幂函数指数函数对数函数导学案

合集下载

高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教

高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教

3.2.3 对数函数的概念及基本性质课堂导学三点剖析一、对数函数的图象和性质【例 1】 利用对数的单调性,比较下列各组数的大小: (1)log π,log e;22(2)log 0.3,log 0.04.1 1 24解析:(1)函数 y=log x 在(0,+∞)上是增函数,而π>e>0,∴ log π>log e.222(2)log 0.04=1log 0.04 1 421 2log1=12log 0.04=log 0.2.1 1 422又因为函数 y=log x 在(0,+∞)上为减函数,12∴log 0.3<log 0.2,即 log 0.3<1 1 1log 0.04.1 2224温馨提示先把不同底数化为相同底数,再利用函数单调性比较大小是比较对数值大小的基本方法. 二、a>1或 0<a<1时,对数函数的不同性质 【例 2】 求函数 y= 1 log (x a )a(a>0且 a ≠1)的定义域.思路分析:先由被开方数是非负数建立不等式,由于不等式中含有字母参数,再根据对数的性 质对字母参数进行分类讨论.解析:由 1-log a (x+a)≥0,得 log a (x+a)≤1.当 a>1时,0<x+a ≤a, ∴-a<x ≤0.当 0<a<1时,x+a ≥a, ∴x ≥0.综上,当 a>1时,函数的定义域为(-a,0). 当 0<a<1时,函数的定义域为[0,+∞).温馨提示对于对数函数问题,底数中含字母参数都必须进行分类讨论.三、对数函数的单调性和单调区间的求法【例3】求函数y=log2(x2-x-6)的单调区间.解析:令u=x2-x-6,则y=log2u.∵y=log2u为u的增函数,∴当u为x的增函数时,y为x的增函数;当u为x的减函数时,y为x的减函数.由x2-x-6>0,得x<-2或x>3.借助于二次函数图象可知:当x∈(-∞,-2)时,u是x的减函数;1当x∈(3,+∞)时,u是x的增函数.所以,原函数的单调减区间是(-∞,-2),单调增区间是(3,+∞).温馨提示(1)研究函数的单调性,首先必须考虑它的定义域;(2)对数函数的单调性,当底数是字母时,必须分底数大于1和底数大于0且小于1这两种情况进行讨论;(3)对于复合函数的单调性,必须考虑u=g(x)与y=f(u)的单调性,从而得出y=f[g(x)]的单调性;(4)判断函数的增减性,或者求函数的单调区间,一般都可借助函数图象求解.各个击破类题演练 1比较下列各组数中两个值的大小.(1)log23.4,log28.5;(2)log a5.1,log a5.9(a>0,a≠1).解析:(1)对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5;(2)当a>1时,函数y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.变式提升 1比较下列两个值的大小:(lgm)1.9,(lgm)2.1(m>1).解析:若1>lgm>0,即1<m<10时,y=(lgm)x在R上是减函数,∴(lgm)1.9>(lgm)2.1.若lgm=1,即m=10时,(lgm)1.9=(lgm)2.1.若lgm>1,即m>10时,y=(lgm)x在R上是增函数,∴(lgm)1.9<(lgm)2.1.类题演练 21x1x已知f(x)=log a求f(x)的定义域;(a>0,且a≠1).11解析:由对数函数定义知xx>0,∴-1<x<1,∴f(x)的定义域为(-1,1).变式提升 212e x, (2006山东高考文,2)设f(x)=log(x231)xx22.则f(f(2))的值为()A.0B.1C.2D.3 解析:∵f(2)=log3(22-1)=log33=1,∴f(f(2))=f(1)=2e1-1=2.故选C.答案:C类题演练 3求函数y=log0.1(2x2-5x-3)的递减区间.解析:先求函数的定义域,由2x2-5x-3=(2x+1)(x-3)>0,得x<- 12,或x>3.令u=2x2-5x-3,y=log0.1u.2由于u=2(x- 54)2-618,可得u=2x2-5x-3(x<-12或x>3)的递增区间为(3,+∞),从而可得y=log0.1(2x2-5x-3)的递减区间为(3,+∞).变式提升 3求函数y=log(3+2x-x2)的单调区间和值域.12解析:由3+2x-x2>0解得函数y=log(3+2x-x2)的定义域是-1<x<3.12设u=3+2x-x2(-1<x<3),当-1<x1<x2≤1时,u1<u2,从而log u1>log u2,即y1>y2,故函数y=1122log(3+2x-x2)在区间(-1,1)上单调递减;同理可得,函数在区间(1,3)上是单调递增.12函数u=3+2x-x2(-1<x<3)的值域是(0,4),故函数y=log(3+2x-x2)的值域是y≥log1122 4,即y≥-2.3。

高中数学第三章指数函数、对数函数和幂函数3.2对数函数3.2.1对数名师导航学案苏教版必修1

高中数学第三章指数函数、对数函数和幂函数3.2对数函数3.2.1对数名师导航学案苏教版必修1

3.2.1 对数名师导航知识梳理一、对数与对数运算 1.对数的定义一般地,如果a x=N(a>0,a ≠1),那么数x 叫做以a 为底N 的对数,记作__________,其中a 叫做对数的__________,N 叫做对数的__________.对数恒等式为________________________________________. 2.对数的运算法则指数的运算法则: 对数的运算法则:(1)a m ·a n =a m+n;→ (1)______________;(2)n m aa =a m ·a -n =a m-n;→ (2)______________;(3)(a m )n=a mn;→ (3)_______________. 二、对数运算法则的证明 (学会证明方法)1.正因数的积的对数等于同一底数各个因数的对数的_______________; log a (MN)=log a M+log a N. 设log a M=p,log a N=q,则a p =M,a q=N,∴MN=a p ·a q =a p+q.∴log a (MN)=p+q=log a M+log a N.2.两个正数的商的对数等于被除数的对数___________除数的对数;log a N M =log a M-log a N.∵N M =q p aa =a p-q,∴log aNM=p-q=log a M-log a N. 3.正数的幂的对数等于幂的底数的对数____________幂指数;log a (N n)=n ·log a N. 根据对数恒等式:Na a log =N,∴N n=(aalog N)n=Nn a alog •.∴log a (N n)=n ·log a N.4.正数的正的方根的对数等于被开方数的对数______________根指数. log anN n1=·log a N.∵n N =n N 1,∴由法则3得log a n N =log a nN 1=n1·log a N. 三、对数的性质1.__________和__________没有对数.因为a >0,所以不论b 是什么数,都有a b >0,即不论b 是什么数,N=a b永远是正数,这说明在相应的对数式 b=log a N 中真数N 永远是正数,换句话说负数和零没有对数. 2.1的对数是__________.因为a 0=1(a >0,且a ≠1),所以根据对数的定义可得log a 1=0. 3.底数的对数等于__________.因为a 1=a ,根据对数的定义知log a a=1. 四、一组重要的对数公式——换底公式 1.log a b=abc c log log ,即有log c a ·log a b=log c b;2.log b a=ba log 1,即有log a b ·log b a=1;3.nmb a log =mnlog a b. 疑难突破如何将给出的对数式换成指定底数的对数?《考试大纲》要求知道用换底公式将一般对数转化成指定底数的对数.对数换底公式:log b N=bNa a log log (a >0且a ≠1,b >0且b ≠1,N >0),推论:log a b=a b log 1,mn b a nm =log log a b.更特别地有log a a n=n.问题探究问题1 对数式与指数式有何关系?在对数符号log a N 中,为什么规定a >0,a ≠1,N >0呢?探究思路:对数的概念是这么说的:一般地,如果a(a >0且a ≠1)的b 次幂等于N ,即a b=N ,那么就称b 是以a 为底N 的对数,记作log a N=b ,其中a 叫做对数的底数,N 叫做真数.从定义不难发现无论是指数式a b=N ,还是对数式log a N=b 都反映的是a 、b 、N 三数之间的关系. 在对数符号log a N 中,若a <0,则N 为某些值时,log a N 不存在,如log (-2)8不存在. 若a=0,则N 不为0时,log a N 不存在;N 为0时,log a N 可以为任何正数,不唯一.若a=1,则N 不为1时,log a N 不存在;N 为1时,log a N 可以为任何实数,不唯一.因此规定a >0且a ≠1.因为log a N=b ⇔a b=N ,在实数范围内,正数的任何次幂都是正数,因此N >0. 问题2 对于对数,除了对数的定义,还有对数的性质,你能说说这些相关的内容吗? 探究思路:对数部分,我们首先应当掌握对数的意义,即对数式与指数式之间的对应关系.另外对于对数我们应该掌握一些常用的性质:如(1)log a 1=0(1的对数是0); (2)log a a=1(底数的对数是1); (3)aalog N=N(对数恒等式);(4)log a N=aNb b log log (b >0且b ≠1)(换底公式);(5)log a M+log a N=log a MN ; (6)log a M-log a N=log a NM ; (7)nlog a N=log a N n; (8)mn log a N=log a m N n. 以上各式均有条件a >0且a ≠1.问题3 初学对数运算性质,容易犯下面的错误:log a (M ±N)=log a M ±log a N ,log a (M ×N)=log a M ×log a N ,log aN M =NM a a log log ,log a N n =(log a N)n.应该如何解决呢?探究思路:首先应把握对数运算的本质特征,运算性质是把真数的乘、除、乘方降级为对数的加、减、乘运算,是降级运算;其次,对数记号log a N 整体上才有意义,不能误把对数符号当作表示数的字母进行运算. 典题精讲例1 (1)将下列指数式写成对数式: ①210=1 024;②10-3=10001; ③0.33=0.027;④e 0=1.(2)将下列对数式写成指数式: ①log 0.46.25=-2;②lg2=0.301 0; ③log 310=2.095 9;④ln23.14=x.思路解析 应用指数式与对数式的等价关系求解. 答案:(1)①log 21 024=10;②lg 10001=-3;③log 0.30.027=3;④ln1=0. (2)①0.4-2=6.25;②100.301 0=2;③32.095 9=10;④e x=23.14.例2 计算:log 2487+log 212-21log 242.思路解析 这是几个对数式的加减运算,注意到每个对数式是同底的,则可以利用同底数的对数的运算公式化为一个对数式.当然也可以反其道而行之,即把每个对数的真数写成积或商的形式,再利用积或商的对数的运算性质化为同底对数的和与差,然后进行约简.解法一:原式=21(log 27-log 248)+log 23+2log 22-21(log 27+log 22+log 23) =21log 27-21log 23-21log 216+21log 23+2-21log 27-21=-21. 解法二:原式=log 2(347×12×671⨯)=-21. 例3 求下列各式的值: (1)3log 3128-;(2)7lg20×(21)lg0.7; (3)log 2(1+32+)+log 2(1+32-); (4)lg(5353-++).思路解析 (1)由幂的运算法则把其化成同底,用对数恒等式aalog N=N 化简计算.(2)通过取对数,先算出对数值,再求值.(3)运用对数运算法则化成一个对数,然后利用底数与真数的特殊关系求解. (4)运用对数运算法则巧去根号. 解答:(1)2722222)2(827log 27log 13log 31)3log 31(33log 3122222=====----. (2)设x=7lg20×(21)lg0.7,则lgx=lg20×lg7+lg0.7×lg(21)=(lg2+1)×lg7+(lg7-1)×(-lg2)=lg7+lg2=lg14, ∴x=14,即7lg20×(21)lg0.7=14. (3)log 2(1+32+)+log 2(1+32-)=log 2[(1+2)2-(3)2]=log 222=log 2232=23. (4)lg(5353-++)=21lg(5353-++)2=21lg(3+5+3-5+259-)=21lg10=21. 例4 已知11.2a=1 000,0.011 2b=1 000,那么a 1-b1等于( ) A.1 B.2 C.3 D.4 思路解析 本题有两种解题方法.解法一:用指数解.由题意11.2=a 11000,0.011 2=b11000, ∴两式相除得ba 111000-=0112.02.11=1 000.∴a 1-b1=1. 解法二:用对数解.由题意,得a ×lg11.2=3,b ×lg0.011 2=3, ∴a 1-b 1=31(lg11.2-lg0.011 2)=1. 答案:A例5 方程lg(4x +2)=lg2x+lg3的解是_____________.思路解析 把方程两边化为同底的对数式,然后比较真数得含有求知数的方程,解之即可.解:把两边化成同底的对数式为lg(4x +2)=lg(2x×3),比较真数,得方程4x +2=2x×3,利用换元法,解得2x =1或2x=2. 所以x=0或x=1. 答案:x 1=0,x 2=1 知识导学 1.对数的概念在实际应用中,一定要注意指数式与对数式的等价性,即log a N=b a b=N. 2.换底公式一般地,我们称log a N=aNb b log log 为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程. 3.常用对数与自然对数的概念有了对数的概念后,要求log 0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数.有了常用对数和自然对数再利用对数的运算性质,我们就可以求log 0.840.5的值了. 4.对数恒等式 对数恒等式:Na alog =N.它的证明也很简单,只要紧扣对数式的定义即可证明. ∵a b=N , ∴b=log a N. ∴a b=Na alog =N ,即Na a log =N.如5log 33=5、6log 44=6等.要熟记对数恒等式的形式,会使用这一公式化简对数式.疑难导析对数换底公式口诀:换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子. 问题导思指数式与对数式之间可以相互转化,它们之间可以理解为就像加法与减法一样的关系.后面我们会学习反函数,指数式与对数式之间的转化可以通过反函数进行. 这些常用的性质在指数运算中非常有用,需要记牢.有的性质可以用口诀来帮助记忆,比如,性质(5)(6)(7)可以这样来记: 积的对数变为加, 商的对数变为减,幂的乘方取对数, 要把指数提到前. 典题导考绿色通道 指数式与对数式之间的换算,就是利用log a N=b ⇔a b=N. 典题变式已知log a 2=m ,log a 3=n ,则a 2m-n=____________. 解答:∵log a 2=m ,log a 3=n , ∴a m =2,a n=3.∴a 2m-n=3432)(222===nm n m a a a a . 绿色通道 解决求值问题一般有两种解法:一是将式中的真数的积、商、幂、方根运用对数的运算法则化为对数的和、差、积、商,即“化整为零”,然后合并、消项、化简求值;二是将式中的对数的和、差、积、商运用对数运算法则将它们化为真数的积、商、幂、方根,即“化零为整”,然后“相约”,化简求值. 典题变式计算2log 525+3log 264-8log 71的值为( )A.14B.8C.22D.27 答案:C绿色通道 有关对数式的运算,除了要用到对数运算性质外,还要注意代数运算的其他性质的运用.如遇到不能直接运用对数运算法则进行运算的问题,有两种解决办法:一是取对数,先求出对数值,再求出真数的值,即为原式的值;二是运用对数恒等式aalog N=N 把任何正数N 化成含所需要的正数为底数的对数的一个幂,即可转化为用幂的运算法则和对数运算法则解决问题. 典题变式1.lg5lg8 000+(lg 32)2+lg0.06-lg6=______________.解答:原式=lg5(3+3lg2)+3lg 22+lg 606.0=3(1-lg2)(1+lg2)+3lg 22-2=3-2=1. 2.计算2lg5+32lg8+lg5·lg20+lg 22的值. 解答:原式=2lg5+2lg2+lg5(2lg2+lg5)+lg 22 =lg 25+2lg2·lg5+lg 22+2(lg5+lg2)=(lg5+lg2)2+2(lg5+lg2) =lg 210+2lg10 =1+2=3.绿色通道 因为指数与对数存在着互逆的运算关系,因而反映在具体问题中就一定从指数式、对数式两条思路分别运用幂的运算法则和对数运算法则解决问题.这就是对立统一的原则在具体思路上的指导和体现. 典题变式 已知a=lg(1+71),b=lg(1+491),试用a 、b 的式子表示lg1.4.答案:lg1.4=71(a-4b+1). 黑色陷阱 如果误以为原方程lg(4x+2)=lg2x+lg3可化为lg4x+lg2=lg2x+lg3,将导致解题错误.这也说明数学思维的严密性,如果百密一疏,则后悔莫及! 典题变式已知函数f(x)=⎩⎨⎧≤>,0,3,0,log 3x x x x 则f [f(91)]的值是( )A.9B.91C.-9D.-91答案:B。

高中数学 第四章 指数函数、对数函数与幂函数 4.4 幂函数学案(含解析)新人教B版必修第二册-新人

高中数学 第四章 指数函数、对数函数与幂函数 4.4 幂函数学案(含解析)新人教B版必修第二册-新人

4.4 幂函数学习目标1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y=x,y=x2,y=x3,y=x12,y=x-1的图像,总结出幂函数的共性,巩固并会加以应用.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.自主预习1.一般地,幂函数的表达式为,其特征是以幂的为自变量,为常数.2.幂函数的图像及性质(1)在同一坐标系中,幂函数y=x,y=x2,y=x3,y=x12,y=x-1的图像如图.结合图像,填空.(1)所有的幂函数图像都过点,在(0,+∞)上都有定义.(2)当α>0时,幂函数图像过点,且在第一象限内单调;当0<α<1时,图像上凸,当α>1时,图像.(3)若α<0,则幂函数图像过点,并且在第一象限内单调,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图像在x轴上方无限逼近x轴.(4)当α为奇数时,幂函数图像关于对称;当α为偶数时,幂函数图像关于对称.(5)幂函数在第象限无图像.课堂探究例1(1)下列函数:①y=x3;②y=(12)x;③y=4x2;④y=x5+1;⑤y=(x-1)2;⑥y=x;⑦y=a x(a>1).其中幂函数的个数为()A.1B.2C.3D.4(2)已知y=(m2+2m-2)x x2-2+2n-3是幂函数,求m,n的值.跟踪训练1(1)已知幂函数f(x)=k·xα的图像过点(12,√22),则k+α等于()A.12B .1C.32D.2(2)已知f (x )=ax 2a+1-b+1是幂函数,则a+b 等于( )A.2B.1C.12D.0例2 比较下列各题中两个值的大小.(1)2.31.1和2.51.1;(2)(x 2+2)-13和2-13.跟踪训练2 比较下列各组数的大小. (1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1.例3 讨论函数y=x 23的定义域、奇偶性,通过描点作出它的图像,并根据图像说明函数的单调性.核心素养专练1.以下结论正确的是( )A.当α=0时,函数y=x α的图像是一条直线 B.幂函数的图像都经过(0,0),(1,1)两点C.若幂函数y=x α的图像关于原点对称,则y=x α在定义域内y 随x 的增大而增大 D.幂函数的图像不可能在第四象限,但可能在第二象限 2.下列不等式成立的是( ) A.(13)-12>(12)-12B.(34)23<(23)23C.(23)2>(32)2D.8-78<(19)783.函数y=x -3在区间[-4,-2]上的最小值是 .4.若幂函数f (x )=(m 2-m-1)x x2-2x -3在(0,+∞)上是减函数,则实数m= .参考答案自主预习1.y=x α底数 指数2.(1)(1,1) (2)(0,0),(1,1) 递增 下凸 (3)(1,1) 递减 (4)原点(0,0) y 轴 (5)四 课堂探究例1 (1)B解析:幂函数有①⑥两个. (2)由幂函数定义求参数值.解:由题意得{x 2+2x -2=12x -3=0,解得{x =-3,x =32或{x =1,x =32. 所以m=-3或1,n=32.跟踪训练1 (1)C解析:由幂函数的定义知k=1.又f (12)=√22,所以(12)x =√22,解得α=12,从而k+α=32.(2)A解析:因为f (x )=ax2a+1-b+1是幂函数,所以a=1,-b+1=0,即a=1,b=1,则a+b=2.例2 (1)考查幂函数y=x 1.1,因为在其区间[0,+∞)上是增函数,而且2.3<2.5,所以2.31.1<2.51.1. (2)考查幂函数y=x -13,因为其在区间(0,+∞)上是减函数,而且a 2+2≥2,所以(a 2+2)-13≤2-13.跟踪训练2 解:(1)因为幂函数y=x 0.5在(0,+∞)上是单调递增的, 又25>13,所以(25)0.5>(13)0.5.(2)因为幂函数y=x -1在(-∞,0)上是单调递减的, 又-23<-35,所以(-23)-1>(-35)-1.例3 因为y=x 23=√x 23,所以不难看出函数的定义域是实数集R .记f (x )=x 23,则f (-x )=(-x )23=√(-x)23=√x 23=x 23=f (x ),所以函数y=x 23是偶函数,因此,函数图像关于y轴对称.通过列表描点,可以先作出y=x 23在x ∈[0,+∞)时的函数图像,再根据对称性,可作出它在x ∈(-∞,0]时的图像,如图.由图像可以看出,函数在区间(-∞,0]上单调递减,在区间[0,+∞)上单调递增. 核心素养专练1.D2.A3.-18解析:因为函数y=x-3=1x3在(-∞,0)上单调递减,所以当x=-2时,y min=(-2)-3=-18.4.2解析:由题意,得m2-m-1=1,得m=2或m=-1.当m=2时,m2-2m-3=-3,符合要求.当m=-1时,m2-2m-3=0不符合要求.故m=2.学习目标1.掌握幂函数的概念、图像和性质.2.熟悉α=1,2,3,12,-1时的五类幂函数的图像、性质及其特点.3.能利用幂函数的图像与性质解决综合问题.自主预习1.在关系式N=a b(a>0,a≠1)中.①如果把b作为自变量,N作为因变量,这是什么函数?②如果把N作为自变量,b作为因变量,这是什么函数?③如果把a作为自变量,N作为因变量,这是什么函数?2.观察函数y=x,y=x2,y=x12,y=x-3,这几个函数有什么共同特点?把这几个函数的解析式改写成统一的形式.幂函数的定义:3.给出下列函数,其中是幂函数的有.①y=3x2②y=x2-1③y=-1x ④y=1x2⑤y=x-13⑥y=2x课堂探究1.问题①:给出下列函数:y=x,y=x12,y=x2,y=x-1,y=x3,考察这些解析式的特点,是否为指数函数?问题②:根据问题①,如果让我们起一个名字的话,你将会给它们起个什么名字呢?请给出一个一般性的结论.2.问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?问题④:根据函数y=x12,y=x3的性质画出图像.问题⑤:画出y=x,y=x12,y=x2,y=x-1,y=x3五个函数图像,通过对以上五个函数图像的观察,你能类比出一般的幂函数的性质吗?3.例题讲解例1已知y=(m2+2m-2)x x2-1+2n-3是定义域为R的幂函数,求m,n的值.例2比较下列各题中两个值的大小.(1)2.31.1,2.51.1;(2)(a2+2)-13,2-13.变式训练1比较下列各组的大小.(1)-8-78和-(19)78;(2)(-2)-3和(-2.5)-3;(3)(1.1)-0.1和(1.2)-0.1;(4)(4.1)25,(3.8)-23和(-1.9)34.例3讨论函数y=x23的定义域、奇偶性,通过描点作出它的图像,并根据图像说明函数的单调性.变式训练2求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x25;(2)y=x-34;(3)y=x-2.核心素养专练1.(多选题)给出下列说法,其中正确的是()A.幂函数的图像均过点(1,1)B.幂函数的图像都在第一象限内出现C.幂函数在第四象限内可以有图像D.任意两个幂函数的图像最多有两个交点2.已知幂函数f(x)的图像经过点(8,4),则f(127)的值为()A.19B.9 C.13D.33.已知a=243,b=425,c=2513,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b4.若幂函数y=(m2-3m+3)x m-2的图像不过原点,则()A.1≤m≤2B.m=1或m=2C.m=2D.m=15.(开放性题)(1)已知函数f(x)=xα的定义域为[0,+∞),则满足条件的α可以是.(写出两个满足条件的α值)(2)已知幂函数f(x)=xα的图像经过点(0,0),(1,1),(-1,1),(4,2)中的三个点,则满足条件的α可以是.6.如图所示是6个函数的图像,则图中的a,b,c,d从大到小排列为.7.已知幂函数f(x)=xα的图像经过点(2,18),则α=,若f(a+1)<f(3-2a),实数a的取值集合为.8.求出下列函数的定义域,并判断函数的奇偶性.(1)f(x)=x2+x-2;(2)f(x)=x+3x23(3)f(x)=x3+x13;(4)f(x)=2x4+x-12.9.在同一个直角坐标系中,作出下列函数的图像,并总结出一般规律.(1)y=x-3,y=x-13,(2)y=x94,y=x49.参考答案自主预习略 课堂探究1.略2.略3.例1 m=-3,n=32例2 (1)2.31.1<2.51.1 (2)(a 2+2)-13≤2-13变式训练1 (1)-8-78<-(19)78(2)(-2)-3<(-2.5)-3(3)(1.1)-0.1>(1.2)-0.1(4)(-1.9)34<(3.8)-23<(4.1)25例3 通过列表描点,可以先作出y=x 23在x ∈[0,+∞)时的函数图像,再根据对称性,可作出它在x ∈(-∞,0]时的图像.作图略.由图像可以看出,函数y=x 23在区间(-∞,0]上单调递减,在区间[0,+∞)上单调递增.变式训练2 (1)定义域为R,是偶函数,在[0,+∞)单调递增,在(-∞,0]上单调递减. (2)定义域为(0,+∞),非奇非偶函数,在(0,+∞)上单调递减.(3)定义域为(-∞,0)∪(0,+∞),是偶函数,在(-∞,0)上单调递增,在(0,+∞)上单调递减. 核心素养专练1.AB2.D3.A4.B5.(1)α=12或α=34 (2)2或12 6.d>b>c>a 7.-3 (-∞,-1)∪(23,32)8.(1){x|x ≠0},偶函数 (2)R,非奇非偶函数 (3)R,奇函数 (4){x|x>0},非奇非偶函数 9.作图略.(1)幂函数在(0,+∞)都有定义,并且函数图像都通过点(1,1). (2)如果α>0,则幂函数的图像过点(0,0),(1,1)并在(0,+∞)上为增函数. (3)如果α<0,则幂函数的图像过点(1,1),并在(0,+∞)上为减函数.。

幂函数学案3节

幂函数学案3节

第4章幂函数、指数函数和对数函数4.1幂函数的性质与图象(1)【教学目标】1、 在理解幂函数概念的基础上,通过对幂函数性质的研究,学生学会研究简单函数的基本思路与基本方法。

2、 在研究幂函数性质的基础上,学生体验根据函数的性质用描点法作出函数的大致图象,并理解作幂函数图象的一般过程,培养学生数形结合的思想。

3、在探究幂函数性质与图象过程中,学生逐步锻炼从特殊到一般、从观察到归纳的数学能力。

【教学重点】幂函数的性质与图象 【教学难点】幂函数性质的总结 【新知学习】引入:函数反映了客观世界中变量间的相互关系。

通过上一章对函数定义域、值域的确定,函数的奇偶性、单调性和最值的讨论,使我们初步了解了研究一个函数的基本内容和思想方法。

问题:1)在初中阶段我们学过哪些函数?正比例函数(1x y =),反比例函数(1-=x y ), 二次函数(2x y =), 2)这三个函数是否可以写成统一的形式呢?}2,1,1{,-∈=k x y k 3)若我们将k 推广到有理数,我们又可以得到哪些新的函数呢?函数21x y =,32x y =等等。

——引出幂函数幂函数:一般地,函数k x y =(k 是常数,Q k ∈)叫做幂函数。

问题:1)为什么k 属于Q ,而不是R 呢?在初中阶段我们学过的指数运算都是在有理数范围内运算的。

2)下面哪些是幂函数? ①xy 2= ②x y 2= ③23-=x y ④32x y =⑤21x y =⑥22-=x y(7) y=x 3+2;(8) y= -x 2总结判断一个函数是幂函数要求:①底数都是自变量x ②指数是常量 ③ 幂的系数是1 ④函数为单项式221()(2)mm f x m m x +-=+∙练习1:已知函数,m 为何值时,()f x 是正比例函数?反比例函数?幂函数?练习2:求过点(2的幂函数解析式下面我们就选择几个有代表性的k 值,来讨论这些函数的性质。

● 探究实践 1.研究函数23-=xy 的定义域、奇偶性、单调性,并作出它的大致图象。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质学习幂函数的定义,了解幂函数的基本形式f(x) = x^a。

探讨幂函数的性质,包括奇偶性、单调性、周期性等。

1.2 幂函数的图像与性质绘制常见幂函数的图像,观察图像的特点。

分析幂函数的单调区间、极值等性质。

第二章:指数函数2.1 指数函数的定义与性质学习指数函数的定义,了解指数函数的基本形式f(x) = a^x。

探讨指数函数的性质,包括单调性、稳定性、特殊点等。

2.2 指数函数的图像与性质绘制常见指数函数的图像,观察图像的特点。

分析指数函数的单调性、渐近线等性质。

第三章:对数函数3.1 对数函数的定义与性质学习对数函数的定义,了解对数函数的基本形式f(x) = log_a(x)。

探讨对数函数的性质,包括单调性、反函数关系、对数规则等。

3.2 对数函数的图像与性质绘制常见对数函数的图像,观察图像的特点。

分析对数函数的单调性、渐近线等性质。

第四章:对数运算法则4.1 对数的基本运算法则学习对数的加法、减法、乘法、除法等基本运算法则。

探讨对数运算的性质,如对数的中项定律、对数的换底公式等。

4.2 对数的复合运算法则学习对数的复合运算,如对数的乘方、对数的开方等。

探讨复合运算的性质,如对数的乘方公式、对数的开方公式等。

第五章:对数函数的应用5.1 对数函数在求解方程中的应用学习使用对数函数求解指数方程、对数方程等。

探讨对数函数在求解方程时的性质,如对数函数的单调性、对数函数的零点等。

5.2 对数函数在解决实际问题中的应用学习使用对数函数解决实际问题,如人口增长、放射性衰变等。

探讨对数函数在解决实际问题时的应用方法和对数函数的近似计算等。

第六章:幂函数的应用6.1 幂函数在几何中的应用学习幂函数在几何中的作用,如计算体积、面积等。

探讨幂函数在几何问题中的解题方法。

6.2 幂函数在物理中的应用学习幂函数在物理中的作用,如温度、速度等。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案一、教学目标知识与技能:1. 理解幂函数、指数函数的定义和性质。

2. 掌握对数的定义和性质,了解对数函数的图像和应用。

3. 掌握对数的运算法则,并能应用于实际问题中。

过程与方法:1. 通过实例和图形,培养学生的观察和分析能力,提高学生对幂函数、指数函数和对数函数的理解。

2. 通过小组讨论和探究活动,培养学生的合作和沟通能力,提高学生对对数运算法则的掌握。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心,激发学生对幂函数、指数函数和对数函数的学习热情。

2. 培养学生的耐心和细心,提高学生在解决实际问题中的数学应用能力。

二、教学内容第一节:幂函数1. 幂函数的定义和性质2. 幂函数的图像和应用第二节:指数函数1. 指数函数的定义和性质2. 指数函数的图像和应用第三节:对数函数1. 对数的定义和性质2. 对数函数的图像和应用第四节:对数的运算法则1. 对数的加法和减法法则2. 对数的乘法和除法法则3. 对数的幂法则三、教学重点与难点重点:1. 幂函数、指数函数和对数函数的定义和性质。

2. 对数的运算法则。

难点:1. 对数函数的图像和应用。

2. 对数的幂法则的理解和应用。

四、教学方法与手段教学方法:1. 讲授法:讲解幂函数、指数函数和对数函数的定义和性质。

2. 案例分析法:分析实际问题中的应用,展示对数函数的图像。

3. 小组讨论法:分组讨论对数的运算法则,促进学生之间的交流和合作。

教学手段:1. 多媒体课件:展示幂函数、指数函数和对数函数的图像和实例。

2. 练习题:提供练习题,帮助学生巩固所学知识和技能。

1. 课堂参与度:观察学生在课堂中的积极参与和提问情况,评价学生的学习兴趣和主动性。

2. 练习题完成情况:检查学生完成练习题的正确率和解题思路,评价学生的理解和应用能力。

3. 小组讨论报告:评估学生在小组讨论中的表现和合作能力,以及对数运算法则的理解和应用。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为y = x^a,其中x是变量,a是常数。

性质:幂函数的图像是一条曲线,取决于指数a的值。

当a为正整数时,函数在x轴的正半轴上递增。

当a为负整数时,函数在x轴的正半轴上递减。

当a为分数时,函数的图像呈现出特殊的变化规律。

1.2 幂函数的图像与性质绘制幂函数的图像,观察不同指数a对图像形状的影响。

分析幂函数的单调性、奇偶性、渐近线等性质。

第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为y = a^x,其中a是底数,x是变量。

性质:指数函数的图像是一条递增的曲线,底数a大于1时,曲线向上弯曲;底数a 小于1时,曲线向下弯曲。

指数函数的渐近线是y轴。

指数函数的值域是正实数集。

2.2 指数函数的应用分析指数函数的增长速度,比较不同底数的指数函数。

应用指数函数解决实际问题,如人口增长、放射性衰变等。

第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为y = log_a(x),其中a是底数,x是变量。

性质:对数函数的图像是一条递减的曲线,底数a大于1时,曲线向下弯曲;底数a 小于1时,曲线向上弯曲。

对数函数的渐近线是x轴。

对数函数的定义域是正实数集。

3.2 对数函数的应用分析对数函数的单调性,比较不同底数的对数函数。

应用对数函数解决实际问题,如测量、数据压缩等。

第四章:对数运算法则4.1 对数的基本性质回顾对数的定义,巩固对数函数的基本性质。

学习对数的换底公式、对数的反对数等基本性质。

4.2 对数的运算法则学习对数的加法、减法、乘法、除法等运算法则。

运用对数的运算法则进行复杂对数表达式的化简和求值。

第五章:对数函数的应用5.1 对数函数在实际问题中的应用分析实际问题,识别可以用对数函数表示的关系。

应用对数函数解决实际问题,如人口增长、放射性衰变等。

指数函数、对数函数、幂函数、函数模型及其应用

指数函数、对数函数、幂函数、函数模型及其应用

第四十二讲指数函数、对数函数、幂函数、函数模型及其应用【学习目标】知识与技能:能利用指,对,幂的运算性质进行运算,能熟练掌握指数函数、与对数函数、幂函数的图像和性质,能区分幂函数解析式与指数函数,会应用基本概念解题,能掌握确定函数零点的常用方法。

过程与方法:体会转化思想和数形结合思想的运用。

情感态度价值观:培养学生合作交流意识和勇于探索的精神。

【学习重难点】学习重点:幂、指、对函数图像特征基本性质的应用,确定函数零点的常用方法。

学习难点:同类及不同类函数图像特征的规律的掌握,含参零点问题讨论。

【经典题回顾】2、(2013·全国卷Ⅱ)设a =log32,b =log52,c =log23,则( ) A .a>c>b B .b>c>a C .c>b>a D .c>a>b3、函数f(x)=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)【最新题选讲】例1、已知幂函数y =f (x )的图像过点⎝⎛⎭⎫12,22,则log 4f (2)的值为( )A.14 B .-14 C .2 D .-2例2.(2013·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c例3、 (2013北京,文13)函数f (x )=12log ,1,2,1,x x x x ≥⎧⎪⎨⎪<⎩的值域为__________.学完本题后,有什么样的体会?【课堂练习A 组】1、(2012·四川高考)函数y =ax -a(a>0,且a≠1)的图像可能是( )1、已知a =5-22,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.2. 设a =⎝⎛⎭⎫340.5,b =⎝⎛⎭⎫430.4,c =log 34(log 34),则( ) A .c <b <a B .a <b <c C .c <a <bD .a <c <b3、函数y =x -x 13的图像大致为( )【课堂练习B 组选做】1. 函数y =f (x )满足f ⎝⎛⎭⎫x +54=-f ⎝⎛⎭⎫x -54,当x ∈[-1,4]时,f (x )=x 2-2x ,则f (x )在区间[0,2 012]上零点的个数为( )A .2 011B .2 012C .1 026D .1 0272.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( )A .(-∞,1] B.⎣⎡⎦⎤-1,43 C.⎣⎡⎭⎫0,32 D .[1,2) 3、已知函数f (x )=⎩⎪⎨⎪⎧-x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.【能力提升】1、(2013·陕西高考)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为________(m).【总结提炼】比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较.函数的零点、方程的根,都可以转化为函数图像与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图像,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来【反馈落实】1、函数()(0,1)xf x a a a =>≠在[0,1]上的最大值与最小值的和为3,则a 的值为 . 2、在同一坐标系下,函数y =a x,y =b x,y =c x,y =d x的图象如下图,则a 、b 、c 、d 、1之间从小到大的顺序是( ).3. 设函数f (x )=]⎩⎨⎧+∞∈-∞∈-),1( log 1,( 281x x x x ,则满足f (x )=41的x 值为______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:幂函数指数函数对数函数
1、(1)正整数指数幂:
()
n
a n N
+
∈叫做a的n次幂,a叫做幂的
n叫做幂的(2)负整数指数幂:规定=
(3)______(,)
m n
a a m n Z
⋅=∈;()______(,
m n
a m n Z
=∈()______(
n
a b n Z
⋅=∈;2、
0___(___),____(____),____,____(___)
m m
n
n n
a a a a-
-
====
4.幂函数的图象与性质
由幂函数y=x、y=
1
2
x、y=x2、y=x-1、y=x3的图象,可归纳出幂函数的如下性质:
(1)幂函数在__________上都有定义;(2)幂函数的图象都过点__________;
(3)当α>0时,幂函数的图象都过点________与________,且在(0,+∞)上是单调________;
(4)当α<0时,幂函数的图象都不过点(0,0),在(0,+∞)上是单调________.
注:1、在(0,1)上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在(1
数中指数越大,函数图象越远离x轴.
方法与技巧
1.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x为自变量,指数α
判断一个函数是否是幂函数的重要依据和唯一标准.应当注意并不是任意的一次函数、
都是幂函数,如y=x+1,y=x2-2x等都不是幂函数.
2.比较多个幂值的大小,一般采用媒介法,即先判断这组数中每个幂值与0,1
的大小关系.
3.幂函数y=xα的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:
(1)α>0时,图象过(0,0),(1,1)在第一象限的图象上升;α<0
图象下降,反之也成立.
(2)曲线在第一象限的凹凸性α>1时,曲线下凸;0<α<1时,曲线上凸;α<0,曲线下凸.
失误与防范
1.
象与坐标轴相交,则交点一定是原点.
2.
内的图象,然后根据它的奇偶性就可作出幂函数在定义域内完整的图象.
5、指数函数和对数函数基本知识总结
m
a-
3 化简(1)
8
3
1
8
4
m n-
⎛⎫

⎝⎭(2)
(
215
1
366
2
23
a b a b
⎛⎫⎛⎫
-÷-
⎪ ⎪
⎝⎭⎝⎭
4、计算(1)(2)
2
0.5
3
20
71037
20.123
92748
π
-
-
⎛⎫⎛⎫
++-+
⎪ ⎪
⎝⎭⎝⎭
规律总结:利用分数指数幂求值时,要注意数的特征,在化简之前,应先把小数化成分数,假分数化成带分数。

5、解指数(对数)不等式
1
(1)24(2)()2
2
x x
>>
2211
22
(3)log log3(4)log log3
x x
><
1.下列函数是幂函数的序号是________.
①y=2x;②y=2x-1;③y=(x+2)2;④y=
3
x2;⑤y=
1
x
.
2、已知y=(m2+2m-2)·
1
1
m
x-+(2n-3)是幂函数,求m、n的值.
探究提高(1)
量;③幂系数为1.
(2)若一个函数为幂函数,则该函数解析式也必具有以上的三个特征.
a=
2
5
3
()
5
,b=
3
5
2
()
5
,c=
3
5
2
()
5
,则a,b,c的大小关系是
3
l o g7
1
()
9(2)15151515
3
log2log log20log4
2
++-;(3)2
6666
(log2)log2log3log18
+⋅+;
2
1
x>(2)1
x
a>
3
7log 14
a
、,求a 的取值范围。

相关文档
最新文档