开关电源课程设计
开关电源设计方案

开关电源设计方案1. 导言开关电源是一种将交流电转换为直流电的电源设备。
它具有高转换效率、小体积、轻重量等特点,被广泛应用于电子设备中。
本文将介绍开关电源的基本工作原理、设计流程以及几个常见的开关电源设计方案。
2. 开关电源的工作原理开关电源的工作原理包括输入滤波、整流、能量存储、调节和输出等步骤。
以下是一个典型的开关电源的工作原理图:开关电源工作原理图开关电源工作原理图1.输入滤波:交流电通过电源的输入端,首先经过输入滤波电路。
该电路使用电容和电感元件,去除交流电中的高频噪声和干扰,使得电源输入的电流更加稳定。
2.整流:经过滤波的交流电信号,经过整流桥或整流管,被转换为一个较高的直流电压。
整流桥通常由4个二极管组成,它们交替导通,使得输入交流电的正半周和负半周都能够被转换为正向的直流电。
3.能量存储:整流后的直流电压通过电容器进行存储。
电容器的作用是储存电荷以平滑输出电压,防止输出电压的波动。
4.调节:开关电源通常具有可调节输出电压的功能。
这是通过调整开关管的导通和截止时间来实现的。
调节电路通常由一片PWM控制芯片和电路反馈元件(如电感、变压器等)组成,以控制开关频率和占空比。
5.输出:经过调节后的直流电压,通过输出滤波电路去除残余的高频噪声,然后供给电子设备的负载。
3. 开关电源设计流程设计一个功能稳定、安全可靠的开关电源需要经过以下几个步骤:3.1 确定设计规格在开始设计之前,需要明确电源的输入和输出要求。
输入要求包括交流电的电压范围、频率、输入的稳定性等;输出要求包括直流电的电压、电流、纹波与噪声等。
3.2 选择拓扑结构常见的开关电源拓扑结构有多种,如Boost、Buck、Buck-Boost、Flyback等。
根据实际需求选择最适合的拓扑结构。
3.3 确定主要元件参数根据设计规格和拓扑结构,确定主要元件的参数,如开关管、变压器、电感、电容等。
3.4 确定控制策略根据实际需求,选择合适的控制策略,如PWM控制、电流模式控制等。
开关电源技术课程设计

一、总体设计思路及框图1.1设计总体思路输入——EMC等滤波——整流(也就一般的AC/DC类似全桥整流模块)——DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC,)——输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC-DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
1.2开关稳压电源的基本原理框图如图1-1所示:二、电路设计及原理分析2.1单元电路设计2.1.1整流滤波电路图2-1 输入整流滤波电路电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。
IEC插头电网滤波器主要是阻止来自电网的干扰进入电源机箱。
PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。
交流输入220V时,整流采用桥式整流电路。
如果将JTI跳线短连时,则适用于110V交流输入电压。
由于输入电压高,电容器容量大,因此在接通电网瞬间会产生很大的浪涌冲击电流,一般浪涌电流值为稳态电流的数十倍。
这可能造成整流桥和输入保险丝的损坏,也可能造成高频变压器磁芯饱和损坏功率器件,造成高压电解电容使用寿命降低等。
所以在整流桥前加入由电阻R1和继电器K1组成的输入软启动电路。
电路如图2-1所示:2.1.2反激式变换器根据电路的结构形式的不同,脉宽式变换器可分为:正激式、反激式、半桥式、全桥式、推挽式和阻塞式。
所谓反激式是指变压器的初级极性与次级极性相反。
反激式变换效率较高,线路简单,能多路输出。
当开关管VT截止时,变压器初级所积蓄的电能向次级传送,这时变压器的次级绕组下端为负,上端为正,二极管VD正向导通,导通电压经过电容C滤波后向负载RL供给电能。
《开关电源教案》课件

《开关电源教案》课件一、教学目标1. 让学生了解开关电源的基本概念、工作原理和主要组成部分。
2. 使学生掌握开关电源的接线方式、使用注意事项和故障处理方法。
3. 培养学生动手操作开关电源设备的能力,提高学生的实际应用技能。
二、教学内容1. 开关电源的基本概念介绍开关电源的定义、特点和应用领域。
2. 开关电源的工作原理讲解开关电源的工作原理,包括输入滤波、开关变换、输出滤波和保护电路等。
3. 开关电源的主要组成部分介绍开关电源的主要组成部分,如输入端、输出端、开关元件、滤波元件和保护元件等。
4. 开关电源的接线方式讲解开关电源的接线方式,包括串联接线、并联接线和混联接线等。
5. 使用注意事项强调开关电源使用过程中的安全注意事项,如正确接线、避免过载使用、防止短路等。
三、教学方法1. 采用讲授法,讲解开关电源的基本概念、工作原理和主要组成部分。
2. 采用演示法,展示开关电源的接线方式和实际操作过程。
3. 采用案例分析法,分析开关电源在使用过程中可能出现的故障和解决方法。
4. 采用小组讨论法,让学生分组讨论开关电源的故障处理技巧。
四、教学准备1. 准备开关电源设备,用于实际操作演示。
2. 准备相关教材、图片和案例资料。
3. 准备投影仪、电脑等教学辅助设备。
五、教学评价1. 课堂问答:评估学生对开关电源基本概念、工作原理和接线方式的掌握程度。
2. 实操考核:检查学生动手操作开关电源设备的能力。
3. 小组讨论:评估学生在故障处理方面的分析和解决问题的能力。
4. 期末考试:全面测试学生对开关电源知识的掌握情况。
六、教学活动1. 引入新课:通过提问方式引导学生思考开关电源在日常生活中的应用,激发学生的学习兴趣。
2. 讲解开关电源的基本概念,让学生了解开关电源的定义、特点和应用领域。
3. 讲解开关电源的工作原理,包括输入滤波、开关变换、输出滤波和保护电路等。
4. 讲解开关电源的接线方式,包括串联接线、并联接线和混联接线等。
《开关电源教案》课件

《开关电源教案》课件一、教学目标1. 了解开关电源的基本概念、工作原理和主要组成部分。
2. 掌握开关电源的优缺点以及应用领域。
3. 学会开关电源的设计与选型方法。
4. 了解开关电源的故障诊断与维护技巧。
二、教学内容1. 开关电源概述定义分类应用领域2. 开关电源工作原理开关电源的基本电路开关元件脉宽调制(PWM)技术3. 开关电源主要组成部分输入滤波器整流器开关变换器输出滤波器保护电路4. 开关电源的优缺点优点缺点5. 开关电源的设计与选型设计考虑因素选型依据三、教学方法1. 讲授法:讲解开关电源的基本概念、工作原理、主要组成部分、优缺点等知识点。
2. 案例分析法:分析实际应用中的开关电源案例,加深学生对知识点的理解。
3. 互动教学法:提问、讨论,激发学生思考,提高课堂参与度。
4. 实践操作法:安排课后实践,让学生动手设计简单的开关电源电路,巩固所学知识。
四、教学资源1. PPT课件:展示开关电源的相关图片、电路图、原理图等。
2. 教材或参考资料:提供详细的开关电源理论知识。
3. 实验设备:用于实践操作,加深对知识的理解。
五、教学评价1. 课堂问答:评估学生对开关电源基本概念、工作原理等的掌握程度。
2. 课后作业:检查学生对开关电源设计与选型的理解与应用能力。
3. 实验报告:评价学生在实践操作中的表现,包括故障诊断与维护技巧。
4. 综合考试:全面测试学生对开关电源知识的掌握。
六、教学安排1. 课时:本教案共需10课时,每课时45分钟。
2. 课程安排:第1课时:开关电源概述第2课时:开关电源工作原理第3课时:开关电源主要组成部分第4课时:开关电源的优缺点第5课时:开关电源的设计与选型第6课时:开关电源案例分析第7课时:开关电源故障诊断与维护第8课时:实验一:简单开关电源设计第9课时:实验二:开关电源故障诊断与维修七、教学重点与难点1. 教学重点:开关电源的基本概念、工作原理和主要组成部分。
开关电源的优缺点以及应用领域。
开关电源设计(精通型)

开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。
它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。
在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。
2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。
(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。
二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。
(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。
(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。
2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。
(2)电压和电流等级:确保开关器件能承受最大电压和电流。
(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。
(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。
3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。
(2)精度:提高控制电路的采样精度,降低输出电压的波动。
(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。
三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。
3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。
4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。
5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。
直流开关电源设计课设

直流开关电源设计课设
直流开关电源是一种将交流电转换为直流电的电路,其具有工作效率高、体积小、重量轻等优点,广泛应用于电子设备、工业控制、通信等领域。
以下是一些关于直流开关电源设计课程设计的建议:
1. 设计任务和要求:在开始课程设计之前,需要明确设计任务和要求,如设计一个降压型直流开关电源,输入电压为220V交流电,输出电压为12V直流电,输出电流为5A等。
2. 电路原理图设计:根据设计任务和要求,设计电路原理图,包括主电路、控制电路、保护电路等。
在设计过程中,需要考虑电路的稳定性、可靠性和安全性。
3. 元器件选型:根据电路原理图,选择合适的元器件,如开关管、电感、电容、二极管等。
需要注意元器件的规格参数、性能指标和可靠性。
4. 计算和优化:根据设计任务和要求,进行电路参数的计算和优化,如开关频率、占空比、电感值等。
可以通过模拟仿真软件对计算结果进行验证和优化。
5. 实验调试:根据设计任务和要求,进行实验调试,包括电路板的制作、元器件的安装和调试、实际运行效果的测试等。
6. 报告撰写:在完成实验调试后,撰写课程设计报告,包括设计任务和要求、设计思路和方案、实验结果和分析等。
7. 答辩和评估:在完成课程设计报告后,进行答辩和评估,包括回答问题、展示成果、接受评估和改进建议等。
通过以上的课程设计过程,可以帮助学生深入了解直流开关电源的原理和设计方法,提高实际操作能力和解决问题的能力,同时也可以为学生的后续学习和职业发展提供支持和帮助。
开关电源设计步骤

开关电源设计步骤
1.需求分析(100字)
在设计开关电源之前,首先需要明确设计的目标和需求。
这包括输出电压、输出电流、输入电压范围、效率要求、输出电流稳定性等。
根据不同的需求,确定开关电源的拓扑和参数。
2.电路设计(300字)
在进行电路设计之前,需要选择开关电源的拓扑结构。
常见的拓扑结构有Buck、Boost、Buck-Boost、Sepic等。
根据需求和所选拓扑结构,设计主要电路模块包括开关管、滤波电感、修正电容、输出滤波电容等。
3.电路实现(300字)
根据电路设计确定的电路参数,在电路板上布线,连接各个器件和元件。
布线时需考虑到电路的稳定性和抗干扰能力。
注意分离高压和低压区域,减少互相干扰。
4.性能评估(200字)
完成电路实现后,需要进行性能评估,检验设计是否满足预期需求。
主要评估指标包括输出电压稳定性、负载调整能力、效率、开关频率、静态功耗、温度等。
通过测试数据和实际情况进行比较,查找问题和优化空间。
5.优化(200字)
根据性能评估的结果和问题分析,进行电路的优化。
优化可以包括改进布线、更换元器件、调整控制策略等。
目的是提高电路的性能,使其更加稳定、高效和可靠。
总结:
开关电源设计步骤包括需求分析、电路设计、电路实现、性能评估和优化。
通过明确需求,选择合适的拓扑结构,并根据电路设计参数进行电路实现,然后进行性能评估和优化。
这些步骤相互关联,需要不断地调整和优化,以得到满足需求的高性能开关电源设计。
第1课 开关电源的设计

从市场的角度设计电源
➢ 电源方案的选择: 采用何种工作方式反激、正激、推挽、半
桥、全桥等; ➢ 产品的工作环境:
主要考虑温度、湿度和灰尘等(例如销 往海南的电源和销往黑龙江的就不一样, 一个是注意温度和湿度,另一个要注意温 度和干燥防尘); ➢ 产品的保护方面考虑。
3/30/2020
3/30/2020
输出直流电压Vo计算
➢ 输出电压为: Vo/Vi = -d/1-d
3/30/2020
电源的技术指标
➢ 线形电源: 工作在线形放大区内;纹波小;电路比较简单; 效率低,35~60%; 形式比较简单,只能用在降压环境下;
➢ 开关电源: 效率高。70~95%; 形式多种多样,升压、降压、升降压等; 适用范围广,40V~480V; 小巧轻便。
➢ 稳压: 稳压管、复合管、三端稳压管(大家设计重点考 虑哪些因素呢?) 注意隔离、端子区分、散热、计算的问题
3/30/2020
开关电源的组成2
➢ PWM控制部分 主要包括:取样、供电、辅助供电、开关
3/30/2020
开关电源的组成3
➢ 输出(滤波、整流、稳压):
3/30/2020
典型电路的组成
➢ 整流: 半波(电压一般U/2)、全桥(√2U)、倍压 ( 2√2U )二倍压。
➢ 滤波: 电感、电容 (根据什么特性滤波?) 电流不能突变、电压不能突变。
电压Vo; ➢ 当S截至时,D上负下正,是由L感应的电压所至,
由于没有能量补充,所以电感IL是下降的;
所以:Vo=(Ton/T)×Vin=D × Vin
课后作业:请出计算Buck电路中的电感L 值的公式。
3/30/2020
Boost电路原理图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气与电子信息工程学院《电力电子装置设计与制作课程设计报告》课设名称:开关直流升压电源(BOOST)设计专业名称:电气工程及其自动化班级:学号:姓名:指导教师:课设时间:课设地点:电气与电子信息工程学院《电力电子装置设计与制作》课程设计任务书学生姓名:专业班级:指导教师:工作部门:一、课程设计题目:开关直流升压电源(BOOST)设计二、课程设计内容根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。
如实验结果不满足要求,则修改设计,直到满足要求为止。
题目:开关直流升压电源(BOOST)设计主要技术指标:1)输入交流电压220V(可省略此环节)。
2)输入直流电压在11-12V之间。
3)输出直流电压17V,输出电压纹波小于2%。
4)输出电流1A。
5)采用脉宽调制PWM电路控制。
目录摘要 (5)第一章方案选择和方案论证 (7)1.系统方案设计 (7)2.方案论证 (7)第二章主电路计算和器件选择 (8)1.设计要求 (8)2.选择开关管的频率 (8)3.占空比计算 (8)4.电感的计算(按D=35.29%) (8)5.电容的计算 (8)6.电感峰值电流的计算(按D=35.29%) (8)7.开关管的选择 (8)8.开关损耗的计算(按D=35.29%) (9)9.二极管的选择 (9)10.电阻的计算 (9)第三章系统功能及原理 (10)1.系统功能 (10)2. boost电路工作原理 (10)第四章各模块的功能和原理 (13)1. TL494工作原理 (13)2. 开关频率的计算 (13)第五章 MATLAB仿真 (15)1.仿真原理图 (15)2.仿真结果 (15)3.仿真结果分析 (16)第六章实验结果以及分析 (17)1.实验结果 (17)2.结果分析 (17)第七章硬件电路 (18)1.焊接电路主电路图 (18)2.焊接电路控制电路图 (18)3.焊接实物图 (19)第八章总结 (20)参考文献 (20)摘要提高转换器(升压转换器)是一个DC-to-DC电源转换器的输出电压大于输入电压。
它是一个类的开关电源(smp)至少含有两个半导体(二极管和晶体管)和至少一个储能元件,电容,电感器,或两者的组合。
过滤器由电容器(有时结合电感)通常添加到转换器的输出,以减少输出电压纹波。
提高转换器的基本原理。
开关通常是一个MOSFET、IGBT或者是机器。
概述电压的提高转换器可以来自任何合适的直流源,如电池、太阳能电池板、整流器和直流发电机。
这一过程变化一个直流电压不同的直流电压称为直流直流转换。
提高转换器是一个直流对直流转换器的输出电压大于源电压。
提高转炉有时被称为一个升压转换器,因为它“步骤”源电压。
自(P=VI)必须节约用电,输出电流低于源电流。
历史为了效率高,smp开关必须打开或关闭快速和较低的损失。
的出现,一个商业半导体开关在1950年代代表一个重要的里程碑,让smp如boost变换器成为可能。
直流对直流转换器主要是在1960年代早期,当半导体开关已经变得可用。
航空航天工业需要小,重量轻,高效的电力转换器导致了转换器的快速发展。
切换系统如smp设计挑战,因为他们的模型依赖于一个开关是否打开或关闭。
r·d·麦德布鲁克从加州理工学院在1977年出版的今天使用的模型直流对直流转换器。
麦德布鲁克平均每个开关状态的电路配置状态空间平均技术。
这简化了两个系统。
新模型导致深刻的设计方程,帮助smp的增长。
关键词:斩波电路、BOOST电路A boost converter (step-up converter) is a DC-to-DC power converter with an output voltage greater than its input voltage. It is a class of switched-mode power supply (SMPS) containing at least two semiconductors (a diode and a transistor) and at least one energy storage element, a capacitor, inductor, or the two in combination. Filters made of capacitors (sometimes in combination with inductors) are normally added to the output of the converter to reduce output voltage ripple.The basic schematic of a boost converter. The switch is typically a MOSFET, IGBT, or BJT.OverviewPower for the boost converter can come from any suitable DC sources, such as batteries, solar panels, rectifiers and DC generators. A process that changes one DC voltage to a different DC voltage is called DC to DC conversion. A boost converter is a DC to DC converter with an output voltage greater than the source voltage. A boost converter is sometimes called a step-up converter since it “steps up” the source voltage. Since power () must be conserved, the output current is lower than the source current.HistoryFor high efficiency, the SMPS switch must turn on and off quickly and have low losses. The advent of a commercial semiconductor switch in the 1950s represented a major milestone that made SMPSs such as the boost converter possible. The major DC to DC converters were developed in the early 1960s when semiconductor switches had become available. The aerospace industry’s need for small, lightweight, and efficient power converters led to the converter’s rapid development.Switched systems such as SMPS are a challenge to design since their models depend on whether a switch is opened or closed. R. D. Middlebrook from Caltech in 1977 published the models for DC to DC converters used today. Middlebrook averaged the circuit configurations for each switch state in a technique called state-space averaging. This simplification reduced two systems into one. The new model led to insightful design equations which helped the growth of SMPS.第一章方案选择和方案论证1.系统方案设计本系统采用闭环控制需要对一直流电源进行直流斩波,通过控制开关管的导通时间,来控制最终输出的电压。
整个系统包括BOOST主电路、闭环调节模块、电压反馈模块。
系统方框图如图1所示:图1 系统方框图2.方案论证闭环控制系统输出电压由给定电压决定,当给定电压与反馈电压不相等时积分电容就不断地冲放电改变电压调节器的输出从而改变可输出的PWM波的占空比进而改变输出电压的大小,方案可行。
第二章主电路计算和器件选择1.设计要求1)输入交流电压220V(可省略此环节)。
2)输入直流电压在11--12V之间。
3)输出直流电压17V ,输出电压相对变化量小于2%。
4)输出电流1A 。
5)采用脉宽调制PWM 电路控制。
2.选择开关管的频率本设计选择20KHz 的开关管3.占空比计算DU U i o -=11(3-1) 得D=29.41%--35.29%4.电感的计算(按D=35.29%)532o 21028.621020117)3529.01(3529.02)1(-⨯=⨯⨯⨯-=-≥osI T U D D L (3-2)取H L μ63=5.电容的计算F U f D I C o 53max max 1019.5%2171020%29.351-⨯=⨯⨯⨯⨯=∆≥(3-3) 取F C μ52=6.电感峰值电流的计算(按D=35.29%)A LTD D U I o L 08.3)1(=-=∆ (3-4)7.开关管的选择Mosfet 开关损耗小,开关速度快,所以适用于高频切换的场合;IGBT 导通压降低,耐压高,所以适用于高压大功率场合。
一般而言,IGBT 的正压驱动在15V 左右,而Mosfet 建议在10—12V 左右。
所以从功耗的角度来说,选择Mosfet 。
Mosfet 的型号为IFR540N, IFR540N 的极限电压为100V ,极限电流为27A ,功率为120W ,导通电阻为Ω=m R on ds 44)(,V U DS 100=,A I DSS μ25=,满足设计条件。
8.开关损耗的计算(按D=35.29%)W D R I D D R I P on ds on ds d on 3)(2)(21059.4)21(-⨯=∆==(3-5)W D I U P DSS DS off 36106.1%)29.351(1025100)1(--⨯=-⨯⨯⨯=-= (3-6)9.二极管的选择选择FR602, FR602的最大反向电压为100V ,最大正向电流为6A,满足条件。