开关电源课程设计
开关电源技术课程设计教案大

《开关电源技术》课程设计教学大纲英文名称:Switching Power Supply Technology适用专业:电气工程及其自动化设计周数:2学分:2讲授学时:4学时实验(上机)学时:16学时一、课程设计的性质、目的和任务:本课程设计是在学习完《开关电源技术》课程之后进行的一个重要的实践性教学环节,是工程技术应用型人才培养目标的重要组成部分。
在教师指导下让学生独立完成,一方面巩固课程知识,加深对理论知识的理解,一方面训练学生综合运作所学的理论知识,掌握一定的设计方法和设计思想,能初步解决一些实际问题;培养学生查阅资料,独立获取新知识、新信息的能力。
课程性质:《开关电源技术课程设计》是一门综合运用电子技术、微机原理、自动控制原理、电力电子技术及仿真技术等课程知识,进行开关电源电路和系统设计的课程,是本专业的一门重要的专业实践课。
目的:培养学生以下几个方面的能力:1.综合运用所学知识,进行开关电源电路和系统设计的能力。
2.了解与熟悉常用的电力电子电路的电路拓扑、控制方法。
3.理解和掌握常用的开关电源电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。
4.具有一定的开关电源电路及系统仿真实验和调试的能力。
二、课程的教学基本要求依据以上的教学内容和教学环节,在本课程设计的实施过程中应遵循以下的基本要求:(一)题目布置和人员配置依据实验条件,选取合适的课程设计题目,根据学生数量,选取适当的题目数量,以使学生能够得到充分的训练和提高。
(二)学生设计和实验过程中的指导在设计和实验过程中,教师既不能包办代替,也不能放任自流。
重点解决学生的疑难问题,重点在于指导。
(三)考核考核形式采用设计报告、实验和答辩三方面综合评定成绩的方式,重点考核学生的设计态度,综合运用所学的能力和创新的能力,以及实际动手、文字表达和表述能力等。
三、课程内容与要求教学内容本课程设计既要立足实验室现有条件,充分挖掘潜力,又要达到综合运用所学,培养和提高学生的分析问题和解决问题的能力的设计目的。
开关电源技术课程设计

一、总体设计思路及框图1.1设计总体思路输入——EMC等滤波——整流(也就一般的AC/DC类似全桥整流模块)——DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC,)——输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC-DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
1.2开关稳压电源的基本原理框图如图1-1所示:二、电路设计及原理分析2.1单元电路设计2.1.1整流滤波电路图2-1 输入整流滤波电路电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。
IEC插头电网滤波器主要是阻止来自电网的干扰进入电源机箱。
PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。
交流输入220V时,整流采用桥式整流电路。
如果将JTI跳线短连时,则适用于110V交流输入电压。
由于输入电压高,电容器容量大,因此在接通电网瞬间会产生很大的浪涌冲击电流,一般浪涌电流值为稳态电流的数十倍。
这可能造成整流桥和输入保险丝的损坏,也可能造成高频变压器磁芯饱和损坏功率器件,造成高压电解电容使用寿命降低等。
所以在整流桥前加入由电阻R1和继电器K1组成的输入软启动电路。
电路如图2-1所示:2.1.2反激式变换器根据电路的结构形式的不同,脉宽式变换器可分为:正激式、反激式、半桥式、全桥式、推挽式和阻塞式。
所谓反激式是指变压器的初级极性与次级极性相反。
反激式变换效率较高,线路简单,能多路输出。
当开关管VT截止时,变压器初级所积蓄的电能向次级传送,这时变压器的次级绕组下端为负,上端为正,二极管VD正向导通,导通电压经过电容C滤波后向负载RL供给电能。
开关电源课程设计报告

电力电子课程设计报告题目:开关电源课程设计专业:电气自动化班级:电气1012学号:日期:2011 年11月16日一、设计要求(1)输入电压:AC220±10%V(2)输出电压: 12V(3)输出功率:12W(4)开关频率: 80kHz二、反激稳压电源的工作原理图2-1 反激稳压电源的电路图三、反激电路主电路设计(1)(1)Np-=+(3-1)Vdc Ton Vo TrNsm1.反激变压器主电路工作原理反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.1)工作过程:S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。
反激电路的工作模式:反激电路的理想化波形S i S i V D t ot o fft t t tO OO O 反激电路原理图电流连续模式:当S 开通时,W2绕组中的电流尚未下降到零。
输出电压关系: 电流断续模式:S 开通前,W2绕组中的电流已经下降到零。
输出电压高于式(8-3)的计算值,并随负载减小而升高,在负载为零的极限情况下,….因此反激电路不应工作于负载开路状态。
B B SBH图 8-18 磁心复位过2. 设计原则和设计步骤变压器设计步骤:1)计算原边绕组流过的峰值电流。
《开关电源教案》课件

《开关电源教案》课件一、教学目标1. 让学生了解开关电源的基本概念、工作原理和主要组成部分。
2. 使学生掌握开关电源的接线方式、使用注意事项和故障处理方法。
3. 培养学生动手操作开关电源设备的能力,提高学生的实际应用技能。
二、教学内容1. 开关电源的基本概念介绍开关电源的定义、特点和应用领域。
2. 开关电源的工作原理讲解开关电源的工作原理,包括输入滤波、开关变换、输出滤波和保护电路等。
3. 开关电源的主要组成部分介绍开关电源的主要组成部分,如输入端、输出端、开关元件、滤波元件和保护元件等。
4. 开关电源的接线方式讲解开关电源的接线方式,包括串联接线、并联接线和混联接线等。
5. 使用注意事项强调开关电源使用过程中的安全注意事项,如正确接线、避免过载使用、防止短路等。
三、教学方法1. 采用讲授法,讲解开关电源的基本概念、工作原理和主要组成部分。
2. 采用演示法,展示开关电源的接线方式和实际操作过程。
3. 采用案例分析法,分析开关电源在使用过程中可能出现的故障和解决方法。
4. 采用小组讨论法,让学生分组讨论开关电源的故障处理技巧。
四、教学准备1. 准备开关电源设备,用于实际操作演示。
2. 准备相关教材、图片和案例资料。
3. 准备投影仪、电脑等教学辅助设备。
五、教学评价1. 课堂问答:评估学生对开关电源基本概念、工作原理和接线方式的掌握程度。
2. 实操考核:检查学生动手操作开关电源设备的能力。
3. 小组讨论:评估学生在故障处理方面的分析和解决问题的能力。
4. 期末考试:全面测试学生对开关电源知识的掌握情况。
六、教学活动1. 引入新课:通过提问方式引导学生思考开关电源在日常生活中的应用,激发学生的学习兴趣。
2. 讲解开关电源的基本概念,让学生了解开关电源的定义、特点和应用领域。
3. 讲解开关电源的工作原理,包括输入滤波、开关变换、输出滤波和保护电路等。
4. 讲解开关电源的接线方式,包括串联接线、并联接线和混联接线等。
直流开关电源设计课设

直流开关电源设计课设
直流开关电源是一种将交流电转换为直流电的电路,其具有工作效率高、体积小、重量轻等优点,广泛应用于电子设备、工业控制、通信等领域。
以下是一些关于直流开关电源设计课程设计的建议:
1. 设计任务和要求:在开始课程设计之前,需要明确设计任务和要求,如设计一个降压型直流开关电源,输入电压为220V交流电,输出电压为12V直流电,输出电流为5A等。
2. 电路原理图设计:根据设计任务和要求,设计电路原理图,包括主电路、控制电路、保护电路等。
在设计过程中,需要考虑电路的稳定性、可靠性和安全性。
3. 元器件选型:根据电路原理图,选择合适的元器件,如开关管、电感、电容、二极管等。
需要注意元器件的规格参数、性能指标和可靠性。
4. 计算和优化:根据设计任务和要求,进行电路参数的计算和优化,如开关频率、占空比、电感值等。
可以通过模拟仿真软件对计算结果进行验证和优化。
5. 实验调试:根据设计任务和要求,进行实验调试,包括电路板的制作、元器件的安装和调试、实际运行效果的测试等。
6. 报告撰写:在完成实验调试后,撰写课程设计报告,包括设计任务和要求、设计思路和方案、实验结果和分析等。
7. 答辩和评估:在完成课程设计报告后,进行答辩和评估,包括回答问题、展示成果、接受评估和改进建议等。
通过以上的课程设计过程,可以帮助学生深入了解直流开关电源的原理和设计方法,提高实际操作能力和解决问题的能力,同时也可以为学生的后续学习和职业发展提供支持和帮助。
dsp课程设计直流开关电源设计

dsp课程设计直流开关电源设计一、课程目标知识目标:1. 学生能理解直流开关电源的基本原理,掌握其电路组成及工作过程。
2. 学生能掌握开关电源中关键元器件的作用,如开关器件、滤波器、稳压器等。
3. 学生能了解开关电源设计的基本方法和步骤。
技能目标:1. 学生能运用所学知识,设计简单的直流开关电源电路。
2. 学生能运用仿真软件对开关电源电路进行仿真测试,分析并解决常见问题。
3. 学生能通过实际操作,搭建并调试开关电源电路。
情感态度价值观目标:1. 学生培养对电力电子技术的兴趣,增强对开关电源技术在实际应用中的认识。
2. 学生在团队协作中提高沟通与表达能力,培养合作精神。
3. 学生在学习过程中,培养解决问题的能力,增强自信心和自主学习意识。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程为电子技术专业课程,强调实践性与应用性。
2. 学生特点:学生具备一定的电子技术基础知识,具有较强的动手能力和求知欲。
3. 教学要求:注重理论联系实际,以学生为中心,引导学生主动探究,培养实践能力。
二、教学内容1. 开关电源基本原理:讲解开关电源的工作原理,对比线性电源与开关电源的优缺点,介绍开关电源的转换效率及电磁干扰问题。
教材章节:第一章 开关电源概述2. 开关电源电路组成:分析开关电源的主要电路组成部分,包括开关器件、驱动电路、反馈环路、滤波器等。
教材章节:第二章 开关电源电路组成及工作原理3. 开关电源设计方法:讲解开关电源设计的基本步骤,如确定电源需求、选择开关器件、设计控制环路等。
教材章节:第三章 开关电源设计方法4. 仿真与实际操作:运用仿真软件进行开关电源电路设计、仿真测试及优化,实际操作中搭建并调试开关电源电路。
教材章节:第四章 开关电源仿真与实验5. 常见问题分析:分析开关电源设计中可能遇到的问题,如开关噪声、电压波动、稳定性等,并提出解决方案。
教材章节:第五章 开关电源设计与测试中的问题及解决方法教学进度安排:1. 第1周:开关电源基本原理及优缺点分析2. 第2周:开关电源电路组成及工作原理3. 第3周:开关电源设计方法及步骤4. 第4周:仿真软件操作与实践5. 第5周:实际操作——搭建并调试开关电源电路6. 第6周:常见问题分析及解决方案讨论教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,提高学生的实际操作能力。
开关电源课程设计

目录一、引言 (2)1.1 设计背景 (2)1.2 设计基本要求 (2)二、功率开关管的选择................................................................. 错误!未定义书签。
三、U C3842 简介 .............................................................. ..错误!未定义书签。
3.1UC3842 的结构............................................. 错误!未定义书签。
3.2UC3842 的功能............................................. 错误!未定义书签。
四、变压器设计 (6)4.1估算输入和输出功率 (6)4.2计算最小和最大输入电流 (7)4.3计算脉冲信号最大占空比 (8)4.4 磁芯参数确定方法 (8)五、光耦信号传输电路 (9)5.1保护采样电路 (9)5.2微机处理芯片电路 (9)5.3变频器的控制方式选择 (10)六、输出滤波电路 (11)七、整体电路与实物 (12)八、心得体会 (14)一、引言1.1设计背景开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM控制IC和MOSFE构成。
随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。
目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
单管的DC/DC转换器有正激式(Forward)和反激式(Flyback )两种。
双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter ),双管反激式(Double Transistr Flyback Converter )、推挽式(Push-Pull Converter) 和半桥式(Half-Bridge Converter )四种。
多路开关电源课程设计

多路开关电源课程设计一、课程目标知识目标:1. 学生能理解多路开关电源的基本原理与功能,掌握其电路组成及各部分的作用。
2. 学生能够运用所学的电路知识,分析并设计简单的多路开关电源电路。
3. 学生了解多路开关电源在实际应用中的优缺点,以及与其他类型电源的比较。
技能目标:1. 学生能够运用所学知识,正确选择和使用电子元件,搭建并测试多路开关电源电路。
2. 学生通过实践操作,掌握多路开关电源的调试和故障排除方法。
3. 学生能够运用相关软件或工具,进行多路开关电源电路的仿真与优化。
情感态度价值观目标:1. 培养学生积极探索、勇于实践的科学精神,增强学生对电子技术学习的兴趣。
2. 培养学生团队合作意识,学会在团队中分工与协作,共同完成项目任务。
3. 增强学生的环保意识,让学生认识到节能环保在电源设计中的重要性。
课程性质:本课程为电子技术课程的一部分,以实践操作为主,理论教学为辅,旨在培养学生的动手能力和实际应用能力。
学生特点:本课程面向初中或高中年级学生,学生对电子技术有一定的基础,具备基本的电路知识和操作技能。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,引导学生通过实践探索,掌握多路开关电源的设计与应用。
同时,关注学生的个体差异,因材施教,使每个学生都能在课程中取得进步。
通过课程学习,使学生能够达到以上设定的知识、技能和情感态度价值观目标。
二、教学内容1. 多路开关电源基本原理:包括电源的定义、分类及其工作原理,重点讲解多路开关电源的转换过程和关键性能指标。
2. 电路组成与元件选择:介绍多路开关电源的电路组成,分析各部分功能,学习如何选择合适的电子元件,如开关器件、变压器、整流器件等。
3. 电路设计与搭建:学习多路开关电源电路设计方法,掌握电路图的绘制和解读,实际操作搭建简易的多路开关电源电路。
4. 电路调试与故障排除:学习多路开关电源电路的调试方法,掌握常见故障的排除技巧,提高学生的实际操作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原理工大学课程设计任务书指导教师签名:日期:前言随着电力电子技术的发展,开关电源的应用越来越广泛。
反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。
开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。
开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。
本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。
通过输出反馈经UC3842控制占空比,从而使输出电压稳定。
反激电路中开关管开通原边线圈储存能量,副边不导通。
原边关断时,线圈储存的能量通过互感向负载提供能量。
输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。
另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。
设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。
论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。
目录前言第一章开关电源概述 (1)1.1开关电源综述 (1)1.2反激式开关电源介绍 (2)第二章总体方案的确定 (2)2.1总体设计思路及框图 (2)2.2仿真原理图 (3)第三章具体电路设计 (5)3.1EMI滤波电路 (5)3.2整流滤波电路设计 (6)3.3高频变压器的设计 (7)3.4控制反馈电路的设计 (15)3.5保护电路的设计 (17)3.6输出侧滤波电路设计 (18)第四章电路仿真与结果 (19)4.1 EMI滤波电路 (19)4.2整流电路 (21)4.3反激型电路 (22)4.4反馈电路 (23)4.5总电路 (24)心得体会 (25)参考文献 (26)反激型开关电源电路设计第一章开关电源概述1.1开关电源综述电源是各种电子设备不可缺少的组成部分,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠的工作。
目前常用的直流稳压电源分线性电源和开关电源两大类。
由于开关电源有功耗小、效率高、体积小、重量轻、稳压范围宽、滤波效率高、滤波电容的容量和体积小的优点,目前已成为稳压电源主流产品。
开关电源是由全波整流器,开关管Vi,激励信号,续流二极管VD,储能电感和滤波电容组成。
其核心部分是一个直流变压器。
直流变换器是把直流转换成交流,然后又把交流转换成直流的装置。
采用直流变换器可以把一种直流供电电压变换成极性、数值各不相同的多种直流供电电压。
开关电源的缺点是存在较严重的开关干扰。
开关电源中,功率调整开关晶体管V工作在开关状态,它产生的交流电压和电流通过电路中的其他元件产生尖峰干扰和谐振干扰,这些干扰如果不采取一定措施进行抑制、消除和屏蔽,就会严重的影响整机的正常工作。
此外由于开关稳压电源振荡器没有工频变压器隔离,这些干扰就会串入工频电网,使附近的其他电子设备、仪器和家用电器受到严重干扰。
根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。
其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;图1.1开关电源典型结构当交流输入电压、负载等变化时,直流输出电压也会变化。
这是可以调节逆变器输出的方波脉冲电压的宽度,使直流输入电压保持稳定。
1.2反激式开关电源介绍反激式开关电源的典型电路如下图所示。
反激,是指当开关管VT1导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。
反激式开关电源以主开关管的周期性导通和关断为主要特征。
开关管导通时,变压器一次侧线圈内不断储存能量;而开关管关断时,变压器将一次侧线圈内储存的电感能量通过整流二极管给负载供电,直到下一个脉冲到来,开始新的周期。
开关电源中的变压器起着储能元件的作用,可以看做是一对互相耦合的电感,其功能有:一通过它实现电场-磁场-电场能量的转换,为负载提供稳定的直流电压;二可以实现变压器功能,通过脉冲变压器的初级绕组和多个次级绕组可以输出多路不同的直流电压值,为不同的电路单元提供直流电量;三可以实现传统电源变压器的电隔离作用,将热地与冷地隔离,避免触电事故,保证用户端的安全。
图2.2反激型开关电源原理图第二章总体方案的确定2.1总体设计思路及框图2.1.1设计总体思路输入——EMI滤波——整流滤波(也就一般的AC/DC类似全桥整流滤波模块)——DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC,)——输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC-DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
2.1.2开关稳压电源的基本原理框图如图2.1所示:图2.1开关稳压电源基本原理框图2.2仿真原理图由整流,直流变压器,控制电路,保护电路及芯片UC3842构成具体原理图见附表。
第三章具体电路设计3.1EMI滤波电路为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路如图3.1所示。
图3.1 EMI 滤波器标准的EMI 滤波器通常由串联电抗器和并联电容器组成的低通滤波电路,其作用是允许设备正常工作时的频率信号进入设备(一般来说,就是工频50/60Hz 或者中频400Hz ),而对高频的干扰信号有较大的阻碍作用。
电路中包括共模扼流圈(亦称共模电感L )、滤波电容41C C -。
L 对差模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
L 的电感量与EMI 滤波器的额定电流I 有关。
当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。
此外,适当增加电感量,可改善低频衰减特性。
接于相线和中线之间,称为差模电容,接于相线或中线与地之间,称为共模电容。
1C 和2C 采用薄膜电容器,容量范围大致是0.01F μ-0.47F μ主要用来滤除差模干扰。
3C 和4C 跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。
3C 和4C 也可并联在输入端,选用陶瓷电容,容量范围是2200pF -0.1uF 。
为减小漏电流,电容量不得超过0.1uF ,并且电容器中点应与大地接通。
41C C -的耐压值均为630VDC 或250V AC 。
R 为泄放电阻,可将3C 上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端不带电,保证使用的安全性。
3.2整流滤波电路设计3.2.1单相桥式不可控整流电路在整流滤波环节采取的是单相不可控整流滤波电路(主要应用于小功率单相交流输入的场合)。
目前大量普及的微机电视机等家电产品所采用的开关电源中,其整流部分就是单相桥式不可控整流电路,如图3.2所示:图3.2 单相桥式不可控整流电路已知输入电压为380V*(1±50%),所以输入电压最大值为570V ,最小为190V 。
输出为15V ,6A 。
3.2.2整流桥输出电压输入整流桥最高承受电压是输入电压为570V 时,其峰值为考虑到整流桥需要承受较高的浪涌电压,可以选取该电压的1.5-2倍以上的电压等级,实际可以选取1200-1500V 电压的整流桥。
输入整流桥承受的最大电流出现在输入电压最低时,估算输出功率为90W 时,效率为90%,则输入功率为100W ,输入电压为190V 时,输入电流有效值为考虑到启动瞬间的浪涌电流,取整流桥的电流容量为2A 以上即可。
V190二极管承受的电压:3.3高频变压器的设计3.3.1计算原边绕组流过的峰值电流pk I每一工作周期能量乘上工作频率f 为输出功率o P设为不连续工作模式,在on t 时间内电流p I为0至pk I ,则因为s on T D t max = (3-5)所以spk ps T D I L V max = (3-6)所以化简得:式中的20V 假设为直流纹波及二极管压降之和。
设反激变压器最大占空比45.0max ≤D ,代入式(3-8)得3.3.2原边绕组电感值由式(3-6)得:假设电压s V 波动下限为7%,则()()291.23107.017.248min =-⨯=s V ()V (3-13)3.3.3求min D在()max s V 时,有最小占空比min D 。
当输入电压s V 有最大到最小变化时,占2onIpkI L p 45.0291.231⨯空比有最小到最大。
其关系可表为:(3-15) 式中k —电压s V 波动范围系数。
最大输入电压()max s V ,按s V 峰值时向上波动10%计算,即:()()52.4031.1152270max =⨯-⨯=s V ()V (3-16)假设直流纹波电压及二极管管压降之和为15V ,故上式中减去15V 。
(3-17)代入式(3)得:(3-18)3.3.4选择磁芯尺寸计算磁芯面积乘积p A 。
p A 为w A (磁芯窗口面积)和e A (磁芯有效截面积)的乘积。
在厂商资料目录中查出p A 值。
设计者根据要求的限高等尺寸和形状来决定使用哪一种经济的磁芯及其形状和大小。
如果原边绕组的线径为w d ,带绕组的磁芯所占的p A '值可按下式计算: (3-19) 式中s B B 21=∆表明工作磁感应强度变化值取饱和值s B 的一半。
例如TDK-H7CL的材料,E-E 形式的磁芯,100摄氏度时T G B s s 39.03900==,如图3.3所示图3.3 TDK-H7CL 磁芯B-H 特性曲线()maxmax max min 1D k D DD +-=()()min max s s V Vk =()()62.170.24852.403min max ===s s V V k ()34.045.062.145.0145.0min =+⨯-=D ()B d I L A w pk p p ∆⨯='821063.6如果引用欧美国家常用单位密尔,可写为()mil 。