列方程解决实际问题(1)学案

合集下载

一元一次方程全章导学案

一元一次方程全章导学案

⼀元⼀次⽅程全章导学案第⼀课时 3.1.1⼀元⼀次⽅程(1)学习⽬标1. 了解什么是⽅程,什么事⼀元⼀次⽅程。

2. 体会字母表⽰数的优越性。

重点:知道什么是⽅程,⼀元⼀次⽅程难点:找等关系列⽅程使⽤说明及学法指导:先⾃学课本78—81页内容,独⽴完成学案,然后⼩组讨论交流。

⼀. 导学1. 书中问题⽤算术⽅法解决应怎样列算式:2.含X 的式⼦表⽰关于路程的数量:王家庄距青⼭___千⽶,王家庄距秀⽔___千⽶。

从王家庄到青⼭⾏车__⼩时,王家庄到秀⽔__⼩时。

3车从王家庄到青⼭的速度为___千⽶/⼩时,从王家庄到秀⽔的速度为___千⽶/⼩时。

4.车匀速⾏驶,可列⽅程为:5.什么是⽅程?6.什么是⼀元⼀次⽅程?⼆、合作探究1.判断下列式⼦是否是⽅程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=112.下列式⼦哪些是⼀元⼀次⽅程?不是⼀元⼀次⽅程的,要说明理由. (1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5) x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是⼀元⼀次⽅程,求m 的值;(2)已知关于x 的⽅程mx n-1+2=5是⼀元⼀次⽅程,则m=__,n=__.4、根据下列条件列出⽅程:(1)某数的5倍加上3,等于该数的7倍减去5;(2)某数的3倍减去9,等于该数的三分之⼆加6;(3)某数的8倍⽐该数的5倍⼤12;(4)某数的⼀半加上4,⽐该数的3倍⼩21.(5)某班有x名学⽣,要求平均每⼈展出4枚邮票,实际展出的邮票量⽐要求数多了15枚,问该班共展出多少枚邮票?三、学习⼩结四、作业习题3.1第1、5题。

第⼆课时 3.1.1 ⼀元⼀次⽅程(2)学习⽬标1.根据实际问题中的数量关系,设未知数,列出⼀元⼀次⽅程。

2.知道⽅程的解和解⽅程是两个不同的概念。

《列方程解决实际问题》教学反思(合集7篇)

《列方程解决实际问题》教学反思(合集7篇)

《列方程解决实际问题》教学反思(合集7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、策划方案、合同协议、条据文书、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, work plans, planning plans, contract agreements, documentary evidence, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《列方程解决实际问题》教学反思(合集7篇)《列方程解决实际问题》教学反思篇1本课是在学生认识了方程,学会解只含有一步计算的方程的基础上,运用等量关系列方程解决简单的实际问题。

人教版七年级数学《一元一次方程数学活动》教学设计

人教版七年级数学《一元一次方程数学活动》教学设计

《一元一次方程数学活动》教学设计一、内容和内容解析1.内容活动1:阅读一段选自新闻报道中的统计数据,运用一元一次方程求出某些数据.活动2:通过动手操作,发现杠杆的平衡条件,学生进一步根据规律,用一元一次方程求杠杆平衡状态时的物体位置.2.内容解析活动1,学生结合统计内容,得到一些信息,再将实际问题转化为数学问题,运用一元一次方程求出某些数据. 其核心是:从实际问题中抽象出数学问题,用数学符号建立方程,求出结果并解释问题,也就是数学建模的思想.活动2,通过动手操作,运用由特殊到一般的方法,发现规律,再运用规律,通过数学建模解决实际问题.基于以上分析,确定本节课的教学重点:用一元一次方程解决实际问题,体会数学建模的思想方法.运用从特殊到一般的方法发现规律.二、目标和目标解析1.目标(1)从实际问题中抽象出数学问题,根据等量关系列出一元一次方程,从而解决实际问题;会解含有字母系数的方程.(2)体会数学建模的思想方法;掌握由特殊到一般的方法,发现规律.(3)在积极参与数学活动中,合作交流,体验用数学解决实际问题的乐趣,获得成功的乐趣.2.目标解析达成目标(1)的标志是:学生阅读题目,分析题目中的量,分清已知量、未知量,设未知量为x,根据等量关系列出方程,解出方程,能解释实际问题。

活动2的方程中x,n,l为字母,其中,n,l为已知数,学生要正确解出x.目标(2)是活动中蕴含的思想方法,学生解题过程中,体会从实际问题抽象出数学问题,用数学符号建立方程,求出结果并解释实际问题;在实验操作中,从记录的特殊数据入手,再扩展到一般,感受由一般到特殊的发现规律的方法.达成目标(3)的标志是:学生在小组活动中积极思考,敢于表达,合作解决问题,感受数学在解决实际问题中的价值.三、教学问题诊断分析活动1中的题意理解,“扣除价格上涨因素”不容易理解,学生充分理解后才能将其转化为数学问题.活动2,学生要在操作中分析哪些数据需要记录,把它转化为数学问题进一步分析.本节课的教学难点是:从实际问题中抽象出数学问题.四、教学支持条件分析根据本节课的特点,学生需要一步智能手机,教师录制微课,提前发布在UMU互动上,制作PPT,从物理实验室借杠杆的相关器材.五、教学过程设计数学活动1统计资料表明,山水市去年的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.根据上面的数据,你能用一元一次方程解决下面的问题吗?(1)山水市前年居民的人均收入为多少元?(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?师生活动学生阅读题目,理解题意,由多名学生发言,理解“扣除价格上涨因素”.小组合作,解决(1)(2)问.将分析解题的过程写在学案卷上,并拍照上传至UMU互动,由小组代表展示解题过程.学生在探究过程中,教师可以帮助理清思路,题目中涉及了哪些量?哪些是已知量,哪些是未知量?三个量之间有什么等量关系?将未知量设为x,根据等量关系列方程解题.师生共同总结活动1,列方程解题的步骤是什么?在解题过程中运用了什么思想方法?运用了什么数学知识?数学活动2用一根质地均匀的木杆和一些等重的小物体做下列实验:(1)在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;(2)在木杆两端各悬挂一重物,看看左右是否保持平衡;(3)在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;(4)在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;(5)在木杆左边继续加挂重物,并重复以上操作和记录.根据记录你能发现什么规律?如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为xcm,把n,l作为已知数,列出关于x的一元一次方程.师生活动学生动手操作(1)(2)两步,教师引导学生思考,在操作过程中,哪些量是需要记录的?协助学生用表格记录操作数据.学生动手操作,并记录填表,小组合作发现规律,将表格,发现规律,一起拍照上传至UMU互动.小组代表展示发言.然后利用规律,尝试应用规律解决问题.将解题过程上传至UMU互动,一名学生上前展示解题过程.在探究规律时,需要记录哪些量,怎样清晰的记录,以便易于发现规律,教师协助学生分析.在解含有字母系数的方程时,教师引导学生思考,怎么变形的?依据什么性质?使学生注意到,在解带有字母系数的方程,系数化为1时,应考虑字母系数不能为0.师生共同总结活动2,活动2发现规律经历了什么过程?在活动2中,运用了什么数学思想方法?运用了什么数学知识?小结教师和学生一起回顾本节课内容,并请学生谈收获.课堂反馈“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少32hm,但是所产油菜籽的总产油量比去年提高3750kg.这个村去年和今年种植油菜的面积各是多少公顷?布置作业再收集一些数据资料,想一想利用这些数据之间的关系,利用一元一次方程,能否从中再计算出一些新数据.教学反思平时的教学,更注重知识的学习和方法的训练,而数学活动课,更开放,让学生体会到,数学是可以解决实际问题的,数学也是学习其它学科的重要工具,所以,这一课,学生和我都是很期待的。

人教版九年级上册数学学案:21.3实际问题与一元二次方程 (传播问题)

人教版九年级上册数学学案:21.3实际问题与一元二次方程 (传播问题)

21.3实际问题与一元二次方程(传播问题)学习目标1、会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题的实际意义,检验所得结果是否合理,进一步培养分析问题和解决问题的能力。

2、会运用方程模型解决传播问题。

3、全新投入,做最好的自己重点:一元二次方程在实际问题中的应用,列方程解应用题;难点:会用含未知数的代数式表示等量关系,能根据问题的实际意义,检验所得的结果是否合理。

学习过程:一、温故知新,自主预习:1、列方程解应用题的步骤是什么?2、完成课本探究1,并补充未完成的过程。

3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互了182件,如果全组有x名同学,那么根据题意列出的方程是()A.x(x+1)=182 B.x(x-1)=182C.2x(x+1)=182 D.x(1-x)=182二、学以致用1、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2、.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?3、.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有人.三、反馈检测:1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2.月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?3.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?4.某渔船出海捕鱼,2017年平均每次捕鱼量为10吨,2019年平均每次捕鱼量为8.1吨,求2017年~2019年每年平均每次捕鱼量的年平均下降率.5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?。

一元二次方程应用--面积------教案

一元二次方程应用--面积------教案

一元二次方程的应用复习教学目标【知识技能】能根据几何图形找出问题中的等量关系,列出一元二次方程解决实际问题,并检验解的合理性。

【过程与方法】经历读题、审题和解题,让学生进一步体会“问题情境--建立模型--求解--解释与应用”的过程。

【情感、态度与价值观】获得运用数学知识分析和解决实际问题的方法和经验,更好的体会数学的价值观。

教学重点、难点重点:将实际问题转化为一元二次方程的数学模型,并根据实际问题检验解的合理性。

难点:建立数学模型解决实际问题,借助方程验证方案的可行性。

突破方法:引导学生用不同图形的面积公式列出方程。

教法与学法教学方法:启发引导,创设情境,利用多媒体课件激发学生学习兴趣;引导学生分析设计方案,借助方程验证方案的可行性。

学习方法:小组合作探究,组内讨论交流教学准备教师准备:多媒体课件学生准备:完成导学案教学过程一、前置诊断1.在长a米,宽b米的一块草坪上修了一条1米宽的笔直小路,则余下的草坪面积可表示为米2,为了增加美感,把这条小路改为宽恒为1米的弯曲小路,则剩余草坪的面积可表示为米2。

2.幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周的宽度是多少。

3.如图,学校准备在校园里利用围墙的一段,围成一个矩形花园ABCD(围墙MN最长可利用25米),现有50米的栅栏,请设计一种围法,使矩形花园的面积为300米2。

【设计说明】:本环节的目的是发挥教材的引领作用。

把教材、学生和教师三个方面有机地结合起来,帮助学生回顾应用一元二次方程解决应用题的一般步骤,解决图形公式型应用题的基本方法,纠正学生解答过程中出现的问题。

【学生活动】:独立思考和交流合作相结合,完成学案中的问题。

【题后反思】列方程解应用题的基本步骤:【拓展应用】幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设两块地毯,四周未铺地毯的条形区域的宽度都相同,若地毯面积是教室矩形地面面积的32,求四周的宽度是多少。

初一数学上册一元一次方程应用题之和差倍分问题分析学案

初一数学上册一元一次方程应用题之和差倍分问题分析学案

初一数学上册一元一次方程应用题之和差倍分问题分析学案一元一次方程解应用题是初一数学学习的重点,也是一个难点。

而很多孩子在这类题型上是薄弱项,常常在做题时无从下笔。

所以王老师整理了初一上册一元一次方程解应用题常考题型,希望能帮助到各位同学,今天和大家分享的是小升初衔接|初一数学上册一元一次方程应用题类型之和差倍分问题!一元一次列方程解应用题的关键是:仔细审题,找出能正确表达题目整体数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。

利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.和差倍分问题:这类问题主要是正确理解是几倍“增加了几倍”“增加到几倍”“多少”“大小”“不足“剩余”等关键词语的意义,和、差、倍、分问题其实也就是增长率问题。

增长量=原有量×增长率现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.专项训练(附解析版答案)差倍问题1.养殖场鸡是鸭的4倍,鸡比鸭多15000只,鸡和鸭各养了多少只?【答案】鸡有20000只,鸭有5000只【解析】试题分析:由题意“鸡是鸭的4倍”知:鸡比鸭多3倍,又因为“鸡比鸭多15000只”,根据除法的意义列式求出一份的量,即鸭的只数,又由“鸡比鸭多15000只”,用鸭的只数加上15000只,就是鸡的只数。

分式方程及其解法教学案

分式方程及其解法教学案

《分式方程及其解法》教学案班级 姓名学习目标1. 进一步巩固分式方程的概念。

2.会解分式方程, 掌握其基本思想是把分式方程转化为整式方程。

3.能根据具体问题的实际意义, 列分式方程解决实际问题。

一、 课前预习导学 (先考考你)1. 你能正确识别分式方程吗? 在① =1, ② =2, ③ = , ④ + =5中是分式方程的有( )A. ①② B. ②③ C. ③④ D. ②③④2 .把分式方程 = 化为整式方程, 方程两边需同时乘以( )A. 2xB. 2x-4C. 2x (x-2)D. 2x (2x-4)3.在解方程 + =•1•时,•需要去分母时,•可以把方程两边都乘以_______,•根据是______. 4 .如果解分式方程 - =-2出现增根, 则增根为( )A. 0或2B. 0C. 2D. 1二. 课堂学习探究1): 你会解分式方程吗?(2010绍兴市)3511x x =-+。

(2008南京)22011x x x -=+-2): (讨论方程无解的问题): 1.下面分式方程的解法是否正确? 谈谈你的想法.解分式方程1412112-=-++x x x . 解: 去分母, 方程两边同乘以最简公分母 , 得4)1(2)1(=++-x x解这个整式方程得,∴1=x 是原方程的解讨论: 我们做哪一步时已经埋下了隐患? 有弥补的办法吗?2.灵活应用:当m 为何值时, 解方程: =0会产生增根?3): 学以致用(你能完成下面的任务吗):(2009年长春市)某服装厂装备加工300套演出服, 在加工60套后, 采用了新技术, 使每天的工作效率是原来的2倍, 结果共用9天完成任务, •求该厂原来每天加工多少套演出服.三. 课堂练习巩..1.方程的解.....2.若关于的方程无解, 求的值.3.解方程:(1)4.某工程队承接了3000米的修路任务, 在修好600米后, 引进了新设备, 工作效率是原来的2倍, 一共用30天完成了任务, 求引进新设备前平均每天修路多少米?四、课后拓展延伸: 开放创新点击: 先阅读下列一段文字, 然后解答问题.已知:方程x- =1 的解是x1=2, x2=- ;方程x- =2 的解是x1=3, x2=- ;方程x- =3 的解是x1=4, x2=- ;方程x- =4 的解是x1=5, x2=- .问题:观察上述方程及其解, 再猜想出方程x- =10 的解, 并写出检验.。

《一元二次方程的应用——增长率问题》教学设计

《一元二次方程的应用——增长率问题》教学设计

《一元二次方程的应用——增长率问题》教学设计《一元二次方程的应用——增长率问题》教学设计清水五中董小武教学目标:1、使学生学会用列一元二次方程的方法解决有关增长率的问题。

2、进一步培养学生转化实际问题为数学问题的能力和分析问题、解决问题的能力。

3、通过增长率问题的学习能抓住问题的关键,揭示它的规律性,展示解题简洁性的数学美。

教学准备:教学课件、学案教学重点:使学生学会用列一元二次方程的方法解决有关增长率的问题。

教学难点:提高学生转化实际问题为数学问题的能力以及分析问题、解决问题的能力。

教学过程:一、出示课题:《一元二次方程的应用——增长率问题》二、出示学习目标:1、使学生学会用列一元二次方程的方法解决有关增长率的问题。

2、进一步培养学生转化实际问题为数学问题的能力和分析问题、解决问题的能力。

3、通过增长率问题的学习能抓住问题的关键,揭示它的规律性,展示解题简洁性的数学美。

(请学生读一遍)三、(根据以前学过的知识解决下面的问题)请你评一评:小星的妈妈卖玩具,某天妈妈用每件10元的价格进了一批玩具,第二天以每件20元的价格标价,小星心里想:“妈妈若卖完这批玩具,那么财富增加了100%呢!”你认为有道理吗?你能写出增长率公式吗?[请同学们想一想,写出你的答案。

然后请同学回答,老师点评,并把增长率公式变形为:实际数=基数(1+增长率)]四、根据变形后的增长率公式做出下面的问题(在微机上解答,看谁答的又快又好)小星的妈妈又以每件20元的价格进了另一批玩具,决定在进价的基础上以增长50%的价格定价,让小星帮忙算一算该标价多少?你能帮小星算一算吗?五、[我们已经知道了增长率公式,请根据这个公式解决下面的问题,在微机上解答,答完后看看与实际情况是不是相符]一件商品10元,增长率是0,则这件商品的价格是多少?增长率是-0.3呢?若降低率是1呢?降低率是1.2呢?若降低率是-0.2呢?[讨论所得结果,发现结论:增长率>0 0<降低率<1]设计理念:通过以上几个简单的增长率问题的解答,让同学们掌握增长率基本公式,并知道增长率>0 ,0<降低率<1为以后的学习打好基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§9--1列方程解决实际问题(1)
班级姓名评价
学习内容:教材第1页例1和练一练,练习一第1-5题。

学习目标:
结合已有的知识经验,能在解决实际问题的过程中,理解并掌握形如ax±b=c 的方程的解法。

一、自主导学
1.()是方程。

将等式、方程填入适当的椭圆里。

2.写出等式的性质1:()等式的性质2:()
3.解方程
X+8=20 X÷2=270 1.5x=18 x-25=47
4列方程解答
白兔有15只,比黑兔少8只。

黑兔有多少只?
5、解决问题
(1)一个长方形的长2.5米,是宽的5倍,宽多少米?
(1)学校买了科技书60本,买的故事书比科技书的3倍少6本。

故事书买了多少本?
二、课堂互动:
1.例1。

(1)画线段图表示数量关系,启发先用一条线段表示小雁塔的高度,再画出大雁塔的高度。

(2)写出大雁塔和小雁塔高度之间的相等关系。

()×2-()=大雁塔的高度
或:()=()
(3)列出不同的方程,尝试解答。

答:小雁塔高米。

(4)检验一下结果是否正确。

2.练一练。

数学书P86页的练一练
(1)用笔划出关键句,说出已知什么,求什么。

(2)写出并交流等量关系。

()○()○()=()(3)列出方程,解方程。

三、当堂练习
(一)同步训练:数学书P87页的第2题
2.列方程解答。

(1)世界上最小的鸟是蜂鸟,最大的鸟是鸵鸟。

一个鸵鸟蛋长17.8厘米,比一只蜂鸟体长的3倍还多1厘米。

这只蜂鸟体长多少厘米?
把等量关系补充完整:()○()○()=()列方程解答:
(2)根据线段图说说题意并方程解答
把等量关系补充完整:()○()○()=()列方程解答:。

相关文档
最新文档