八年级-分式单元测试题(含答案)
八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。
第1章 分式数学八年级上册-单元测试卷-湘教版(含答案)

第1章分式数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、若a+b=3,ab=-7,则的值为()A.-B.-C.-D.-2、若关于x的方程的解是负数,则m的取值范围是:()A. B. C. 且 D. 且3、下列运算正确的是()A. B. C. D.4、下列计算正确的是()A. B. C. D.5、要使分式有意义,则x的取值范围是()A. B. C. D.6、若分式中,x、y都扩大4倍,则该分式的值( )A.不变B.扩大到原来的4倍C.扩大到原来的16倍D.缩小到原来的7、化简分式的结果是()A. B. C. D.8、的值为 ()A.-4B.4C.D.9、下列有理式中是分式的是()A. B. C. D.10、已知分式的值等于零,则x的值为()A.1B.±1C.-1D.11、计算的结果是-1的式子是()A. B. C. D.12、下列各式是分式的是()A. B. C. D.13、小亮的妈妈到超市购买大米,第一次按原价购买,用了100元,几天后,遇上这种大米按原价降低了出售,她用120元又购买了一些,两次一共购买了.设这种大米的原价是每kgx元,则根据题意所列的方程是()A. B. C.D.14、已知()A. B. C. D.15、根据分式的基本性质,分式可以变形为()A. B. C.﹣ D.﹣二、填空题(共10题,共计30分)16、分式,,的最简公分母是________17、函数中,自变量x的取值范围是________.18、若分式有意义,则x取值范围是________.19、分式方程的解为________.20、若,则________.21、方程=的解是________.22、分式:①,②,③,④中,最简分式有________(只填序号)23、使分式的值等于零的x是________.24、已知,则实数A ________ B________25、若a,b都是实数,,则a b的值为________.三、解答题(共5题,共计25分)26、化简:.27、已知:代数式.(1)当m为何值时,该式的值大于零?(2)当m为何整数时,该式的值为正整数?28、先化简,再从中选一个合适的数作为的值代入求值.29、先化简再求值:-,其中x=2.30、先化简,再求值:(﹣)÷,其中x= .参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、D5、D6、B7、C8、C9、C10、A11、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
分式单元测试题(含答案)

(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。
第十二章 分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)

第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、分式方程-1=有增根,则m的值为()A.0和3B.1C.1和﹣2D.32、若分式有意义,则的取值范围是()A. B. C. D.3、下列计算中,正确的是()A.﹣2(a﹣b)=﹣2a﹣2bB.C.D.4、将分式约分后的结果是().A. B. C. D.5、计算的结果为()A.-B.C.D.-6、若把分式中的x和y都扩大3倍,那么分式的值()A.缩小6倍B.不变C.缩小3倍D.扩大3倍7、下列约分结果正确的是()A. B. C. D.8、如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大9倍B.扩大3倍C.不变D.缩小3倍9、分式有意义,则x的取值范围为()A. B. C. D.10、已知分式的值等于零,则x的值为()A.1B.±1C.-1D.11、一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x千米/时,则可列出的方程为()A. B. C. D.12、若非零实数m,n满足m(m﹣4n)=0,则分式的值为()A. B.1 C.2 D.13、若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的0.1倍D.不变14、小亮的妈妈到超市购买大米,第一次按原价购买,用了100元,几天后,遇上这种大米按原价降低了出售,她用120元又购买了一些,两次一共购买了.设这种大米的原价是每kgx元,则根据题意所列的方程是()A. B. C.D.15、计算÷的结果是()A.1B.x+1C.D.二、填空题(共10题,共计30分)16、化简;÷(﹣1)=________.17、约分=________18、计算:=________19、当x=________时,分式的值为零。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(1)

一、选择题1.甲乙两地相距60km ,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h ,若设此轮船在静水中的速度为x km/h ,可列方程为( ) A .6060855x x +=+- B .120120855x x +=+- C .6058x += D .6060855x x +=+- 2.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .73.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( )A .二阶分式B .三阶分式C .四阶分式D .六阶分式6.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4 D .57.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个11.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭12.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=- B .420420200.5x x -=+ C .420420200.5x x -=+ D .420200.5x =- 二、填空题13.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.14.关于x 的分式方程211m x =-+无解,则m 的取值是_______. 15.一艘轮船在静水中的最大航速为60km/h ,它以最大航速沿江顺流航行240km 所用时间与以最大航速逆流航行120km 所用时间相同,则江水的流速为________km/h .16.已知215a a+=,那么2421a a a =++________.17.使式子2x +有意义的x 的取值范围是______. 18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-有下列命题: ①1(3)3⊗-=;②a b b a ⊗=⊗;③方程1102x 的解为12x =;④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)19.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .20.如果方程322x m x x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.计算: (1)()()()3223m n m n mn ⋅-÷-; (2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦; (3)2269243a a a a a-+-⋅--. 24.(1)化简:22121a a a a a--+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 2.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.3.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x, 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.6.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+ ∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2.当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】 此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 11.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 12.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.二、填空题13.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键.15.20【分析】由顺水船速=静水船速+水速逆水船速=静水船速﹣水速设未知数根据两不同航程时间相同列出方程即可求出答案【详解】解:设江水的流速为根据题意可得:解得:经检验:是原方程的根故答案为20【点睛】 解析:20【分析】由顺水船速=静水船速+水速,逆水船速=静水船速﹣水速,设未知数根据两不同航程时间相同列出方程即可求出答案.【详解】解:设江水的流速为/x km h ,根据题意可得:2401206060x x=+-, 解得:20x ,经检验:20x 是原方程的根,故答案为20.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.16.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x x x ,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x ,然后根据一次函数的性质对④进行判断.【详解】 解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b ,所以②不正确;由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④; 故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.19.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】 (1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++-=22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)72m n -;(2)x y +;(3)32a a --+ 【分析】(1)先根据积的乘方和幂的乘方化简原式中的各项后再进行乘除运算即可得到结果;(2)将中括号内的运用完全平方公式和平方差公式把小括号展开合并后,根据多项式除以单项式的运算法则计算出结果即可;(3)把分式中的分子与分母因式分解后约分即可得到答案.【详解】解:(1)()()()3223m n m n mn ⋅-÷- =()63322m n m n m n ⋅-÷=9422m n m n -÷=72m n -;(2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦ ()222222x xy y x y y =++-+÷()2222xy y y =+÷x y =+;(3)2269243a a a a a-+-⋅-- ()()()232223a a a a a--=⋅+-- 32a a -=-+. 【点睛】此题主要考查了整式的运算和分式的化简,熟练掌握相关运算法则是解答此题的关键. 24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可;(2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】 解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-.∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----. ∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键.。
人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)

【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.
【详解】解:原式
当x=1时,原式= .
【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
11.当a=______时, 的值为零.
【答案】﹣1.
【解析】
【分析】
根据分式的值为零的条件列式计算即可.
【详解】由题意得:a2﹣1=0,a﹣1≠0,
解得:a=﹣1.
故答案为:﹣1.
【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.
(1)求每支钢笔和每本笔记本各是多少元;
(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?
【答案】(1)每支钢笔3元,每本笔记本5元;(2)至少要买25支钢笔.
【解析】
【分析】
(1)根据小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价铬少2元,可以得到相应的方程,解方程即可求得每支钢笔和每本笔记本各是多少元;
2018-2019年人教版八年级数学上册 第 15 章《分式》经典题型单元测试题
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(3)

一、选择题1.已知113x y -=,则代数式21422x xy yx xy y----的值( )A .4B .9C .-4D .-82.若关于x 的方程 2033x a x x ++=++有增根,则 a 的值为( ) A .1B .3C .4D .53.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对4.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 5.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a ba b a b+=++ C .221a b a b a b+=++ D .221-=-+a b a b a b6.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣27.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 9.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠B .2x ≠-C .2x ≠D .x 取任意实数10.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( ) A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 11.如果a ,b ,c 是正数,且满足1a b c ++=,1115a b b c a c++=+++,那么a ba b b a cc c +++++的值为( ) A .1- B .1C .2D .1212.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 二、填空题13.先化简再求值:214111x x x -⎛⎫-÷ ⎪--⎝⎭,其中2x =. 14.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 15.一艘轮船在静水中的速度为a 千米/时,若A 、B 两个港口之间的距离为50千米,水流的速度为b 千米/时,轮船往返两个港口之间一次需____________小时. 16.若分式11x -值为整数,则满足条件的整数x 的值为_____. 17.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______.18.氢原子的半径约为0.00000000005m ,用科学记数法表示为______ m . 19.若关于x 的方程12x -+3=12ax x --有增根,则a =_____. 20.已知114y x-=,则分式2322x xy yx xy y +---的值为______.三、解答题21.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?22.先化简,再求值:222422244x x xxx x x--⎛⎫-+÷⎪+++⎝⎭,其中22x=-.23.在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数51()32127()2ax xybx xx⎧+<⎪⎪=⎨⎪--+≥⎪⎩的性质及其用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…52--1122314325234...y (012)8331762651332-…____________(2)描点、连线:在平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:__________________(3)已知函数12733y x=-+,并结合两函数图象,直接写出当y1>y时,x的取值范围____________________24.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 25.计算:()22163x y x⋅. 26.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论.【详解】 解:由11xy =3,得y xxy -=3,即y -x =3xy ,x -y =-3xy ,则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.2.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a = 故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.3.B解析:B 【分析】根据分式等于0的条件:分子为0,分母不为0解答. 【详解】由题意得:290,30x x -=-≠, 解得x=-3, 故选:B . 【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键.4.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >,∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.5.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a b c c --+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9.C【分析】根据分式有意义的基本条件计算即可. 【详解】∵分式12x -有意义, ∴x-2≠0,∴2x ≠, 故选C . 【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.10.B解析:B 【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案. 【详解】解:设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字, 故选:B . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.11.C解析:C 【分析】先根据题意得出a=1-b-c ,b=1-a-c ,c=1-a-b ,再代入原式进行计算即可. 【详解】解:∵a ,b ,c 是正数,且满足a+b+c=1, ∴a=1-b-c ,b=1-a-c ,c=1-a-b , ∴a b a b b a cc c +++++ =111a ca b b c a ca b b c ----++--+++ =1113a b b c a c++-+++ =53- =2 故选:C本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.12.D解析:D 【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解. 【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个, 依题意得:3000300052x x-= 故选:D . 【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.;【分析】先计算括号内的代数式然后化除法为乘法进行化简然后代入求值【详解】当时原式【点睛】本题考查了分式的化简求值注意先把代数式化简然后再代入求值解析:12x -+;-【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】214111x x x -⎛⎫-÷ ⎪--⎝⎭22114x x x x --=⋅-- 12x -=+当2x =时,原式== 【点睛】本题考查了分式的化简求值.注意先把代数式化简,然后再代入求值.14.【分析】根据题中的新运算法则列出分式方程再根据分式方程的解法解答即可【详解】解:∴方程为:去分母得解得:经检验是原方程的解故答案为:x=5【点睛】本题考查了新定义的运算法则的计算分式方程的解法解题的 解析:5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可. 【详解】 解:211(2)(2)4x x x ⊗-==---∴方程为:12144x x =--- 去分母得124x =-+, 解得:5x =,经检验,5x =是原方程的解, 故答案为:x=5. 【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米解析:22100aa b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解. 【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为:5050a b a b++- ()()()()5050a b a b a b a b -++=+-()()50505050a b a ba b a b -++=+-22100aa b =-故答案为:22100a a b -. 【点睛】 本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x 的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】 解:因为分式11x -有意义,所以x-1≠0,即x≠1, 当分式11x -值为整数时, 有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.17.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 18.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:用科学记数法 解析:11510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法把0.0000 0000 005表示为5×10-11.故答案为:5×10-11.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根因此可将原方程去分母然后将增根代入求a 的值【详解】解:去分母得1+3x ﹣6=ax ﹣1∵方程有增根所以x ﹣2=0x =2是方程的增根将解析:1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,因此可将原方程去分母,然后将增根代入求a 的值.【详解】解:去分母,得 1+3x ﹣6=ax ﹣1,∵方程有增根,所以x ﹣2=0,x =2是方程的增根,将x =2代入上式,得1+6﹣6=2a ﹣1,解得a =1,故答案为1.【点睛】本题考查分式方程的增根,掌握增根是分式方程化为整式方程后产生的使分式方程的分母为0的根是解答的关键.20.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键解析:11 2【分析】先根据题意得出x-y=4xy,然后代入所求的式子,进行约分就可求出结果.【详解】∵114 y x-=,∴x-y=4xy,∴原式=2()383112422x y xy xy xyx y xy xy xy-++==---,故答案为:112.【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.三、解答题21.6天【分析】设该工程期限是x天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x天根据题意,得1122133xx x x-⎛⎫++= ⎪++⎝⎭解得6x=经检验,6x=是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.2x--;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】解:222422244 x x xxx x x--⎛⎫-+÷⎪+++⎝⎭=222244(2)22x x x x x x--+++- =222(2)(2)22x x x x xx --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象见解析;当1x >时,y 随x 的增大而减小;(3)12x <或3x > 【分析】(1)代入1x =-和12x =即可求解; (2)利用描点作图法画出图象,再根据图象写出性质即可;(3)联立函数解析式,求出交点,即可得出结论.【详解】解:(1)当1x =-时,513a -+=,解得23a =; 当12x =时,1272b --+=,解得2b =; ∴y 与x 的函数关系式为:251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩; (2)函数图象如下:函数性质:当1x >时,y 随x 的增大而减小;(3)当1x ≤时,25332733y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,可得122x y ⎧=⎪⎨⎪=⎩;当1x >时,2272733y x x y x ⎧=--+⎪⎪⎨⎪=-+⎪⎩,可得313x y =⎧⎪⎨=⎪⎩, ∴当y 1>y 时,x 的取值范围为12x <或3x >. 【点睛】本题考查函数图象,掌握待定系数法求解析式、描点作图等方法是解题的关键. 24.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=,∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.25.3212x y【分析】按照分式乘法和幂的运算法则计算即可.【详解】 解:()22163x y x⋅. 421363x y x=⨯, 3212x y =.【点睛】本题考查了分式乘法和幂的运算,解题关键是熟练运用分式乘法和幂的运算法则进行计算.26.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40, 经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服.(2)选择甲工厂所需费用为200×120040=6000(元);选择乙工厂所需费用为350×120060=7000(元).∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。
八年级上册数学《分式》单元测试题(带答案)

[答案]B
[解析]
[详解]解:去分母得:
由分式方程无解,得到 即
把 代入整式方程得:
故选B.
5.一份工作,甲单独做需A天完成,乙单独做需B天完成,则甲乙两人合作一天的工作量是()
A.A+BB. C. D.
[答案]D
[解析]
[分析]
甲、乙合做一天的工作量=甲一天的工作量+乙一天的工作量,把相关数值代入即可.
15.已知 ,则 =_____.
16.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他 步行速度为_____千米/小时.
三.解答题(共72分,共8小题)
17.解下列分式方程:
(1) ;
(2) .
18.化简求值: ,其中x=1.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
参考答案
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
C.分子与分母同时乘 D.分子与分母同时除以
[答案]B
[解析]
[分析]
把 中的分母利用平方差因式分解,再根据分式的基本性质即可解答.
[详解]根据分式的基本性质可得:
∴ = × ,
解得x=27,
经检验x=27是原方程的解,且符合题意.
即:小王用自驾车方式上班平均每小时行驶27千米.
故答案选:B.
[点睛]本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。每题3分,共24分):
1.下列运算正确的是( ) ÷x5=x2 ·x=x-3 ·x2=x6 D.(2x-2)-3=-8x6 2. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时. A.11ab B.1ab C.1ab D.abab 3.化简ababab等于( ) A.2222abab B.222()abab C.2222abab D.222()abab 4.若分式2242xxx的值为零,则x的值是( ) 或-2 5.不改变分式52223xyxy的值,把分子、分母中各项系数化为整数,结果是( ) A.2154xyxy B.4523xyxy C.61542xyxy D.121546xyxy 6.分式:①223aa,②22abab,③412()aab,④12x中,最简分式有( ) 个 个 个 个 7.计算4222xxxxxx的结果是( ) A. -12x B. 12x 8.若关于x的方程xacbxd 有解,则必须满足条件( ) A. a≠b ,c≠d B. a≠b ,c≠-d ≠-b , c≠d ≠-b , c≠-d 9.若关于x的方程ax=3x-5有负数解,则a的取值范围是( ) <3 >3 ≥3 ≤3 10.解分式方程2236111xxx,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1) B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6 C.解这个整式方程,得x=1D.原方程的解为x=1 二、填空题:(每小题4分,共20分) 11.把下列有理式中是分式的代号填在横线上 .
(1)-3x;(2)yx;(3)22732xyyx;(4)-x81;(5) 35y; (6)112xx;(7)-12m; (8)5.023m.
12.当a 时,分式321aa有意义. 13.若x=2-1,则x+x-1=__________. 14.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.
15.计算1201(1)5(2004)2的结果是_________. 16.已知u=121sst (u≠0),则t=___________. 17.当m=______时,方程233xmxx会产生增根. 18.用科学记数法表示:毫克=________吨.
19.当x 时,分式xx23的值为负数. 20.计算(x+y)·2222xyxyyx =____________. 三、计算题:(每小题6分,共12分) 21.23651xxxxx; 22.2424422xyxyxxyxyxyxy.
四、解方程:(6分) 23.21212339xxx。
五、列方程解应用题:(10分) 24.甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、 乙两队单独完成此项工程各需多少天
分式习题 1、(1)当x为何值时,分式2122xxx有意义 (2)当x为何值时,分式2122xxx的值为零 2、计算: (1)212242aaaa (2)222xxx (3)xxxxxx2421212
(4)xyxyxxyxyxx3232 (5)4214121111xxxx 3、计算(1)已知211222xx,求xxxxx111112的值。 (2)当00130sin4x、060tany时,求yxyxyxyxx3322122222yxxyx 的值。 (3)已知02322yxyx(x≠0,y≠0),求xyyxxyyx22的值。 (4)已知0132aa,求142aa的值。
4、已知a、b、c为实数,且满足02)3(432222cbcba,求cbba11的值。 5、解下列分式方程: (1)xxxx222; (2)41)1(31122xxxx
(3)1131222xxxx (4)3124122xxxx 6、解方程组:92113111yxyx 7、已知方程11122xxxmxx,是否存在m的值使得方程无解若存在,求出满足条件的m的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒 按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售 价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.
9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本, 并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批 发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按 定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两 次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)若赔钱,赔多少若 赚钱,赚多少 10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
答案 1、分析:①判断分式有无意义,必须对原分式进行讨论而不能讨论化简后的分式;②在分式BA中,若
B=0,则分式BA无意义;若B≠0,则分式BA有意义;③分式BA的值为零的条件是A=0且B≠0,两者缺一不可。答案:(1)x≠2且x≠-1;(2)x=1 2、分析:(1)题是分式的乘除混合运算,应先把除法化为乘法,再进行约分,有乘方的要先算乘方,
你们是用9天完成4800米长的大坝加固任务的 我们加固600米后,采用新的加固模
式,这样每天加固长度是原来的2倍.
通过这段对话,请你求出该地驻军原来每天加固的米数. 若分式的分子、分母是多项式,应先把多项式分解因式;(2)题把2x当作整体进行计算较为简便;(3)题是分式的混合运算,须按运算顺序进行,结果要化为最简分式或整式。对于特殊题型,可根据题目特点,选择适当的方法,使问题简化。(4)题可以将yx看作一个整体yx,然后用
分配律进行计算;(5)题可采用逐步通分的方法,即先算xx1111,用其结果再与212x相加,依次类推。
答案:(1)21a;(2)24x;(3)12xx(4)yxx2;(5)818x 3、分析:分式的化简求值,应先分别把条件及所求式子化简,再把化简后的条件代入化简后的式子求值。
略解:(1)原式=22x ∵211222xx ∴21222xx
∴21212x ∴222x ∴原式=2 (2)∵1130sin400x,360tan0y ∴原式=1331312yxyx 分析:分式的化简求值,适当运用整体代换及因式分解可使问题简化。 略解:(3)原式=xy2 ∵02322yxyx ∴023yxyx
∴yx32或yx 当yx32时,原式=-3;当yx时,原式=2 (4)∵0132aa,a≠0 ∴31aa ∴142aa=221aa=212aa=232=7 4、解:由题设有0432023222cbacb,可解得a=2,3b,c=-2 ∴cbba11=321321=3232=4 5、分析:(1)题用化整法;(2)(3)题用换元法;分别设112xxy,xxy1,解后勿忘检验。(4)似乎应先去分母,但去分母会使方程两边次数太高,仔细观察可发现xxxx12122,所以应设xxy122,用换元法解。答案:(1)1x(2x舍去); (2)1x=0,2x=1,21733x,21734x(3)211x,22x (4)2611x,2612x,213x,14x 6、分析:此题不宜去分母,可设x1=A,y1=B得:9231ABBA,用根与系数的关系可解出A、B,再求x、y,解出后仍需要检验。 答案:32311yx,23322yx 7、略解:存在。用化整法把原方程化为最简的一元二次方程后,有两种情况可使方程无解:(1)△<0;(2)若此方程的根为增根0、1时。所以m<47或m=2。 8、解:设每盒粽子的进价为x元,由题意得 20%x×50(x240050)×5350 化简得x210x12000 解方程得x140,x230(不合题意舍去) 经检验,x140,x230都是原方程的解,但x230不合题意,舍去.
9、解:设第一次购书的进价为x元,则第二次购书的进价为(1)x元.根据题
意得:12001500101.2xx 解得:5x 经检验5x是原方程的解 所以第一次购书为12002405(本). 第二次购书为24010250(本) 第一次赚钱为240(75)480(元) 第二次赚钱为200(751.2)50(70.451.2)40(元) 所以两次共赚钱48040520(元) 10、解:设原来每天加固x米,根据题意,得
926004800600xx. 去分母,得 1200+4200=18x(或18x=5400) 解得
300x. 检验:当300x时,20x(或分母不等于0).
∴300x是原方程的解.
因为 所以 即 参考答案 一、选择题: 1、B 2、D 3、A 4、C 5、D 6、B 7、A 8、B 9、B 10、D 二、填空题:
11、⑵、⑸、⑹ 12、a≠-32 13、22 14、()aAmma 15、-2
16、12SSuu 17、-3 18、×10-8 19、2<X<3 20、x+y 三、计算题:
21、解:原式=3651(1)xxxxx=3365(1)(1)(1)xxxxxxxxx