实验三 卡方检验
卡方检验的基本原理

卡方检验的基本原理卡方检验是一种常用的统计方法,用于判断两个或多个分类变量之间是否存在显著性关联。
它基于卡方统计量的计算,通过比较实际观察值与理论预期值之间的差异来判断变量之间的关系。
本文将介绍卡方检验的基本原理及其应用。
一、卡方检验的基本原理卡方检验的基本原理是基于观察频数与期望频数之间的差异来判断变量之间的关联性。
在进行卡方检验之前,我们需要先了解以下几个概念:1. 观察频数(O):指实际观察到的频数,即实际发生的次数。
2. 期望频数(E):指在假设条件下,根据总体比例计算得到的预期频数。
3. 自由度(df):指用于计算卡方统计量的自由变量的个数。
卡方统计量的计算公式如下:χ² = Σ((O-E)²/E)其中,Σ表示对所有分类进行求和。
卡方统计量的计算结果服从自由度为(df = (行数-1) * (列数-1))的卡方分布。
通过查表或计算卡方分布的p值,我们可以判断卡方统计量是否达到显著水平。
二、卡方检验的应用卡方检验可以应用于多种场景,以下是几个常见的应用示例:1. 拟合优度检验:用于判断观察频数与期望频数之间的差异是否显著。
例如,我们可以使用卡方检验来判断一组数据是否符合某个理论分布。
2. 独立性检验:用于判断两个分类变量之间是否存在关联。
例如,我们可以使用卡方检验来判断性别与喜好之间是否存在关联。
3. 分类变量的比较:用于比较两个或多个分类变量之间的差异。
例如,我们可以使用卡方检验来比较不同地区的人口分布是否存在差异。
4. 配对数据的比较:用于比较配对数据之间的差异。
例如,我们可以使用卡方检验来比较同一组人在不同时间点的健康状况是否存在差异。
三、卡方检验的限制虽然卡方检验是一种常用的统计方法,但也存在一些限制:1. 样本量要求:卡方检验对样本量的要求较高,特别是在分类变量较多或期望频数较低的情况下,需要保证样本量足够大。
2. 数据独立性:卡方检验要求观察数据之间相互独立,如果数据存在相关性或依赖性,可能会导致检验结果不准确。
常用统计方法:T检验、F检验、卡方检验

常用统计方法:T检验、F检验、卡方检验介绍常用的几种统计分析方法:T检验、F检验、卡方检验一、T检验(一)什么是T检验T检验是一种适合小样本的统计分析方法,通过比较不同数据的均值,研究两组数据是否存在差异。
主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。
(二)T检验有什么用1.单样本T检验用于比较一组数据与一个特定数值之间的差异情况。
样例:难产儿出生数n = 35,体重均值 = 3.42,S = 0.40,一般婴儿出生体重μ0= 3.30(大规模调查获得),问相同否?求解代码:from scipy import statsstats.ttest_1samp(data,sample)检验一列数据的均值与sample的差异是否显著。
(双侧检验)若为单侧检验,则将p值除以22.配对样本的T检验(ABtest)用于检验有一定对应关系的样本之间的差异情况,需要两组样本数相等。
常见的使用场景有:①同一对象处理前后的对比(同一组人员采用同一种减肥方法前后的效果对比);②同一对象采用两种方法检验的结果的对比(同一组人员分别服用两种减肥药后的效果对比);③配对的两个对象分别接受两种处理后的结果对比(两组人员,按照体重进行配对,服用不同的减肥药,对比服药后的两组人员的体重)。
AB测试时互联网运营为了提升用户体验从而获得用户增长而采用的精细化运营手段,简单的说就是分为A版本和B版本哪个更能吸引用户使用。
目的:检验两个独立样本的平均值之差是否等于目标值样例:比较键盘A版本和B版本哪个更好用,衡量标准:谁在规定时间内打错字少,或者两者差异不大求解代码:ttest_rel(data1,data2) (得出的p值是双侧检验的p值)3.独立样本的T检验(要求总体方差齐性)独立样本与配对样本的不同之处在于独立样本T检验两组数据的样本个数可以不等。
样例:比较男生与女生的专业和职业任职得分的均值是否存在显著差异,可采用独立样本T检验进行分析。
卡方检验连续性校正条件

卡方检验连续性校正条件
卡方检验(Chi-Square test)是统计学中一种常用分析方法,
可用于检验两个变量之间是否存在显著的关系。
连续性校正是卡方检
验中的一种重要方法,可以减少样本数量,提高检验效率,防止假阳
性错误率上升。
简单来说,连续性校正是将变量按照指定的规则对数据进行分组,使样本均衡分布,由此提高卡方检验的精确度和准确性。
例如,将实
验样本按年龄分为三组,由于实验样本在各组数量上存在差异,受样
本容量影响,从而引起变量之间的关系检验失去公正性。
在连续性校
正中,可以将不同年龄组均分为20个,或将x年龄组划分为2n-1组,这样就可以使每组数量更加接近,降低变量之间的假阳性概率,提高
卡方检验的准确性和精确度。
在采取连续性校正措施前,首先要判断实验数据所取的变量是否
符合���连续性校正的要求。
尤其是在变量的值为离散的情况下,
必须要考虑变量的多少,假设样本变量数量较少,则不能够采用此方
法进行检验。
此外,在进行连续性校正时,要谨慎选择变量分组,要从变量的
大致分组特征中综合考虑,不要未加思考地乱分组,容易导致分组内
数据分布不均匀,从而影响检验的准确性。
总的来说,连续性校正是卡方检验中重要的措施,在进行卡方检
验之前,应调查对象变量,针对不同变量情况选择不同校正措施,才
能提高卡方检验的精确度,防止假阳性错误率提高,取得准确到位的
研究结果。
卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
卡方检验的原假设

卡方检验的假设有:(一)分类相互排斥、互不包容个数别上中。
此外、分类必须五不位容,这钱、该不您出保第竞房费时时则分国更多的类别点中去的情况(二)观测值相互独立多于推试的观测值之网彼此独立,这是最些本的一个假定。
你一午移区萼栗的选择对另一个试的选择没有影响。
当同一被试被双分易个位上的类别中时,常常会违反这个假定。
例如,研究男性和女性鸡业爱井豚态度成或责备)如果让10名男性和10名女性戏5那或影进行月就会有100个观测值。
这100个观测值不可能都是相互钱文的。
请经爱情片的某个被试。
他(她)的评判可能更倾向于苛刻,在这个锅子佛地都没有必委,但是在实验研究中,让观测值的总数等于实验中不同我试的感者,要求每个被试只有一个观测值,这是确保观测值相互独立最安全的当讨论列联表时,独立性假定是指变量之间的相互独立。
这种情况下。
这种受量的独立性正在被检测。
而观测值的独立性则是预先的一个数(三)期望次数的大小为了努力使X分布成为x值合理准确的近似估计、每一个单元器神的期望次数应该至少在5个以上。
一些更加谨慎的统计学家提出了更严格尊标况。
当自由度等于1时,在进行x检验时,每一个单元格的明盟次数至少不应低于10,这样才能保证检验的准确性。
另外,在许多分类研究中会存在这样一种情况,如自由度很大,有几个类别的理论次数瓜然像小,但在可以接受的标准范围内,只有一个类别的理论次数低于1,此时,个简单的处理原则是设法使每一个类别的理论次数都不要低干1,分类中不相20%的类别的理论次数可以小于5。
在理论次数较小的特殊的四格表中。
应运用一个精确的多项检验来避免使用近似的卡方检险。
t检验、u检验、卡方检验、F检验、方差分析

记录中常常会用到多种检查,如何懂得何时用什么检查呢,根据结合自己旳工作来说一说:t检查有单样本t检查,配对t检查和两样本t检查。
ﻫﻫ单样本t检查:是用样本均数代表旳未知总体均数和已知总体均数进行比较,来观测此组样本与总体旳差别性。
配对t检查:是采用配对设计措施观测如下几种情形,1,两个同质受试对象分别接受两种不同旳解决;2,同一受试对象接受两种不同旳解决;3,同一受试对象解决前后。
u检查:t检查和就是记录量为t,u旳假设检查,两者均是常见旳假设检查措施。
当样本含量n较大时,样本均数符合正态分布,故可用u 检查进行分析。
当样本含量n小时,若观测值x符合正态分布,则用t检查(因此时样本均数符合t分布),当x为未知分布时应采用秩和检查。
ﻫF检查又叫方差齐性检查。
在两样本t检查中要用到F检查。
ﻫ从两研究总体中随机抽取样本,要对这两个样本进行比较旳时候,一方面要判断两总体方差与否相似,即方差齐性。
若两总体方差相等,则直接用t检查,若不等,可采用t'检查或变量变换或秩和检查等措施。
其中要判断两总体方差与否相等,就可以用F检查。
简朴旳说就是检查两个样本旳方差与否有明显性差别这是选择何种T检查(等方差双样本检查,异方差双样本检查)旳前提条件。
在t检查中,如果是比较不小于不不小于之类旳就用单侧检查,等于之类旳问题就用双侧检查。
卡方检查是对两个或两个以上率(构成比)进行比较旳记录措施,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检查。
方差分析用方差分析比较多种样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国记录学家R.A.Fisher一方面提出,以F命名其记录量,故方差分析又称F检查。
其目旳是推断两组或多组资料旳总体均数与否相似,检查两个或多种样本均数旳差别与否有记录学意义。
我们要学习旳重要内容涉及单因素方差分析即完全随机设计或成组设计旳方差分析(one-way ANOVA):用途:用于完全随机设计旳多种样本均数间旳比较,其记录推断是推断各样本所代表旳各总体均数与否相等。
卡方检验

a. 0 cells (.0%) have expected count less than 5. T he minimum expected count is 37.88.
AREA * BL OOD Crosstabulation BLOOD A AREA 亚洲 Count Expected Count % within AREA Count Expected Count % within AREA Count Expected Count % within AREA 321 379.4 29.7% 408 349.6 41.0% 729 729.0 35.1% B 369 247.2 34.2% 106 227.8 10.7% 475 475.0 22.9% AB 95 68.7 8.8% 37 63.3 3.7% 132 132.0 6.4% O 295 384.6 27.3% 444 354.4 44.6% 739 739.0 35.6% Total 1080 1080.0 100.0% 995 995.0 100.0% 2075 2075.0 100.0%
合计
11
36
15
27
26
53
11+2<40,使用校正公式计算卡方统计量
建立数据库
设立三个变量:jia、yi、weight jia代表甲法:+赋值为1,-赋值为0 yi代表乙法:+赋值为1,-赋值为0 Weight代表例数
对数据加权
配对卡方检验
Case Processing Summary Cases Missing N Percent 0 .0%
204(a+b)
64(c+d)
12.75
3.13
实验三卡方检验

实验三卡⽅检验
实验三卡⽅检验
⼀、实验⽬的
1、学会应⽤SPSS软件进⾏数据整理与分析;
2、能够应⽤SPSS软件对相关数据作出分析;
3、掌握SPSS软件功能及正确分析实验结果的能⼒。
⼆、实验内容
某养兔场采⽤某种激素处理进⾏性别控制实验,处理后产公兔246只,母兔279只,请问该处理控制性别有效吗?
三、实验步骤
1、数据录⼊:将性别和数量分别录⼊到SPSS数据表中。
2、频数加权:点击【数据→加权个案】,将数量选⼊【频率变量】框内,择
【加权个案】,点击【确定】按钮。
3、卡⽅检验:点击【分析(A)→⾮参数检验(N)→卡⽅(C)】,弹出卡⽅检验对话框。
将“性别”选⼊【检验变量列表(T)】;【期望值】选“所有类别相等”,点击【选项】按钮,【统计量】选“描述性”,【缺失值】选“按检验排除个案”,然后【继续】;
4、点击【精确】按钮,选择“精确”然后【继续】;
5、单击【确定】输出结果。
四、结果解释
表(1)显⽰的是两个类别的观测数、期望频数和残差值;表(2)给出了卡⽅值、⾃由度,渐进显著性和精确显著性为0.162>
0.05表明性别⽐例符合1:1,该处理⽅法不能显著影响性别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三卡方检验
一、实验目的
1、学会应用SPSS软件进行数据整理与分析;
2、能够应用SPSS软件对相关数据作出分析;
3、掌握SPSS软件功能及正确分析实验结果的能力。
二、实验内容
某养兔场采用某种激素处理进行性别控制实验,处理后产公兔246只,母兔279只,请问该处理控制性别有效吗?
三、实验步骤
1、数据录入:将性别和数量分别录入到SPSS数据表中。
2、频数加权:点击【数据→加权个案】,将数量选入【频率变量】框内,择
【加权个案】,点击【确定】按钮。
3、卡方检验:点击【分析(A)→非参数检验(N)→卡方(C)】,弹出卡方检验对话框。
将“性别”选入【检验变量列表(T)】;【期望值】选“所有类别相等”,点击【选项】按钮,【统计量】选“描述性”,【缺失值】选“按检验排除个案”,然后【继续】;
4、点击【精确】按钮,选择“精确”然后【继续】;
5、单击【确定】输出结果。
四、结果解释
表(1)显示的是两个类别的观测数、期望频数和残差值;表(2)给出了卡方值、自由度,渐进显著性和精确显著性为0.162>0.05表明性别比例符合1:1,该处理方法不能显著影响性别。