面过点且与平面平行,则平面的方程为三.计算题:(每小题6分,共60分)1. 计算.2. 设函数,且,求.3.计算不定积分4.计算广义积分.5.设函数,求.6. 设在上连续,且满足,求.7.求微分方程的通解.报考学校:______________________报考专业:______________________姓名:准考证号:------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------8.将函数展开成的幂级数.9.设函数,求函数在的全微分.10.计算二重积分,,其中.四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分)1.设平面图形由曲线及直线所围成,求此平面图形的面积;求上述平面图形绕轴旋转一周而得到的旋转体的体积.2.求函数的单调区间、极值及曲线的凹凸区间.3.求证:当时,.六2008年浙江省普通高校“专升本”联考《高等数学(二)》试卷报考学校:______________________报考专业:______________________姓名:-密封线-------------------------------1、考试时间为150分钟;2、满分为150分;1. 选择题(每个小题,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当时,是的( ).高阶无穷小 低阶无穷小同阶但不是等阶无穷小 .等阶无穷小2.下列四个命题中成立的是( ).可积函数必是连续函数 单调函数必是连续函数 可导函数必是连续函数 .连续函数必是可导函数3.设为连续函数,则等于( )..4.函数是( ).偶函数 奇函数周期函数 .有界函数5.设在上连续,在内可导,, 则在内,曲线上平行于轴的切线().不存在 仅有一条不一定存在 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)1.设函数在处连续,则.2.3.4.设函数在点处可导,且,则5.设函数,则6.设为的一个原函数,则7.8.9.10.幂级数的收敛半径为三.计算题:(每小题6分,共60分)1.求极限.2.求极限.3.设,求.4.设函数,求.5.设是由方程所确定的函数,求(1).; (2)..6.计算不定积分.7.设函数,求定积分.报考学校:______________________报考专业:______________________姓名:准考证号:------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------8.计算.9.求微分方程的通解.10.将函数展开成的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线及直线所围成,(1)求此平面图形的面积;(2)求上述平面图形绕轴旋转一周而得到的旋转体的体积.2.求过曲线上极大值点和拐点的中点并垂直于的直线方程。

相关文档
最新文档