经济数学基础-微积分课后习题答案_四川人民出版社_龚德恩

合集下载

经济管理类微积分龚德恩第二版参考答案 第三章导数与微分

经济管理类微积分龚德恩第二版参考答案 第三章导数与微分

(2) 已知 y = f (3)
a + x

x
4 2
,则 y ′ =
f ( θn ) =
(5) 设 y =f ( x ) =x 在点 (1,1 ) 处的切线与 x 轴的交点为 ( θn ,0 ) , 则 nlim
n
1 (4) 曲线 y = 2 在点 ( - 1,1) 的切线方程为 x ;
d ( arcsin x ) = d ( arccos x )
16.求下列各数的近似值 : (1) 2 解
1. 001
(3) sin 29° ;
; (2) ln1. 002; (4)

76 .
(2 ln 2) Δ x. (1) 令 f ( x ) = 2 ,d f =
x x
取 x0 = 1,Δ x- 0. 001,则 2
1. 00 1 1 1
≈ f (1) + df | x 0 =1 , Δ x =0 . 0 01 = 2+ 0. 002 × ln2≈2. 001386( ln2≈0. 6931) . ln (1. 002) ≈ f(1) + df
边际收益为
于是 ,边际利润为
18.已知某产品的需求函数和总成本函数分别为 : 其中 x 为销售量 ,P 为价格 . 解 利润函数为
1 10 . L′ ( x) = [ R ( x) - C( x) ] ′ = R′ ( x) - C′ ( x) = 2 - (x + 2) x p= 1000 - 2 x ,C ( x ) = 5000 + 20 x
2 2
∴y ′ ( x) = lim Δ x 0

= (x + Δ x) - x + 3Δ x= (2 x + 3+ Δ x) Δ x Δ y =lim (2 x + 3+ Δ x) = 2x + 3. Δ x Δx → 0

经济数学基础 微积分 第二章习题解答

经济数学基础      微积分    第二章习题解答

1 ex x0 15.设有函数f ( x) a x x 0
解: e 0 lim
x 0 1 x x 0
问常数a为何值时, f ( x)存在? lim
x0
lim (a x) a
当a 0时, f ( x)存在. lim
x0
16.求下列极限: tan 2 x 2 arctan 5 x 3x sin 3 x (2) lim (3) lim 5 (1) lim lim 6 x 0 sin 5 x x 0 arcsin x x 0 x 0 x x 5 sin 2 2 1 x2 sin x2 (5) lim 1 lim 4 x 1 x 0 (4) lim x sin lim 2 x x 0 x 2 sin ( ) x ( ) x x 1 2 2 x tan 2 x sin x tan 2 x sin x 2 1 1 (6) lim lim lim x 0 x 0 x 0 x x x
e 4
x x x 1 2 3 lim (17 ) lim ln(1 x x x ) x 0 x 0 x x
2
3
1
1
1 n 2 n 3 n n n n n n (18) lim(1 2 3 4 ) lim 4 [1 ( ) ( ) ( ) ] 4 x x 4 4 4 17.求下列极限:
x 1 x 1
1 或 lim 2 0 n x
y
解:lim f ( x) lim f ( x) 2 f (1)
x 2是第一类可去间断点
0
x
若f (1) 2, 则为连续 .
(2) x 0第二类无穷间断点 (3) x 0第一类跳跃间断点 (4) x 0第一类可去间断点 x 1第二类无穷间断点 (5) x 0第一类跳跃间断点 (6) x 0第一类可去间断点

《经济数学基础》习题答案及试卷(附答案)

《经济数学基础》习题答案及试卷(附答案)

习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。

经济数学基础 微积分 第三章习题解答

经济数学基础     微积分    第三章习题解答

尖点, 无切线, 不可导
无定义, 不可导
0
x
无确定切线, 不可导
0
x
尖点, 无切线, 不可导
8.讨论下列函数在x 0处的连续性与可导性;若可导,
求出f (0):
1 x
(1) f ( x) 1 x
x0 x0
解 lim f ( x) 1 lim f ( x) 1
x0
x0
所以函数在x 0连续.
3
y 1 (0 6x2 ) 6 x2
16.求下列函数的导数
(1) y
ex ex
ex ex
(e x ) e x ( x) e x
y
(e x
ex
)(e x
ex (e x
) (e x ex )2
e x )(e x
ex
)
(e x e x )2 (e x e x )2
(e x ex )2
y 10( x )9 ( x ) 1 x 1 x
10(
1
x
x
)9
1 x x (1 x)2
10x9 (1 x)11
(6) y ln ln ln x 设y ln u,u ln v,v ln x
y (lnu) (lnv) (ln x) 1 1 1 uv x
1 1 1
1
lnln x ln x x x ln x ln ln x
(3) y
1 1 x2
(1
x2
1
)2
y
1
(1
x2
)
3 2
(1
x
2
)
2
x(1
x
2
)
3 2
1
(1

《微积分》课程教学大纲

《微积分》课程教学大纲

《微积分》课程教学大纲适用专业:广告专业执笔人:陈美霞审定人:鲍远圣系负责人:张从军南京财经大学应用数学系《微积分》课程教学大纲课程代码:120019/120020英文名:Calculus课程类别:文化技能课适用专业:广告专业前置课:初等数学后置课:线性代数、概率论与数理统计、数学建模学分:7学分课时:129课时主讲教师:王小灵等选定教材:[1]龚德恩等.《经济数学基础(第一分册微积分)》[M],成都:四川人民出版社,2004.(04级使用);[2]张从军、王育全、李辉、刘玉华. 微积分[M].上海:复旦大学出版社,2005.(05级使用).课程概述:微积分是研究变量及其变化规律的科学,它具有丰富的内容和深刻的思想。

它为研究事物的发展变化提供了基本的数学基础和框架。

微积分在各种实际问题中有着广泛的应用。

《微积分》课程是高等财经院校中广告专业的一门重要的公共基础课,是后继专业基础课和专业课程的基础。

本课程以函数为主要研究对象,以极限分析为基本方法,系统地介绍了微积分的基本理论与基本方法,同时着重介绍了微积分在实际问题尤其在经济问题中的应用。

教学目的:通过本课程的学习,使学生系统掌握微积分的基本理论和基本方法。

培养学生具有一定的抽象思维能力、逻辑推理能力、空间想象能力以及综合运用所学知识进行分析、解决实际问题的能力,为进一步学习其它数学课程和专业课程打好基础。

教学方法:教学过程宜采用以章为主的单元组织教学法,以课堂讲授为主,结合多媒体教学软件辅助教学,教学中应强调理论与实际并重,各章应安排一定课时的习题课,课后教师需安排时间集中对学生辅导答疑,学生必须完成一定量的作业。

本大纲中少数内容在现行中学教学中已有要求,对此应本着复习、深化、提高的要求组织教学。

本课程应配备习题册等教学辅助用书。

本课程可根据需要安排课堂讨论与数学实验上机操作。

各章教学要求及教学要点第一章函数课时分配:5课时教学要求:本章要求掌握函数的概念;了解函数的几何特性并掌握各几何特性的图形特征;了解反函数的概念并会求反函数;理解复合函数的概念并掌握将复合函数分解为简单函数的方法;理解基本初等函数的概念并熟练掌握基本初等函数的定义域、值域和基本性质;理解初等函数的概念;了解分段函数的概念;掌握常见的经济函数。

经济数学基础综合练习及参考答案----第一部分微积分

经济数学基础综合练习及参考答案----第一部分微积分

1经济数学基础综合练习及参考答案第一部分 微分学一、单项选择题 1.函数()1lg +=x xy 的定义域是(1->x 且0≠x). .2.若函数)(x f 的定义域是[0,1],则函数)2(xf 的定义域是(]0,(-∞ ).3.下列各函数对中,( x x x f 22cos sin )(+=,1)(=x g )中的两个函数相等.4.设11)(+=xx f ,则))((x f f =(11++xx).5.下列函数中为奇函数的是( 11ln+-=x x y).6.下列函数中,()1ln(-=x y )不是基本初等函数.7.下列结论中,( 奇函数的图形关于坐标原点对 )是正确的. 8. 当x →0时,下列变量中(xx 21+ )是无穷大量. 9. 已知1tan )(-=xxx f ,当( x →0 )时,)(x f 为无穷小量.10.函数sin ,0(),0xx f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( 1).11. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处(右连续 ).12.曲线11+=x y 在点(0, 1)处的切线斜率为( 21- ).13. 曲线x y sin =在点(0, 0)处的切线方程为(y =x ).14.若函数x x f =)1(,则)(x f '=(-21x ).15.若xx x f c o s )(=,则='')(x f ( x x x cos s i n 2-- ).16.下列函数在指定区间(,)-∞+∞上单调增加的是(e x).17.下列结论正确的有( x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0 ).18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =(--pp32 ).二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是[-5,2]2.函数xx x f --+=21)5ln()(的定义域是(-5, 2 )3.若函数52)1(2-+=+x x x f ,则=)(x f 62-x .4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f 43-.5.设21010)(x x x f -+=,则函数的图形关于 y 轴对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2 . 8. =+∞→xx x x sin lim1 .9.已知x x x f sin 1)(-=,当0→x 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a 2 .11. 函数1()1e xf x =-的间断点是0x =.12.函数)2)(1(1)(-+=x x x f 的连续区间是)1,(--∞),2(∞+.)1处的切线斜率是(1)0.5y '=14.函数y = x 2 + 1的单调增加区间为(0, +∞)15.已知x x f 2ln )(=,则[f =0 .16.函数y x =-312()的驻点是x =1.17.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =2p-.18.已知需求函数为pq 32320-=,其中p 为价格,则需求弹性E p =10-p p.三、计算题(答案在后面)1.423lim222-+-→x x x x 2.231lim21+--→x x x x 3.x → 4.2343limsin(3)x x x x →-+- 52)1tan(lim 21-+-→x x x x 6.))32)(1()23()21(lim 625--++-∞→x x x x x x 7.已知y xxx cos 2-=,求)(x y ' . 8.已知)(x f x x x ln sin 2+=,求)(x f ' . 9.已知x y cos 25=,求)2π(y ';10.已知y =32ln x ,求y d . 11.设x y x5sin cos e +=,求y d .12.设xx y -+=2tan 3,求y d .13.已知2sin 2cos x y x -=,求)(x y ' .14.已知xx y 53e ln -+=,求)(x y ' . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x xy.18.由方程x y x y =++e )cos(确定y是x 的隐函数,求y d .四、应用题(答案在后面) 1.设生产某种产品x个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少? 4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?5.某厂每天生产某种产品q件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 6.已知某厂生产q件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品? 三、极限与微分计算题(答案) 1.解423lim222-+-→x x x x =)2)(2()1)(2(lim2+---→x x x x x =)2(1lim2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x=21)1)(2(1lim1-=+-→x x x3.解l ix →0x → =xx x x x 2sin lim)11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---=333limlim(1)sin(3)x x x x x →→-⨯--= 25.解)1)(2()1tan(lim2)1tan(lim121-+-=-+-→→x x x x x x x x1)1tan(lim21lim11--⋅+=→→x x x x x 31131=⨯= 6.解))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x xx --++-∞→=2323)2(65-=⨯-7.解:2y '(x )=)cos 2('-xx x =2cos sin 2ln 2x xx x x --- =2cos sin 2ln 2x xx x x ++8.解xx x x f x x 1cos 2s i n 2ln 2)(++⋅=' 9.解 因为5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x x x x y -='='='所以5ln 25ln 52πsin 2)2π(2πcos2-=⋅-='y10.解 因为 )(ln )(ln 3231'='-x x y331ln 32)(ln 32xx x x ==- 所以x xx y d ln 32d 3=11.解 因为)(cos cos 5)(sin e4sin '+'='x x x y xx x x xsin cos 5cos e4sin -=所以x x x x y xd )sin cos 5cos e(d 4sin -=12.解 因为)(2ln 2)(cos 1332'-+'='-x x xy x2ln 2cos 3322x xx--=所以 x xx y x d )2ln 2cos 3(d 322--=13.解 )(cos )2(2sin )(22'-'-='x x x y x x2cos 22ln 2sin 2x x x x --=14.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--=15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xy x y0)(e 1)1ln(='+++++'y x y xyx y xyxy xyy xyy x x e 1]e )1[ln(-+-='++故]e )1)[ln(1(e )1(xyxyx x x y x y y +++++-='16.解 对方程两边同时求导,得0e e cos ='++'y x y y yyyyy x y e)e (cos -='+)(x y '=yyx y e cos e +-.17.解:方程两边对x 求导,得 y x y yy '+='e eyy x y e1e-='当0=x 时,1=y所以,d d =x xye e 01e 11=⨯-=18.解 在方程等号两边对x 求导,得)()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin (1)]sin(e [y x y y x y++='+-)sin(e )sin(1y x y x y y +-++='故x y x y x y yd )sin(e )sin(1d +-++=四、应用题(答案)1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=, 116105.0)10(=+⨯='C(2)令25.0100)(2=+-='xx ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 qp =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q ()=1001102qq --(60q +2000)= 40q -1102q -2000 且'L q ()=(40q -1102q -2000')=40-0.2q令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 (1)C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大.(2)最大利润1100025000030043002400)300(2=-⨯-⨯=L (元).4.解 (1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q++(q >0)'C q ()=(.)05369800q q++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2=-140(舍去).q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++'C q ()=()2502010qq ++'=-+2501102q令'C q ()=0,即-+=2501100q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是q ()的最小值点,即要使平均成本最少,应生产50件产品.。

经济数学微积分1、2章 习题答案 最新版

经济数学微积分1、2章 习题答案  最新版

习题一答案(A)1.1. 求下列函数的定义域:(1) 22-+=x x y ; (2) )sin(x y =;(3) 2)1lg(--=x x y ; (4) 22114xx y -+-=; (5) x xx y -++-=11lg21)1arcsin(; (6) ⎩⎨⎧><+=)0(ln )0(12x xx x y . (1)解:022≥-+x x21-≤≥x x 或∴定义域为),1[]2,(+∞--∞ .(2)解:⎩⎨⎧≥≥00)sin(x xπππ+≤≤k x k 22∴定义域为{},1,0,)12(42222=+≤≤k k x k x ππ.(3) 解:⎩⎨⎧≠->-0201x x21≠>x x 且∴定义域为),2()2,1(+∞ .(4)解: ⎩⎨⎧≠-≥-010422x x ⎩⎨⎧±≠≤≤-122x x ∴定义域为]2,1()1,1()1,2[ ---.(5) 解:⎪⎪⎩⎪⎪⎨⎧≠->-+≤-≤-01011111x xxx ⇒ ⎪⎩⎪⎨⎧≠<<-≤≤11120x x x ∴定义域为)1,0[.(6) 解:定义域为),0()0,(+∞-∞ .2已知23)(2-+=x x x f ,求)1(,1),(),1(),1(),0(+⎪⎭⎫⎝⎛--x f x f x f f f f . 解:2200)0(2-=-+=f2231)1(2=-+=f 423)1()1(2-=---=-f232)(3)()(22--=--+-=-x x x x x f231)1(2-+=xx x f 252)1(3)1()1(22++=-+++=+x x x x x f3. 已知⎩⎨⎧≥<+=1ln 113)(x x x x x f ,求)2(),1(),0(f f f .解:1103)0(=+⨯=f01ln )1(==f 2ln )2(=f4. 讨论下列函数的单调性(指出其单调增加区间和单调减少区间) (1) x x y ln +=; (2) xe y =; (3) 24x x -. 解:(1)定义域为),0(+∞,设210x x <<,0)ln (ln ln ln 1212112212>-+-=--+=-x x x x x x x x y y故在定义域内为单调增函数,单调增加区间为),0(+∞. (2) 定义域为实数R,当021<<x x 时,21x x >,021>-x x e e ,函数为减函数; 当210x x <<时,21x x <,021<-x x ee,函数为增函数.故单调减少区间为)0,(-∞,单调增加区间为),0(+∞. (3) 定义域为[]4,0,4)2(422+--=-=x x x y当20≤≤x 时,2)2(--x 为增函数,4)2(2+--x 也为增函数,当42≤≤x 时,2)2(--x 为减函数,4)2(2+--x 也为减函数.故单调增加区间为]2,0[,单调减少区间为]4,2[.5. 判别下列函数中哪些是奇函数,哪些是偶函数,哪些是非奇非偶函数. (1)2x ey -=; (2)x x y sin 2=;(3)242x x y -=; (4)2x x y -=;(5)x x y cos sin -=; (6)x xy +-=11lg; (7))1ln(2x x y -+=; (8)x xx y cos sin +=;(9)x x xx e e e e y ---+=; (10)⎩⎨⎧≥+<-=0101x xx x y .解:(1)定义域为实数R,)()(22)(x y e e x y x x ===----,故函数为偶函数.(2)定义域为实数R,)(sin )sin()()(22x y x x x x x y -=-=--=-,故为奇函数.(3)定义域为实数R,)(2)(2)()(2424x y x x x x x y =-=---=-,故函数为偶函数.(4)定义域为实数R,函数2x x y -=为非奇非偶函数. (5)非奇非偶函数 (6)定义域为011>+-xx,0)1)(1(>+-x x ,即11<<-x , 0111lg 11lg )()(==+-+-+=+-lg xxx x x y x y ,即)()(x y x -=-y ,故函数为奇函数. (7)定义域为实数R,01ln )1ln()1ln()()(22==-+++=+-x x x x x y x y ,)()(x y x -=-y ,故函数为奇函数.(8)定义域为),0()0,(+∞-∞ ,)(cos sin )cos()sin()(x y x xx x x x x y =+=-+--=-,故函数为偶函数. (9)定义域为),0()0,(+∞-∞ ,)()(x y ee e e e e e e x y xx xx x x x x -=-+-=-+=-----,故函数为奇函数. (10))(01010101)(x y x xx x x x x x x y =⎩⎨⎧>+≤-=⎩⎨⎧≥--<-+=-,故函数为偶函数.6. 设)(x f 在),(+∞-∞内有定义,证明:)()(x f x f -+为偶函数,而)()(x f x f --为奇函数.证明:令)()()(x f x f x g -+=,)()()(x f x f x h --=,)()()()(x g x f x f x g =+-=-,)(x g 为偶函数, )()()()(x h x f x f x h -=--=-,)(x h 为奇函数.7. 判断下列函数是否为周期函数,如果是周期函数,求其周期: (1)x x y cos sin +=; (2)x x y cos =; (3))32sin(+=x y ; (4)x y 2sin =; (5)x y 2sin 1+=; (6)xy 1cos =. 解:(1))4sin(2)cos 22sin 22(2π+=+=x x x y故函数周期为π2.(2)无周期 (3)周期为ππ==22T(4)22cos 1sin 2xx y -==,周期为ππ==22T(5)设)22sin(1)(2sin 12sin 1T x T x x y ++=++=+= , 解得π=T 2 ,2/π=T .(6)无周期8. 讨论下列函数是否有界:(1)221xx y +=; (2)2x e y -=; (3)x y 1sin=; (4)x y -=11; (5)xx y 1cos =.解:(1)1122≤+=xx y ,故函数有界.(2)02≥x ,02≤-x ,102≤<-x e ,故函数有界.(3)11sin≤x,函数有界. (4)xy -=11无界. (5)xx y 1cos =无界.9. 设21)(x x x f -=,求)(cos x f .解:x x x x x f cos sin cos 1cos )(cos 2=-=10. 已知⎩⎨⎧>-≤+=0102)(2x x x x x f ,求)1(+x f 及)()(x f x f -+.解:⎩⎨⎧->-≤++=⎩⎨⎧>+-+≤+++=+1132011)1(012)1()1(22x xx x x x x x x x f⎩⎨⎧<--≥+=-0102)(2x x x x x f ⎩⎨⎧>-≤+=0102)(2x x x x x f⎪⎩⎪⎨⎧>++=<+-=-+01041)()(22x x x x x x x x f x f 11. 已知x x x f -=3)(,x x 2sin )(=ϕ,求)]([x f ϕ,)]([x f ϕ. 解:x x x f 2sin )2(sin )]([3-=ϕ,)(2sin )]([3x x x f -=ϕ 12. (1) 已知 2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .(2)已知2ln )1(222-=-x x x f ,且x x f ln )]([=ϕ,求)(x ϕ.解:(1) 2)1(12-+=⎪⎭⎫ ⎝⎛+xx x x f ,2)(2-=∴x x f (2)令12-=x t ,11ln)(-+=t t t f ,xx x x f ln 1)(1)(ln ))((=-+=ϕϕϕ,x x x x =-+=-+1)(211)(1)(ϕϕϕ11112)(-+=+-=x x x x ϕ13. 在下列各题中,求由给定函数复合而成的复合函数,并确定定义域: (1)21,x u u y +==; (2)2,ln ,4xv v u u y ===; (3)x v v u u y 21,sin ,3+===;(4)222,tan ,arctan x a v v u u y +===. 解:(1)21x y +=,),(+∞-∞∈x (2)2ln4x y =,由02>x,),0(+∞∈x(3))21(sin 3x y +=,),(+∞-∞∈x(4))](arctan[tan 222x a y +=,由2/)(22ππ+≠+k x a ,有⎭⎬⎫⎩⎨⎧∈-+≠∈Z R k a k x x x ,2,22ππ14. 指出下列各函数是由哪些简单函数复合而成的? (1)x y alog =; (2)x e y -=arctan ;(3)x y 2sin ln =; (4)⎪⎭⎫⎝⎛-=2212arcsin x xy .解: (1)x y alog =,x u = (2)u y arctan =,v e u =,x v -=(3)u y ln =,2v u =,x v sin = (4)2u y =,v u arcsin =,212x x v -= 15. 求下列反函数及反函数的定义域:(1))31ln(x y -=,)0,(-∞=f D ; (2)29x y -=,]3,0[=f D ;(3)22-+=x x y ,),2()2,(+∞-∞= f D ; (4)2xx e e y --=,),(+∞-∞=f D ;(5)⎩⎨⎧≤<--≤<-=21)2(210122x x x x y . 解:(1)由)31ln(x y -=解得3/)1(ye x -=,故)1(31x e y -=,),0(1+∞=-f D (2)由29x y -=解得29y x -=,故29x y -=,]3,0[1=-f D(3)由22-+=x x y 解得1)1(2-+=y y x ,故1)1(2-+=x x y ,),1()1,(1+∞-∞=- f D (4)由2x x e e y --=同乘解得x e 解得12++=y y e x ,故)1ln(2++=x x y ,),(1+∞-∞=-f D(5)可解得⎩⎨⎧≤<--≤<-+=2122112/)1(y yy y x故⎪⎩⎪⎨⎧≤<--≤<-+=212211)1(21x x x x y ,]2,1(1-=-f D16. 某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数,并求每天的固定成本和生产一个玩具的可变成本.解:设玩具的线性成本函数为bx a x C +=)(,则有⎩⎨⎧+=+=b a b a 8034060300 解得⎩⎨⎧==2180b a ,所以x x C 2180)(+= 故固定成本为180(元/每天),可变成本为2(元/每个).17. 某公司全年需购某商品2000台,每台购进价为5000元,分若干批进货.每批进货台数相同,一批商品售完后马上进下一批.每进货一次需消耗费用1000元,商品均匀投放市场(即平均年库存量为批量的一半),该商品每年每台库存费为进货价格的%4.试将公司全年在该商品上的投资总额表示为批量的函数.解:设批量为x ,投资总额为y ,则x xy 1001021067+⨯+= 18. 某饲料厂日产量最多为m 吨,已知固定成本为a 元,每多生产1吨饲料,成本增加k 元.若每吨化肥的售价为p 元,试写出利润与产量x 的函数关系式.解:设利润为)(x L ,则a x k p x L --=)()( (元) ,],0[m x ∈19. 生产某种产品,固定成本为3万元,每多生产1百台,成本增加1万元,已知需求函数为p Q 210-=(其中p 表示产品的价格,Q 表示需求量),假设产销平衡,试写出:(1)成本函数;(2)收入函数;(3)利润函数.解:(1) 3)(+=Q Q C (万元)(2) 2215)10(21)(Q Q Q Q P Q Q R -=⋅--=⋅= (万元) (3) 3421)()()(2-+--=Q Q Q C Q R Q L (万元) 20. 某酒店现有高级客房60套,目前租金每天每套200元则基本客满,若提高租金,预计每套租金每提高10元均有一套房间会空出来,试问租金定为多少时,酒店房租收入最大?收入多少元?这时酒店将空出多少套高级客房?解:设每套资金为x 元,酒店房租总收入为y 元,则有16000)400(101)1020060(2+--=--=x x x y ,故400=x 元/套,收入最大,为16000元, 这时酒店将空出20套高级客房.(B )1. 设x x f x x f =-⎪⎭⎫⎝⎛-+)(212212,求)(x f . 解:令2212-+=x x t ,得2212-+=t t x ,有2212221221)(-+=⎪⎭⎫ ⎝⎛-+-t t t t f t f ,即2212221221)(-+=⎪⎭⎫ ⎝⎛-+-x x x x f x f 又()x x f x x f =--+21)2212(,可解得()11322-++=x x x x f 2. 设下面所考虑的函数都是定义在区间),(l l -上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明:设)(1x f 和)(2x f 为偶函数,)(1x g 和)(2x g 为奇函数, (1)设)()()(21x f x f x f +=)()()()()()(2121x f x f x f x f x f x f =+=-+-=-故)(x f 为偶函数,得证. 设)()()(21x g x g x g +=)()()()()()(2121x g x g x g x g x g x g -=--=-+-=-故)(x g 为奇函数,得证.(2)设)()()(21x f x f x h ⋅=)()()()()()(2121x h x f x f x f x f x h =⋅=-⋅-=-故)(x h 为偶函数,得证. 设)()()(21x g x g x I ⋅=[][])()()()()()(2121x I x g x g x g x g x I =-⋅-=-⋅-=-故)(x I 为偶函数,得证. 设)()()(11x g x f x J ⋅=[])()()()()()(1111x J x g x f x g x f x J -=-⋅=-⋅-=-故)(x J 为奇函数,得证.3. 设函数)(x f 和)(x g 在D 上单调增加,试证函数)()(x g x f +也在D 上单调增加.证明:设D x x ∈<21,[][][][]0)()()()()()()()(12121122>+-+=+-+x g x g x f x f x g x f x g x f∴函数)()(x g x f +也在D 上单调增加.4. 设函数)(x f 在区间],[b a 和],[c b 上单调增加,试证)(x f 在区间],[c a 上仍单调增加.证明: 设[]c a x x ,21∈<,若c x x ≤<21,由题意有)()(12x f x f >, 若21x x b <≤,由题意有)()(12x f x f >, 若21x b x <≤,则)()()(12x f b f x f ≥>,若21x b x ≤<,则)()()(12x f b f x f >≥, 综上,)(x f 在区间],[c a 上仍单调增加.5. 设函数)(x f 和)(x g 在D 上有界,试证函数)()(x g x f ±和)()(x g x f ⋅在D 上也有界.证明:由题)(x f 和)(x g 在D 上有界,即对D x ∈∀,0,021>>∃M M ,有1)(M x f ≤,2)(M x g ≤,则21)()(M M x g x f +≤+,21)()(M M x g x f ⋅≤⋅ 即函数)()(x g x f ±和)()(x g x f ⋅在D 上有界. 6. 证明函数x x y sin =在),0(+∞上无界.证明:对任意0>M ,都存在02[,]x M M π∈+使得1sin 0=x ,则M x x x >=000sin ,即函数x x y sin =在),0(+∞上无界.7. 设)(x f 为定义在),(l l -的奇函数,若)(x f 在),0(l 内单调增加,证明)(x f 在)0,(l -内也单调增加.证明:设)0,(21l x x -∈<,则),0(12l x x ∈-<-,)()()()()()(211212x f x f x f x f x f x f ---=-+--=-)(x f 在),0(l 内单调增加,∴0)()(12>-x f x f ,∴)(x f 在)0,(l -内也单调增加.8. 已知函数)(x f 满足如下方程:0,)1()(≠=+x xcx bf x af其中c b a ,,为常数,且b a ≠,求)(x f ,并讨论)(x f 的奇偶性.解:由已知,xc x bf x af =+)1()(, 令xt 1=,则有ct t bf t af =+)()1(,即cx x bf x af =+)()1(可解得)()(22xabx a b c x f --= , 而)()(x f x f -=-,故)(x f 是奇函数.习题二答案(A)1. 观察判别下列数列的敛散性;若收敛,求其极限值:(1) nn u 31=; (2) 11ln +=n u n; (3) 212nu n +=; (4) 11+-=n n u n ;(5) nn u n πsin 1=; (6) n u n n )1(-=;(7) nn u )1(3-=; (8) πn nu n cos 1=. 解:(1) 收敛于0; (2) 发散; (3) 收敛于2; (4) 收敛于1; (5) 收敛于0; (6) 收敛于0; (7) 发散; (8) 收敛于0.2. 利用数列极限的分析定义证明下列极限: (1) 011lim=++∞→n n ; (2) 1311lim =⎪⎭⎫ ⎝⎛-+∞→n n ;(3) 532513lim =+++∞→n n n ; (4) 071lim =⎪⎭⎫⎝⎛-+∞→nn .(1)证明:0>∀ε,不妨设1<ε,要使ε<+=-110n u n 成立,只需112->εn 成立,因此取⎥⎦⎤⎢⎣⎡=21εN ,则当N n >时,有ε=<+=-N n u n 1110,所以011lim=++∞→n n .(2)证明:0>∀ε,要使ε<=-n u n 311成立,只需ε31>n 成立,因此取131+⎥⎦⎤⎢⎣⎡=εN ,则当N n >时,有ε<<=-N n u n 31311,即1)311(lim =-+∞→nn . (3)证明:0>∀ε,不妨设101<ε,取152251+⎥⎦⎤⎢⎣⎡-=εN ,则当N n >时,有ε<+<+=-)25(51)25(5153N n u n ,所以532513lim =+++∞→n n n .(4)证明:0>∀ε,不妨设1<ε,取11log 7+⎥⎦⎤⎢⎣⎡=εN ,则当N n >时,有ε<<=-N n n u 71710,所以071lim =⎪⎭⎫⎝⎛-+∞→nn .3. 求下列数列的极限:(1) 98124lim 22++-+∞→n n n n ; (2) 529lim 2+++∞→n n n n ; (3) nn n n n -+-++∞→32lim; (4) )5(lim 2n n n n -++∞→;(5) )11()311)(211(lim 222nn ---+∞→ ; (6) nnn 5151131311lim+++++++∞→ ; (7) )1sin (sin lim --+∞→n n n ; (8) nnn n n 1)4321(lim ++++∞→;(9) ⎪⎪⎭⎫ ⎝⎛+++⋅+⋅+∞→)1(1321211lim n n n ; (10) 11)1(6)1(6lim +++∞→-+-+n n nn n . (1)=98124lim22++-+∞→n n n n 21/98/1/24lim 222=++-+∞→n n n n n (2)=529lim2+++∞→n n n n 235219lim =+++∞→nn n (3)nn n n n -+-++∞→32lim32)2(3)3(2lim)2)(3)(3()3)(2)(2(lim =++++=++++-+++++-+=+∞→+∞→n n n n n n n n n n n n n n n n n n(4) )5(lim 2n n n n -++∞→2555lim 5)5)(5(lim2222=++=++++-++∞→+∞→n n n n n n n n n n n n n n n = (5)因为 n n n n n n n 11)11)(11(112+⋅-=+-=-, 所以)11()311)(211(lim 222nn ---+∞→2121lim 11454334322321lim=+=+-⨯⨯⨯⨯⨯+∞→+∞→n n nn n n n n =(6)=nnn 5151131311lim +++++++∞→ 565/1113/111lim =-÷-+∞→n(7))1sin (sin lim --+∞→n n n21cos )1(21sin 2lim 21cos21sin2lim =-+-+=-+--+∞→+∞→n n n n n n n n n n = (8)=nnn n n 1)4321(lim ++++∞→4)43()42()41(1lim 41=⎥⎦⎤⎢⎣⎡++++∞→nn n n n (9) ⎪⎪⎭⎫⎝⎛+++⋅+⋅+∞→)1(1321211lim n n n 1)111(lim )111()3121()211(lim 4=+-=⎥⎦⎤⎢⎣⎡+-+-+-=+∞→+∞→n n n n n(10)=-+-++++∞→11)1(6)1(6lim n n n n n 61)6)1(1()6)1(61(lim 111=-+-+++++∞→n n n nn4. 判断下列结论是否正确,为什么?(1) 设数列}{n u ,当n 越来越大时,A u n -越来越小,则A u n n =+∞→lim ;(2) 设数列}{n u ,当n 越来越大时,A u n -越来越接近于零,则A u n n =+∞→lim ;(3) 设数列}{n u ,若对+∈∃>∀Z N ,0ε,当N n >时,有无穷多个n u 满足ε<-A u n ,则A u n n =+∞→lim ;(4) 设数列}{n u ,若对0>∀ε,}{n u 中仅有有限个n u 不满足ε<-A u n ,则A u n n =+∞→lim ;(5) 若}{n u 收敛,则k n n n n u u ++∞→+∞→=lim lim (k 为正整数);(6) 有界数列}{n u 必收敛; (7) 无界数列}{n u 必发散; (8) 发散数列}{n u 必无界.解: (1) 错; (2) 错; (3) 错; (4) 正确; (5)正确; (6) 错; (7) 正确; (8) 错.5. 利用函数极限的分析定义证明下列极限:(1) 539lim22=--→x x x ; (2) 0)21(lim =+∞→x x ; (3) 1)32(lim 2=-→x x ; (4) 02lim 2=-+→x x .证明:(1)0>∀ε,取εδ=,当δ<-<20x 时,有εδ=<-=--2392x x x ,故 539lim 22=--→x x x .(2)0>∀ε,不妨设1<ε,取ε1log 2=M ,则当M x >时,有ε=<M x )21()21(,故0)21(lim =+∞→x x .(3)0>∀ε,取2/εδ=,当δ<-<20x 时,有εδ=<-=--222132x x ,故 1)32(lim 2=-→x x .(4)0>∀ε,取2εδ=,当δ<-<20x 时,有εδ=<-=-22x x ,故 02lim 2=-+→x x .6. 下列函数什么过程中是无穷小量,什么过程中是无穷大量?(1) 21xy =; (2) )2ln()1(+-=x x y ; (3) xe y -=; (4) 2tan x y =;(5) xy -=112; (6) 12322-+-=x x x y . 解:(1) ∞→x 无穷小量,0→x 无穷大量;(2) 1→x 无穷小量,1-→x 无穷小量,+-→2x 无穷大量,+∞→x 无穷大量;(3) +∞→x 无穷小量 ,-∞→x 无穷大量;(4) πk x 2→(k 为整数)无穷小量 ,ππ+→k x 2(k 为整数)无穷大; (5) +→1x 无穷小量,-→1x 无穷大量; (6) 2→x 无穷小量,1-→x 无穷大量. 7. 求下列函数的极限:(1) 852)3)(sin 6(lim 32+--+∞→x x x x x x ; (2) 732523lim 42+--+∞→x x x x x ; (3) 12102)12()31(lim +-∞→x x x x ; (4) )2(lim 22++-∞→x x x x ; (5) 125lim 3++∞→x x x ; (6) 2)2sin(lim --∞→x x x ;(7) )1(lim 33x x x -+∞→; (8) xx x 1lim2++∞→; (9) xx x 1lim2+-∞→;(10) )49(lim +-++∞→x x x a a (0>a 且1≠a )解:(1)0852)3)(sin 6(lim 32=+--+∞→x x x x x x (2)=+--+∞→732523lim 42x x x x x 23732523lim 432=+--+∞→xx x x x (3)=+-∞→12102)12()31(limx x x x 1210121012121210223)21()31(lim )12()31(lim =+-=+-∞→∞→x x x x x x x x x(4))2(lim 22++-∞→x x x x122lim2)2)(2(lim 222222222-=+--=+-+-++=-∞→-∞→x x x xx x x x x x x x x x x(5)∞=++∞→125lim3x x x (6)02)2sin(lim=--∞→x x x(7))1(lim 33x x x -+∞→)1(11lim)1(1))1(1)(1(lim32333232333232333233=-+-⋅-=-+-⋅--+-⋅--+=∞→∞→x x x x x x x x x x x x x x x x(8)11lim2=++∞→xx x (9)11lim2-=+-∞→xx x (10)当10<<a 时,=+-++∞→)49(lim x x x a a 149=-当1>a 时,)49(lim +-++∞→x x x a a049)49)(49(lim=+++++++-+=+∞→xxx x x x x a a a a a a8. 求下列函数的极限:(1) )153(lim 22--→x x x ; (2) 11lim 1--→n m x x x (n m ,为正整数);(3) 11lim31--→x x x ; (4) ⎪⎭⎫⎝⎛---→121lim 21x x xx ;(5) 22lim 2-→x xx ; (6) 3152lim 23--+→x x x x ;(7) 2211limx x x +-→; (8) ⎪⎭⎫⎝⎛+-++--→x x x x x x 212112lim ;(9) x x xx -----→111lim 1; (10) 1lim 21--+++→x nx x x n x .解:(1)1)153(lim 22=--→x x x(2)=11lim 1--→nm x x x nm x x x x x x n m x =+++-+++---→)1)(1()1)(1(lim 111(3)=--→11lim31x x x 32)1)(1)(1()1)(1)(1(lim33233231=+++-+++-→x x x x x x x x x (4)=⎪⎭⎫ ⎝⎛---→121lim 21x x xx 2312lim 12)1(lim 22121=--+=--+→→x x x x x x x x (5)由022lim2=-→xx x ,有∞=-→22lim 2x xx(6)=--+→3152lim 23x x x x 83)3)(5(lim 3=--+→x x x x(7)=+-→2211limx x x 2)1(1)11(lim 2220-=+-++→x x x x (8)=⎪⎭⎫⎝⎛+-++--→x x x x x x 212112lim 4)1(2lim 22lim 1221=-=+-+--→-→x x x x x x x x x (9)=-----→xx x x 111lim 11111lim 1-=---→x x(10)1lim 21--+++→x nx x x n x2)1(21)1()1(1[lim 1)1()1()1(lim 1121+=+++=+++++++=--++-+-=-→→n n n x x x x x x x n x n x9. 求下列各题中的常数a 和b :(1) 1112lim 23=⎪⎪⎭⎫ ⎝⎛++-+∞→x x b ax x ; (2) 51lim 21=-++→x abx x x ;(3) k b ax x x x =--+++∞→)1(lim 2(k 为已知常数).解:(1)因为11)2(11222323+-+++-=++-+x b ax bx x a x x b ax 若1)112(lim 23=++-+→∝x x b ax x ,则02=-a ,1=b ,即2=a ,1=b . (2)因为01lim )1(lim 1)1(lim )(lim 2112121=-++-=-++⋅-=++→→→→xa bx x x x a bx x x a bx x x x x x所以01=++b a ,即a b --=1511))(1(lim 1)1(lim 1lim 12121=-=---=-++-=-++→→→a xa x x x a x a x x a bx x x x x 故6=a ,7-=b . (3)因为kbax x x b x ab x a b ax x x x x =++++-+-+-=--++∝+→∝+→11)21()1(lim)1(lim 22222因此012=-a ,0>a ,k a ab =+-121,求得1=a ,k b -=21.10. 求下列函数极限: (1) x x x 3arcsin 4arctan lim0→; (2) xxx 3sin 2tan lim 0→;(3) x x x 1sin lim ∞→; (4) 2)4sin(lim 22--→x x x ;(5) 2220)cos 1(tan lim x x x x -→; (6) )1cos 1(lim 2xx x -∞→;(7) 30sin 1tan 1limxx x x +-+→; (8) x x xx x sin 3sin 2lim 0+-→;(9) x x x x 2sin 5tan lim0-→; (10) hxh x h sin )sin(lim 0-+→.解:(1)3434lim 3arcsin 4arctan lim 00==x x x x x x →→(2)3232lim 3sin 2tan lim 00==→→x x x x x x(3)=∞→x x x 1sin lim 1/1)/1sin(lim =∞→xx x(4)=--→2)4sin(lim22x x x 424lim 22=--→x x x (5)=-→2220)cos 1(tan limx xx x 4)2/(lim 2240=→x x x (6)=-∞→)1cos1(lim 2x x x 2121lim 22=⋅∞→xx x(7)=+-+→30sin 1tan 1limx xx x 4121lim 212)cos 1(tan lim 32030=⋅=-→→xxx xx x x x (8)=+-→x x xx x sin 3sin 2lim041/)(sin 3/)(sin 2lim0=+-→x x x x x (9)=-→x xx x 2sin 5tan lim03252sin lim 5tan lim 00=-=-→→xx x x x x(10)=-+→h x h x h sin )sin(lim 0x hh x h h cos ]2/)2cos[()2/sin(2lim 0=+→11. 求下列函数极限: (1) xx x)11(lim -∞→; (2) x x x 2cot 20)(sec lim →;(3) 121011lim +→⎪⎭⎫⎝⎛+xx x ; (4) xx x x ⎪⎭⎫⎝⎛+-∞→22lim ;(5) 311lim +∞→⎪⎭⎫⎝⎛-+x x x x ; (6) xx x-→111lim .解:(1)=-∞→x x x )11(lim 1)1()11(lim ---∞→=-e xx x(2)=→xx x 2cot20)(sec lim e x xx =+→2tan120)tan 1(lim(3)121011lim +→⎪⎭⎫⎝⎛+xx x21)1(21100210)11(lim 11lim )11(lim -+⋅+→→→=+-=+⋅+=exxx x x x x x x x x(4)xx x x ⎪⎭⎫⎝⎛+-∞→22lim42)4(422)4(42)241(lim )241(lim )241(lim --∞→-⋅+-∞→--⋅+-∞→=+-⋅+-=+-=e x x x x x x x x (5)=⎪⎭⎫⎝⎛-++∞→311lim x x x x 212213)121(lim )11(lim )11(lim e x x x x x x x x x x =-+=-+⋅-++⋅-∞→∞→∞→(6)=-→xx x111lim 1)1(111)11(lim --⋅-→=-+e x x x12. 求下列函数极限: (1) )6sin(sin 21lim6ππ--→x x x ; (2) xxx 251ln lim0+→;(3) )21ln()31ln(lim x x x ++-∞→; (4) 1arcsin lim 20--→x x e xx ;(5) )1ln(121lim2x x x x ---→; (6) x e x x 21lim3sin 0-→;(7) xx x 1)tan 21(lim ++→; (8) xxx e x 10)(lim +→;(9) x x x x 3)421ln(lim 20+-→; (10) )4tan()2tan(lim 4x x x -⋅→ππ;(11) xx x 1)sin 1(lim -→; (12) x x x 2cot 10)(cos lim +→.解:(1)令6π-=x t ,6π→x 时0→t ,原式化为)6sin(sin 21lim6ππ--→x x x3)sin 3(lim cos 1lim ]2/)(cos 2/)(sin 3[21limsin )6/sin(21lim0000-=-+-=+-=+-→→→→tt t t tt t tt t t t t π=(2)=x x x 251ln lim0+→45252122/)51ln(lim 0=⋅=+→x x x(3)=)21ln()31ln(limx x x ++-∞→0)23(lim 23lim ==-∞→-∞→xx x x x (4)=1arcsin lim2--→xx e x x 1lim220-=-→x x x (5)=---→)1ln(121lim 20x x x x 12/)2(lim 220=--→xx x(6)=xe x x 21lim3sin 0-→6123/)(sin lim 0-=-→x x x(7)xx x 1)tan 21(lim ++→ 2tan 2limtan 210tan 22tan 2100)tan 21(lim )tan 21(lim e x x xxx x x x x x x =+=+=+→++⋅→⋅→(8)=+→xxx e x 1)(lim 2111)11(lim e e x x e x e x x x x x =-++-+⋅-+→(9)=+-→x x x x 3)421ln(lim2032324lim 20-=-→x x x x (10)令x t -=4π,4π→x 时0→t ,)4tan()2tan(lim 4x x x -⋅→ππ21tan 2tan 1lim 2cot lim )22/tan(lim 2000=-⋅==⋅-=→→→t t t t t tt t t t π(11)=-→xx x 10)sin 1(lim 1sin sin 10)sin 1(lim --⋅-→=-e x xx x x(12)xx x 2cot 10)(cos lim +→21tan 1cos 1cos 10cot 022)1cos 1(lim cos lim cos lim --⋅-→→→=-+=⋅=ex xx xx x x xx x13. 证明:0)2(1)1(11lim 222=⎥⎦⎤⎢⎣⎡+++++∞→n n n n . 证明:222221)2(1)1(11)2(1n n n n n n n +≤++++≤+ 又由01lim )2(1lim22=+=++∞→+∞→n n n n n n所以0])2(1)1(11[lim 222=+++++∞→n n n n 14.求下列函数的间断点,并判断类型.)1( 1212)(11+-=xxx f ; (2) ()x x x x f 21)1ln()(2--=;(3) ⎪⎩⎪⎨⎧-=-≠+-=10111)(2x x xx x f ; +++++++++++++++++++++++ (4) ⎪⎩⎪⎨⎧≥+<≤+<=23212416)(2x x x x x x f 解:(1)11212lim/1/10-=+--→x x x 12/112/11lim 1212lim /1/10/1/10=+-=+-++→→xxx x x x即0=x 为跳跃间断点.(2)0)21()1ln(lim20=--→x x x x ,即0=x 为可去间断点. 0)21()1ln(lim 20=--→x x x x ,即21=x 为无穷间断点. (3)211lim 21=+--→xx x ,即1-=x 为可去间断点.(4)10)(lim 2=-→x f x ,7)(lim 2=+→x f x ,即2=x 为跳跃间断点. 15. 讨论下列函数的连续性:(1) ⎪⎩⎪⎨⎧≥<=)0(0)0(1sin)(2x x xx x f ;(2) ⎪⎩⎪⎨⎧=≠=)0(1)0(sin )(x x xx x f ;(3) ⎪⎩⎪⎨⎧=≠=003)(1x x x f x. 解:(1) 0<x 时,xx x f 1sin)(2=连续, 0>x 时,0)(=x f 连续,0=x 时,)(lim 0)(lim 0_x f x f x x +→→==连续, 所以)(x f 在),(+∞-∞连续.(2) 0<x 时,x xx f sin )(-=连续, 0>x 时,xxx f sin )(=连续,0=x 时,1)sin (lim )(lim 00-=-=--→→xxx f x x ,1sin lim )(lim 00==++→→xxx f x x , 所以)(x f 在0=x 处不连续.(3)0≠x 时,xx f 13)(=连续,03lim )(lim 10==--→→x x x x f ,∞==++→→xx x x f 103lim )(lim , 所以)(x f 在0=x 处不连续. 16. 确定常数b a ,使下列函数连续:(1) ⎪⎩⎪⎨⎧+<<--=其他53541)(2bxa x x x f ; (2) ⎪⎪⎩⎪⎪⎨⎧>+=-<=01sin 010sin 1)(x b x x x a x xx x f .解:(1)若)(x f 在54-=x ,53=x 处连续,则有2)54()54(1lim)(lim x bx a x x -=++--→-→,)(lim 1lim)53(2)53(bx a x x x +=-+-→→,即⎪⎪⎩⎪⎪⎨⎧=+=-54535354b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==7175b a (2))(x f 在0=x 处连续,1sin 1lim 0-=-→a x x x ,1)sin 1(lim 0-=++→a b x xx , 有11=-a ,1-=a b ,解得2=a ,1=b . 17. 试证方程0133=--x x 在区间)2,1(内至少有一个实根. 证明:令13)(3--=x x x f ,)(x f 在)2,1(连续,03)1(<-=f ,01)2(>=f ,由零点定理知,至少存在一点)2,1(0∈x ,使得0)(0=x f 成立,即 方程0133=--x x 在区间)2,1(内至少有一个实根. 18. 试证方程2-=xe x 在区间)2,0(内至少有一个实根. 证明:令2)(+-=xe x xf ,)(x f 在)2,0(连续,01)0(>=f ,04)2(2<-=e f ,由零点定理知,至少存在一点)2,0(0∈x ,使得0)(0=x f 成立,即 方程2-=xe x 在区间)2,0(内至少有一个实根.(B)1. 求极限)31ln()21ln(lim x x x +++∞→.解:)31ln()21ln(lim x x x +++∞→3ln 2ln )3/11ln(3ln )2/11ln(2ln lim)3/11ln(3ln )2/11ln(2ln lim=++++=+++++∞→+∞→x xx x x x x x x x =2. 设nn n n n u n ++++++=2222211 ,求n n u +∞→lim . 解:因为1212122++++≤≤++++n n u n n n n , 212/)1(lim 21lim 22=++=++++∝+→∝+→nn n n n n n n n , 2112/)1(lim 121lim 22=++=++++∝+→∝+→n n n n n n n , 由极限存在定理可知,21lim =∝+→n n u . 3. 设数列}{n u :,2,,222,22,21-++++n u ,证明:n n u +∞→lim 存在,并求此极限值.证明:首先证}{n u 单调增加。

龚德恩 经济数学基础 第一分册 微积分课件chapter 8.7

龚德恩 经济数学基础 第一分册 微积分课件chapter  8.7





D
D {( x, y) | 0 x 1, x y 1}
xdxdy , D由y轴y x , y 1所围. y 1
1 1 x 0
解 原式 dx
xdy
1 x

1
( x x )dx
3 2
0 1 0
x y | dx
1 x
2 x 2 x ) |1 4 ( 0 3 5 15

2
2y
2
f ( x , y )dx
0
4
dx x f ( x , y )dy
2
x
o
x
( 3)
1 dx2 x
2
2 x x2
f ( x , y )dy
解 积分区域为 D : 1 x 2,2 x y 2 x x 2
或 1 x 2,2 x y ,
x 2 y 2 2 x 0 1 x 2, x y 2, ( x 1)2 y 2 1
1 dx2 x
2 x x2
( 4)
1 dx 0
e
ln x
f ( x , y )dy .
交换下列二次积分的积分次序
(1) dy f ( x , y )dx
0 0 1 y
0 y 1, 解 二重积分的积分区域为D 0 x y 如下图所示: y

0 dy0

第二步 : 近似 在第i个小区域上任取一点 i , i ),用以 ( f ( i , i )为高的小平顶柱体代替 小曲顶柱体
Vi f ( i ,i ) i
n n i 1 i 1
(i 1,n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档