卡方检验实验报告
卡方检验结果分析

样本的基本信息:一、样本总数56二、性别:男27人,女29人三、年级:大二四、民族:汉族25人,少数民族31人五、学院:社心学院16人,管理学院12人,旅历学院17人,计科学院11人◆性别与其它因素的关系:1、平时阅读情况与性别的关系结论:经过交叉表卡方检验,期望值频数总和为55,大于40,期望计数小于5大于1,因而使用pearson卡方检验,其中sig值0.345大于0.05,因而有理由接受H0,拒绝H1,因此平时阅读情况与性别不存在显著性差异。
2、有否阅读计划与性别的关系结论:经过交叉表卡方检验,期望值频数总和为56,大于40,期望计数小于5大于1,因而使用pearson精确检验,其中sig值0.128大于0.05,因而有理由接受H0,拒绝H1,因此有否阅读计划与性别不存在显著性差异。
3、阅读方式与性别的关系结论:经过交叉表卡方检验,期望值频数总和为56,大于40,期望计数少于5,最小期望计数为0.96接近1,因而使用fisher 精确检验,其中sig值0.161大于0.05,因而有理由接受H0,拒绝H1,因此有否阅读计划与性别不存在显著性差异。
4、对课外阅读的看法与性别的关系结论:经过交叉表卡方检验,期望值频数总和为56,大于40,期望计数小于5大于1,因而使用pearson卡方检验,其中sig值0.857大于0.05,因而有理由接受H0,拒绝H1,因此对课外阅读的看法与性别不存在显著性差异。
5、阅读量的趋势与性别的关系交叉表计数性别合计男女你认为你现在的课外阅读量是呈什么趋势上升趋势10 3 13 下降趋势11 14 25 基本不变 6 12 18合计27 29 56结论:经过交叉表卡方检验,期望值频数总和为56,大于40,期望计数小于5大于1,因而使用pearson卡方检验,其中sig值0.048小于0.05,因而有理由拒绝H0,接受H1,因此阅读量趋势与性别存在显著性差异。
结论:经过交叉表卡方检验,期望值频数总和为55,大于40,期望计数大于5,因而使用pearson卡方检验,其中sig值0.139大于0.05,因而有理由接受H0,拒绝H1,因此是否有足够时间进行课外阅读与性别不存在显著性差异。
卡方拟合度检验实验报告

一、实验背景在统计学中,卡方拟合度检验(Chi-Square Goodness-of-Fit Test)是一种常用的假设检验方法,用于检验样本数据是否与某个已知的概率分布相吻合。
本实验旨在通过卡方拟合度检验,验证某组数据是否符合某一理论分布。
二、实验目的1. 掌握卡方拟合度检验的基本原理和方法。
2. 熟悉SPSS软件在卡方拟合度检验中的应用。
3. 通过实际案例,验证样本数据是否符合某一理论分布。
三、实验材料1. SPSS软件2. 已知的概率分布3. 实验数据四、实验步骤1. 数据收集与整理首先,收集一组实验数据。
本实验数据来源于某市一周内每天的气温记录,共有7天的数据,共计35个观测值。
2. 建立假设假设样本数据符合正态分布。
3. 数据输入与整理将收集到的实验数据输入SPSS软件,并对数据进行整理,确保数据格式正确。
4. 进行卡方拟合度检验(1)打开SPSS软件,选择“分析”菜单下的“描述统计”,再选择“频率”命令,输入变量名,点击“确定”。
(2)在弹出的对话框中,勾选“图表”选项,选择“直方图”,点击“继续”。
(3)在“图表选项”对话框中,勾选“正态图”,点击“继续”。
(4)在“正态图选项”对话框中,选择“概率单位”,点击“继续”。
(5)返回主对话框,点击“确定”,生成正态图。
(6)观察正态图,判断样本数据是否符合正态分布。
5. 结果分析根据正态图,可以直观地判断样本数据是否符合正态分布。
如果样本数据符合正态分布,则继续进行卡方拟合度检验。
(1)选择“分析”菜单下的“非参数检验”,再选择“卡方检验”,点击“拟合优度”。
(2)在弹出的对话框中,选择“样本”作为检验类型,将变量名输入到“变量”列表中。
(3)在“检验分布”下拉菜单中选择“正态分布”,点击“确定”。
(4)在弹出的对话框中,输入显著性水平(如0.05),点击“确定”。
6. 判断结果根据卡方检验的结果,如果P值大于显著性水平(如0.05),则接受原假设,即样本数据符合正态分布;如果P值小于显著性水平,则拒绝原假设,即样本数据不符合正态分布。
卡方检验审计实习报告

一、实习背景随着我国经济的快速发展,企业规模不断扩大,财务信息日益复杂,审计工作的重要性日益凸显。
为了更好地适应社会需求,提高审计人员的专业素质,我国高校纷纷开设了审计专业。
本次实习,我选择了卡方检验这一审计方法进行实践,旨在通过实际操作,加深对卡方检验理论知识的理解,提高审计技能。
二、实习目的1. 理解卡方检验的基本原理和方法,掌握其在审计中的应用。
2. 通过实际操作,提高审计人员的观察、分析和判断能力。
3. 培养审计人员的严谨、细致的工作作风。
三、实习内容1. 卡方检验的基本原理卡方检验是一种统计方法,用于检验两个分类变量之间是否独立。
在审计过程中,卡方检验可用于检验会计估计、抽样结果等是否符合预期。
2. 卡方检验在审计中的应用(1)检验会计估计:通过对会计估计结果与实际结果的比较,判断会计估计是否存在偏差。
(2)抽样结果检验:通过对样本数据的分析,判断样本是否具有代表性,进而推断总体情况。
(3)检验内部控制:通过对内部控制制度的执行情况进行卡方检验,判断内部控制是否有效。
3. 实际操作(1)选取被审计单位:本次实习选取了一家具有代表性的企业,该企业业务范围广泛,财务状况良好。
(2)确定审计对象:根据审计计划,确定审计对象为该企业的内部控制制度。
(3)收集数据:通过查阅企业内部资料、访谈相关人员等方式,收集内部控制制度执行情况的数据。
(4)进行卡方检验:运用Excel等软件,对收集到的数据进行卡方检验。
(5)分析结果:根据卡方检验结果,判断内部控制制度是否有效。
四、实习成果1. 理论知识方面:通过本次实习,我对卡方检验的基本原理、方法及其在审计中的应用有了更深入的了解。
2. 技能方面:在实习过程中,我学会了如何运用卡方检验进行审计,提高了审计技能。
3. 工作作风方面:在实习过程中,我养成了严谨、细致的工作作风,为今后的审计工作打下了坚实基础。
五、实习总结1. 卡方检验在审计中的应用具有重要意义,能够帮助审计人员发现潜在问题,提高审计质量。
非参数检验(卡方检验),实验报告

非参数检验(卡方检验),实验报告评分大理大学实验报告课程名称生物医学统计分析实验名称非参数检验(卡方检验)专业班级姓名学号实验日期实验地点2015—2016 学年度第学期一、实验目得对分类资料进行卡方检验。
二、实验环境1、硬件配置:处理器:Intel(R)Core(TM)i5-4210U CPU 1、7GHz 1、7GHz 安装内存(RAM):4、00GB系统类型:64 位操作系统 2、软件环境:IBM SPSS Statistics 19、0 软件三、实验内容(包括本实验要完成得实验问题及需要得相关知识简单概述)(1)课本第六章得例 6、1-6、5 运行一遍,注意理解结果;(2)然后将实验指导书得例 1-4 运行一遍,注意理解结果。
四、实验结果与分析(包括实验原理、数据得准备、运行过程分析、源程序(代码)、图形图象界面等)例例 6、1 表 1 灭螨A A 与灭螨B B 杀灭大蜂螨效果得交叉制表效果合计杀灭未杀灭组别灭螨A 32 12 44 灭螨B 14 22 36 合计 46 34 80 分析: 表1就是灭螨A与灭螨B杀灭大蜂螨效果得样本分类得频数分析表,即交叉列联表。
表 2 卡方检验X2 值df 渐进Sig、(双侧)精确Sig、(双侧)精确Sig、(单侧)Pearson 卡方 9、277a1、002连续校正b7、944 1、005似然比 9、419 1、002Fisher 得精确检验、003、002 有效案例中得 N 80a、0 单元格(、0%)得期望计数少于5。
最小期望计数为15、30。
b、仅对 2x2 表计算分析: 表2就是卡方检验得结果。
因为两组各自得结果互不影响,即相互独立。
对于这种频数表格式资料,在卡方检验之前必须用“加权个案”命令将频数变量定义为加权变量,才能进行卡方检验。
Pearson 卡方:皮尔逊卡方检验计算得卡方值(用于样本数n≥40且所有理论数E≥5);连续校正b : 连续性校正卡方值(df=1,只用于2*2列联表);似然比:对数似然比法计算得卡方值(类似皮尔逊卡方检验);Fisher 得精确检验:精确概率法计算得卡方值(用于理论数E<5)。
实验报告卡方检验

实验报告卡方检验1. 引言卡方检验是一种用于判断变量之间是否存在关联性的统计方法。
它可以用于比较观察频数和期望频数之间的差异,并通过计算卡方统计量来判断这种差异是否显著。
本实验旨在介绍卡方检验的基本原理和应用方法,并通过一个具体案例来演示其使用过程。
2. 原理卡方检验是基于卡方统计量进行判断的。
卡方统计量的计算公式如下:X^2 = \sum \frac{(O - E)^2}{E}其中,O 表示观察频数,E 表示期望频数。
卡方统计量的值越大,说明观察频数和期望频数之间的差异越大,即变量之间的关联性越强。
卡方检验的步骤如下:1. 建立假设:设H_0为原假设,H_1为备择假设。
H_0 假设不存在变量间的关联性,H_1 假设存在变量间的关联性。
2. 计算观察频数和期望频数:根据给定的数据计算得到观察频数和期望频数。
3. 计算卡方统计量:根据卡方统计量的计算公式,计算得到卡方统计量的值。
4. 设置显著性水平:根据实验需求和数据量,设置显著性水平,通常取0.05或0.01。
5. 判断显著性:根据卡方统计量的值和显著性水平,判断是否拒绝原假设。
如果卡方统计量的值大于显著性水平对应的临界值,则拒绝原假设;否则,接受原假设。
3. 案例演示假设有一张表格,记录了200名学生在选课时选择了哪个学科,包括科学、文学和艺术。
下面是观察频数的数据:科学文学艺术男生数60 40 30女生数45 25 0现在我们要判断学生的性别和选课学科之间是否存在关联性。
3.1. 建立假设原假设H_0: 学生的性别和选课学科之间不存在关联性。
备择假设H_1: 学生的性别和选课学科之间存在关联性。
3.2. 计算观察频数和期望频数首先,我们需要计算每个单元格的期望频数。
期望频数的计算公式如下:E = \frac{(\text{对应行的总计数}) \times (\text{对应列的总计数})}{\text{总样本数}}根据以上公式,我们可以得到下表的期望频数:科学文学艺术-男生数55.71 34.29 40女生数49.29 30.71 353.3. 计算卡方统计量根据卡方统计量的计算公式,我们可以得到卡方统计量的值:X^2 = \frac{(60-55.71)^2}{55.71} + \frac{(40-34.29)^2}{34.29} +\frac{(30-40)^2}{40} + \frac{(45-49.29)^2}{49.29} +\frac{(25-30.71)^2}{30.71} + \frac{(0-35)^2}{35} = 7.1193.4. 设置显著性水平根据实验需求和数据量,我们设置显著性水平为0.05。
实验五 卡方检验

实验五
2检验 χ
石玉琴
WUST
列联表资料分析- 列联表资料分析-Crosstabs
1 四格表资料的χ2检验 – 结果解释 – 界面说明 2 配对资料的χ2检验 – 界面说明 – 结果解释 3 行×列表的χ2检验 – 界面说明 – 结果解释
WUST
一、四格表的χ 检验
2
1 2 3 界面说明 分析实例 结果解释
WUST
实例操作2 实例操作2 现有198份痰标本,每份
标本用A、B两种培养基培养结核菌,结 果如下表,问A、B两种培养基的阳性培 养率是否相等?
A培养基 + + 合计 48 20 68 B培养基 24 106 130 72 126 198 合计
WUST
END
甲培养基 + + 合计 14 9 23 乙培养基 2 3 5 16 12 28 合计
WUST配对资料的χ2检验源自例8.11 p93 步骤: 步骤 首先建立数据文件,取名EG1510.sav 首先建立数据文件,取名 对数据文件EG1510.sav进行分析 对数据文件 进行分析 1. Data==>Weight Cases 2. 激活 激活Weight Cases by单选框 单选框 3. Freqency Variable:选入Weight :选入 单击OK钮 4. 单击 钮
WUST
上
机 作
业
1、掌握数据文件的SPSS输入格式。 2、掌握四格表资料的χ2检验 3、掌握配对四格表资料的χ2检验
WUST
实例操作1 实例操作1 某医生用国产呋喃硝胺治
疗十二指肠溃疡,以甲氰咪胍作为对照 组,问两种方法治疗效果有无差别?
处理 呋喃硝胺 甲氰咪胍 合计 未愈合 8 20 28 愈合 54 44 98 合计 62 64 126
实验三卡方检验

实验三卡⽅检验
实验三卡⽅检验
⼀、实验⽬的
1、学会应⽤SPSS软件进⾏数据整理与分析;
2、能够应⽤SPSS软件对相关数据作出分析;
3、掌握SPSS软件功能及正确分析实验结果的能⼒。
⼆、实验内容
某养兔场采⽤某种激素处理进⾏性别控制实验,处理后产公兔246只,母兔279只,请问该处理控制性别有效吗?
三、实验步骤
1、数据录⼊:将性别和数量分别录⼊到SPSS数据表中。
2、频数加权:点击【数据→加权个案】,将数量选⼊【频率变量】框内,择
【加权个案】,点击【确定】按钮。
3、卡⽅检验:点击【分析(A)→⾮参数检验(N)→卡⽅(C)】,弹出卡⽅检验对话框。
将“性别”选⼊【检验变量列表(T)】;【期望值】选“所有类别相等”,点击【选项】按钮,【统计量】选“描述性”,【缺失值】选“按检验排除个案”,然后【继续】;
4、点击【精确】按钮,选择“精确”然后【继续】;
5、单击【确定】输出结果。
四、结果解释
表(1)显⽰的是两个类别的观测数、期望频数和残差值;表(2)给出了卡⽅值、⾃由度,渐进显著性和精确显著性为0.162>
0.05表明性别⽐例符合1:1,该处理⽅法不能显著影响性别。
实验报告卡方检验

实验报告卡方检验实验报告:卡方检验1.实验目的本实验旨在通过卡方检验方法,验证两个或多个分类变量之间是否存在显著的关联性。
通过运用卡方检验方法,可以对观察数据与预期数据之间的差异进行分析,进一步判断所研究的因素是否具有统计学上的显著性差异。
2.实验步骤2.1设定假设:零假设(H0):两个或多个分类变量之间不存在显著的关联性。
备择假设(H1):两个或多个分类变量之间存在显著的关联性。
2.2收集数据:根据研究问题的要求,收集并整理相关的实验数据。
2.3计算期望频数:根据总体比例和样本容量,计算预期频数,以便与观察频数进行对比。
2.4计算卡方值:根据公式进行卡方值的计算,公式为:χ²=∑(Oi-Ei)²/Ei,其中Oi为观察频数,Ei为期望频数。
2.5设置显著性水平:根据研究问题的需求,设定显著性水平α,通常为0.05或0.012.6查卡方检验表:在给定的显著性水平下,查找卡方分布表中的临界值。
2.7判断结果:判断计算得到的卡方值是否大于临界值,若卡方值大于临界值,则拒绝零假设,即认为两个或多个分类变量之间存在显著的关联性。
3.实验结果与分析在我们的研究中,我们选择了两个单一的分类变量作为案例进行卡方检验。
我们的研究问题是:“在社区中,男性和女性是否对该社区的环境质量有着不同的看法?”我们统计了500名男性和500名女性对该社区环境质量的看法,并整理了以下数据(表格1)。
表格1:男性和女性对社区环境质量的看法------------------------------------,好,一般-----------------------------------男性,350,100,5------------------------------------女性,100,200,20------------------------------------我们首先计算了期望频数,以便进行卡方值的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除
卡方检验实验报告
篇一:实验报告卡方检验
试验报告
解:组数:1→对照,2→新措施。
存活与死亡数:1→存活数,2→死亡数。
在spss中输入数据后选择选择数据→加权个案,然后
再选择分析→描述统计→交叉表。
得到如下表:
由表1与表2可以看出有效案例中的n=300,自由度为
1,卡方值为:7.317,p值为:p=0.0073.8415,拒绝假设是
合理的。
解:在spss中输入数据后选择选择数据→加权个案,
然后再选择分析→描述统计→交叉表。
得到如下表:
篇二:非参数检验(卡方检验)实验报告
大理大学实验报告
课程名称
12。