A Model of Biological Differentiation in Adaptiogenesis to the Environment

合集下载

生物化学英语

生物化学英语

生物化学英语Introduction to BiochemistryBiochemistry is a fascinating interdisciplinary fieldthat combines biology and chemistry to study the chemical processes and molecules that occur within living organisms.It focuses on understanding the molecular mechanisms underlying biological processes and how they are regulated. In this document, we will provide an overview of important concepts and techniques in biochemistry.1. Structure and Function of BiomoleculesBiochemistry studies the structure and function of biomolecules, which include proteins, nucleic acids, carbohydrates, and lipids. Proteins are crucial for various cellular functions, such as enzyme catalysis, cell signaling, and structural support. Nucleic acids, including DNA and RNA, carry genetic information and are involved in protein synthesis. Carbohydrates are important energy sources, while lipids serve as components of cell membranes and energy storage molecules.2. Enzymes and MetabolismEnzymes are proteins that catalyze biochemical reactions, playing a vital role in metabolism. They lower the activation energy required for reactions to occur, thus speeding up the rate of chemical reactions within cells. Metabolism involves a series of interconnected biochemical reactions that convert nutrients into energy and building blocks for cellular processes. An understanding of enzyme kinetics and metabolic pathways is essential in biochemistry.3. Biochemical TechniquesVarious techniques are used in biochemistry to study biomolecules and their functions. These include spectroscopy, chromatography, electrophoresis, centrifugation, and molecular cloning. Spectroscopy allows the analysis of biomolecule structures by using light absorption, emission, or scattering. Chromatography separates mixtures into their individual components. Electrophoresis separates charged molecules based on their size and charge. Centrifugation separates particles based on their size and density. Molecular cloning allows for the replication and manipulation of DNA.4. Gene Expression and RegulationBiochemistry also encompasses the study of gene expression and regulation. Gene expression refers to the process by which information from a gene is used to produce a functional protein or RNA molecule. Regulation of gene expression ensures that the right genes are turned on or off at the appropriate times and in specific cell types. Understanding gene expression and regulation is crucial in understanding development, cell differentiation, and disease.5. Applications of BiochemistryBiochemistry has numerous applications in various fields, including medicine, agriculture, and biotechnology. In medicine, biochemistry is essential for understanding diseases at the molecular level and developing new drugs and therapies. In agriculture, biochemistry is used to improve crop yields and develop genetically modified organisms. Biotechnology relies heavily on biochemistry for geneticengineering, production of recombinant proteins, and designing new biofuels.ConclusionBiochemistry is a vast and dynamic field that plays a critical role in advancing our understanding of life processes and their applications. It provides a foundation for various other branches of biology and chemistry, contributing to fields such as molecular biology, genetics, and pharmacology. By studying the structure and function of biomolecules, enzymes, and metabolic pathways, biochemists continue to unravel the complexities of life.。

生物工程专业英语作业

生物工程专业英语作业
Genetic Traits and Diseases
03
Identify different genetic traits that are inherited in Mendelian inheritance patterns Focus on the impact of genetic traits on human health and issues
Cell Division and Growth: Describe the process of cell division, including mitosis and cytokinesis Explain how cells grow and multiply
Fundamentals of Cell Biology
Identify the different types of cells in the human body and explain their functions Describe the organization of cells into issues and the types of issues found in the human body
Rapid development period
After the mid-20th century, with the development of disciplines such as molecular biology and cell biology, biotechnology entered a period of rapid development.
要点三
Fundamentals of Biochemistry
03
Biotechnology experimental technology

低氧对斑马鱼胚胎发育和红细胞生成的抑制作用

低氧对斑马鱼胚胎发育和红细胞生成的抑制作用

2021年2月第29卷㊀第1期中国实验动物学报ACTA LABORATORIUM ANIMALIS SCIENTIA SINICAFebruary 2021Vol.29㊀No.1楚璐萌,田子颖,崔蕊,等.低氧对斑马鱼胚胎发育和红细胞生成的抑制作用[J].中国实验动物学报,2021,29(1):1-8.Chu LM,Tian ZY,Cui R,et al.Inhibition effects of hypoxia on embryonic development and erythropoiesis in zebrafish [J].Acta Lab Anim Sci Sin,2021,29(1):1-8.Doi:10.3969/j.issn.1005-4847.2021.01.001[基金项目]国家自然科学基金(31301135),河南省高等学校重点科研项目资助计划(21A320018),河南省高校科技创新人才支持计划(17HASTIT047),河南省高等学校青年骨干教师资助计划(2016GGJS-103),新乡医学院精神神经医学学科群支持计划(2016PNKFKT-08),新乡医学院产学研合作项目(2017CXY-2-14),河南省生物精神病学重点实验室开放课题(ZDSYS2016001),研究生创新支持计划资助项目(YJSCX201811Z)㊂Funded by National Natural Science Foundation of China (31301135),Key Scientific Research Projects of Henan Province (21A320018),Innovative Talents in Science and Technology of Fund Program of Universities of Henan Province(17HASTIT047),the Young Backbone TeachersFellowship in Henan Province (2016GGJS-103),the Disciplinary Group of Psychology and Neuroscience,Xinxiang Medical University (2016PNKFKT-08),Production,Study and Research Project Funding of Xinxiang Medical University(2017CXY-2-14),Open Program of Henan Key Laboratory of Biological Psychiatry(ZDSYS2016001),Graduate Innovation Support Program Funded Projects(YJSCX201811Z).[作者简介]楚璐萌(1994 ),女,在读硕士研究生,研究方向:造血分化发育研究㊂Email:670381639@ [通信作者]于海川(1979 ),男,博士,副教授,研究方向:造血分化发育㊂Email:haichuan_yu@;吴娇(1978 ),女,博士,副教授,研究方向:神经分化发育研究㊂Email:wujiao@㊂∗共同通信作者低氧对斑马鱼胚胎发育和红细胞生成的抑制作用楚璐萌1,4,田子颖1,崔蕊1,吴娇2∗,于海川1,3∗(1.新乡医学院医学检验学院,河南省分子诊断与医学检验技术协同创新中心,河南新乡㊀453003;2.新乡医学院药学院,河南新乡㊀453003;3.新乡医学院第二附属医院,河南省生物精神病学重点实验室,河南新乡㊀453002;4.河南省郑州市第七人民医院,郑州㊀450000)㊀㊀ʌ摘要ɔ㊀目的㊀本文以斑马鱼(Danio rerio )为研究对象,探讨了低氧对早期胚胎发育㊁造血分化和红系分化的影响㊂方法㊀选取受精后12h 的斑马鱼胚胎,随机分为两组,以常氧组为对照组,低氧组为实验组,实时观察斑马鱼胚胎发育形态学的变化;通过联苯胺染色㊁邻联茴香胺染色㊁AO 染色及瑞氏吉姆萨染色观察红细胞的生成及形态学变化;并通过Real time PCR 检测了斑马鱼胚胎造血相关基因的表达情况㊂结果㊀与常氧相比,低氧降低了斑马鱼胚胎卵黄囊的营养消耗,抑制了色素细胞的形成,减慢了心率,延缓了斑马鱼胚胎的孵化,观察和分析了低氧对红细胞产生和成熟的抑制作用㊂结论㊀低氧延缓了斑马鱼胚胎发育,抑制了红细胞的产生和成熟㊂ʌ关键词ɔ㊀斑马鱼;低氧;胚胎发育;造血分化;红细胞生成ʌ中图分类号ɔQ95-33㊀㊀ʌ文献标识码ɔA㊀㊀ʌ文章编号ɔ1005-4847(2021)01-0001-08Inhibition effects of hypoxia on embryonic development anderythropoiesis in zebrafishCHU Lumeng 1,4,TIAN Ziying 1,CUI Rui 1,WU Jiao 2∗,YU Haichuan 1,3∗(1.School of Laboratory Medicine,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine,Xinxiang Medical University,Xinxiang 453003,China.2.School of Pharmacy,Xinxiang Medical University,Xinxiang 453003.3.the Second Affiliated Hospital of Xinxiang Medical University,Henan Key Laboratory of Biological Psychiatry,Xinxiang Medical University,Xinxiang 453002.4.Zhengzhou No.7People s Hospital of Henan Province,Zhengzhou 450000)Corresponding author:YU Haichuan.E-mail:haichuan_yu@;WU Jiao.E-mail:wujiao@ ʌAbstract ɔ㊀Objective ㊀The vertebrate model of zebrafish (Danio rerio )was employed to explore the effects ofhypoxia on early embryonic development,hematopoietic differentiation,and erythroid differentiation.Methods ㊀At 12hpost-fertilization,zebrafish embryos were randomly divided into two groups.The normoxic group was used as the control group,and the hypoxic group was used as the experimental group.The morphological changes of zebrafish embryos were observed in real-time.Erythropoiesis and morphological changes were observed by benzidine,O-dianisidine,acridine orange,and May-Grunwald Giemsa staining.Real time PCR was used to analyze hematopoietic gene expression in zebrafish embryos.Results㊀Hypoxia reduced nutritional consumption of the yolk sac,inhibited the formation of pigment cells, slowed down the heart rate,and delayed the hatching of zebrafish embryos.Inhibitive effects of hypoxia on the production and maturity of red blood cells were observed.Conclusions㊀Hypoxia delays zebrafish embryonic development and inhibits the production and maturity of red blood cells.ʌKeywordsɔ㊀zebrafish;hypoxia;embryonic development;hematopoietic differentiation;erythropoiesis Conflicts of Interest:The authors declare no conflict of interest.㊀㊀斑马鱼(Danio rerio)是研究发育㊁造血和遗传学的强大模型[1],其具有体外受精发育㊁产卵量大㊁胚胎透明等多种优势[2-4]㊂斑马鱼与人类之间的遗传同源性达87%[5],同时具有遗传操作和再生能力[6],这使得斑马鱼成为目前研究脊椎动物胚胎发育和造血分化的优秀动物模型[7]㊂低氧是影响水生系统的最重要的压力源之一[8-9],目前有关低氧对斑马鱼胚胎发育的影响机制研究报道非常少㊂斑马鱼胚胎发育是一个复杂的㊁高度协同的过程㊂斑马鱼与人的造血分化是保守一致的,已经发现并克隆了造血过程中的阶段特异性表达基因,包括EPO㊁Globin和GATA1等[3,10]㊂研究发现红细胞生成受到低氧环境的影响,其中一个或多个异常可能导致不同类型的红细胞生成障碍[10]㊂本文采用联苯胺染色㊁邻联茴香胺染色及瑞氏吉姆萨染色来显示红细胞的生成及形态学变化,观察了低氧下斑马鱼胚胎的整个发育过程,并对常氧和低氧下的基因表达水平进行了比较,从而加深了低氧对脊椎动物影响的认识㊂目前涉及低氧对斑马鱼影响的详细研究很少,本研究为揭示低氧影响斑马鱼胚胎发育和红细胞生成的具体过程提供了新数据㊂1㊀材料与方法1.1㊀材料1.1.1㊀实验动物本实验得到新乡医学院动物实验伦理委员会的审批(XYLL-2020163),于河南省免疫与靶向药物重点实验室中进行实验,实验动物实验使用许可证号ʌSYXK(豫)2018-0014ɔ㊂约100对状态良好的生育期的AB品系斑马鱼养殖于上海海圣斑马鱼实验养殖系统中,光照/黑暗14h/10h,水温为28ħ㊂受精卵在28.5ħ下孵育,并根据Kimmel等[2]方法进行分期㊂1.1.2㊀主要试剂与仪器3,3 ,5,5 -四甲基联苯胺(MACKLIN,中国);瑞氏吉姆萨染液(Baso,中国);AO染液(索莱宝,中国);邻联茴香胺(Sigma,美国);TRIzol试剂(ambion,美国);逆转录试剂盒(诺唯赞,中国)㊂斑马鱼养殖系统(上海海圣生物实验设备有限公司,中国);YCP系列三气培养箱(长沙华曦电子科技有限公司,中国);ZEISS Discovery.V8体式荧光显微镜(ZEISS,德国);BX51正置荧光显微镜(Olympus,日本);PikoReal TM实时荧光定量PCR检测仪(Thermo Fisher Scientific,美国);Tanon-3500凝胶成像系统(上海天能公司,中国)㊂1.2㊀方法1.2.1㊀斑马鱼的繁殖和胚胎处理斑马鱼是根据已有文献的标准条件饲养和繁殖[11],交配和胚胎培养方法由中国斑马鱼资源中心提供㊂12hpf(hours post fertilization)后收集高质量的胚胎进行实验㊂将胚胎分为低氧和常氧培养组,低氧组的胚胎暴露于5%O2浓度下㊂每12h收集1次斑马鱼胚胎,鉴定胚胎的发育阶段㊂在不同发育时期,从常氧和低氧组各随机选取10个胚胎,用ZEISS ZEN软件计算卵黄囊的比例;用Image J软件分析体表色素沉着的比例;在体视显微镜下观察并计算胚胎个体的心率㊂1.2.2㊀联苯胺染色和邻联茴香胺染色联苯胺染色按照本实验室的方法进行[12],邻联茴香胺染色参照文献方法进行[13]㊂使用体式显微镜对各发育阶段的胚胎进行观察并拍照,用Image J 软件分析整个斑马鱼中染色部分的占比㊂图像至少是从3个独立的实验中获得,每组至少有6个胚胎或幼鱼㊂1.2.3㊀瑞氏吉姆萨染色对胚胎进行断尾处理收集血细胞,制备血涂片㊂斑马鱼预处理及瑞氏吉姆萨染色方法参照文献进行,并稍作改进[14-15]㊂使用BX51正置荧光显微镜观察并鉴定红细胞类型,并依据统计学方法计算红细胞在所有血细胞中的比例㊂1.2.4㊀AO染色随机收集10个胚胎/幼鱼移至包含1mL ddH2O的EP管中,然后加入30μL10μg/mL的AO染液,避光染色1h[16-17]㊂立即使用体式荧光显微镜观察并拍摄胚胎中的荧光㊂1.2.5㊀RNA提取和Real time PCR每组随机取50个胚胎/幼鱼,溶于TRIzol试剂中提取总RNA㊂使用逆转录试剂盒将总RNA逆转录为cDNA㊂使用特异性基因引物(见表1)进行常规RT-PCR和Real time PCR㊂表1㊀实时荧光定量PCR引物名称及序列Table1㊀Primer names and sequences of Real time PCR引物名称Primer names引物序列(5 -3 )Primer sequences(5 -3 ) Z-Globin-F TTTCCGCAAAGGACAAAGCGZ-Globin-R AGGAGAGTTGGGGCTTAGGTZ-GATA1-F TTTACGGCCCTTCTCCACACZ-GATA1-R GGTGGCACCACAATTCACACZ-l-plastin-F GATGTGGATGGGAACGGTCAZ-l-plastin-R ATGAACCACCTTGGCGAACTZ-scl-F CGGGCTGACAACTAGCGTATZ-scl-R TACCTGATGAGGCGTGGGTAZ-c-myc-F TATGCTGCAAGTGACCGGAGZ-c-myc-R GCTGGATGGAGTCGTAGTCGZ-NFIL3-F TAGCCCGATGTCCTTCCAGAZ-NFIL3-R TGGTGAGTCTGGACATTGCCZ-GAPDH-F TCACATTAAGGGTGGTGCAAZ-GAPDH-R GTGATGGCATGAACAGTGCT 1.3㊀统计学分析使用GraphPad Prism7软件对实验数据进行分析㊂计量资料以平均值ʃ标准差( xʃs)表示,采用t检验比较两组样本的均值,多组间的样本采用单因素方差分析㊂P<0.05为差异有统计学意义㊂2㊀结果2.1㊀低氧延迟斑马鱼胚胎发育依据前期实验结果,最终选定5%O2浓度作为低氧条件㊂将12hpf的斑马鱼胚胎(图1A)随机分为两组,分别在常氧和低氧下培养㊂24hpf,咽囊期原基-5期视网膜色素沉着和皮肤黑色素沉积较早,卵黄囊内出现红细胞,此时出现早期心脏搏动(图1B);36hpf,原基-25期,绒毛膜中的斑马鱼胚胎出现早期运动㊁尾部色素沉着和血液循环(图1C); 48hpf,长胸鳍期,卵黄囊开始变薄,侧边带出现黑素细胞,视网膜上的虹膜色素细胞丰富,头部出现黄色(图1D);60hpf,高胸鳍期,血液循环明显,视网膜虹膜色素细胞环加深(图1E);72hpf,孵化期的突口阶段,虹膜色素细胞覆盖眼睛,背部与头部相同颜色(图1F);84hpf,斑马鱼胚胎已经发育到幼鱼期(图1G)㊂低氧下,胚胎在24hpf时发育到卵裂期的20-体节阶段,在胚胎背侧区域共观察到20个体节,相当于在常氧下19hpf时的发育阶段(图1H)㊂同样,低氧下,36㊁48㊁60㊁72㊁84hpf的胚胎发育阶段分别为原基-6期㊁原基-25期㊁高胸鳍期㊁长胸鳍期和胸鳍期,分别与常氧下的25㊁36㊁42㊁48㊁60 hpf一致(图1I㊁1J㊁1K㊁1L㊁1M),即低氧在一定程度上延迟了斑马鱼胚胎的整体发育㊂2.2㊀低氧对于斑马鱼卵黄囊㊁色素沉着㊁胚胎孵化和心率的影响在相同发育阶段,低氧组斑马鱼的卵黄囊体积明显大于常氧组(图2A㊁2B);低氧组斑马鱼眼睛㊁头部㊁躯干和卵黄囊中的色素沉着明显低于常氧组(图2A㊁2C);在相同的长胸鳍阶段,常氧组胚胎完成了孵化,低氧组胚胎仍然包裹在绒毛膜中(图2A)㊂常氧组斑马鱼在24hpf时胚胎开始出现早期的心脏搏动,而此时低氧组未发现心脏搏动㊂从24 hpf开始,无论是否低氧培养,胚胎早期心率随时间变化趋势一致,约60hpf后心率趋于稳定,而在相同发育时间,低氧组斑马鱼胚胎心率明显低于常氧组(图2D)㊂另外,相同发育阶段,低氧下的胚胎心率明显低于常氧(图2E)㊂2.3㊀低氧减少斑马鱼早期胚胎发育红细胞的生成邻联茴香胺染色结果显示,经低氧处理的斑马鱼胚胎的邻联茴香胺的着色面积显著降低,染色部位主要位于卵黄囊,而常氧组斑马鱼胚胎的染色部位则逐渐从卵黄囊转移到心脏和头部(图3A-a,c, e,g)㊂联苯胺染色结果与邻联茴香胺染色基本一致,常氧下胚胎的主要染色部位逐渐从卵黄囊和大血管转移到心脏㊁大血管和节间血管,低氧下的染色部位逐渐从卵黄囊转移到心脏和血管,节间血管染色不明显(图3B)㊂使用Image J软件对联苯胺染色结果进行分析,在同一发育阶段,低氧下胚胎的着色面积比例明显低于常氧(图3C)㊂AO染色结果显示,低氧下斑马鱼胚胎卵黄囊的前部和上部有大量的凋亡细胞(绿色荧光颗粒);但其会随着斑马图1㊀斑马鱼胚胎发育代表性图片(ˑ150)Figure 1㊀Representative images of zebrafish embryonic development(ˑ150)注:A:斑马鱼胚胎的代表性图片(ˑ150);B㊁C:斑马鱼卵黄囊体积占比和色素沉着占比;D:不同发育时间斑马鱼胚胎的心率变化;E:相同发育阶段下斑马鱼胚胎的心率的差异㊂与常氧相比,∗P <0.05,∗∗P <0.01,∗∗∗P <0.001㊂(下图同)图2㊀低氧对于斑马鱼胚胎卵黄囊㊁色素沉着和心率的影响Note.A.Representative images of zebrafish embryos(ˑ150).B,C.The proportion of yolk sac volume and the proportion of pigmentation.D.The heart rate of zebrafish embryos under normoxic and hypoxic conditions at different developmental time.E.The heart rate of zebrafishembryos under normoxic and hypoxic conditions at the same developmental pared with normal oxygen,∗P <0.05,∗∗P <0.01,∗∗∗P <0.001.(The same in the following figures)Figure 2㊀Effects of hypoxia on yolk sac,pigmentation and heart rate of zebrafish embryos鱼胚胎的发育逐渐减少(图3A-b,d,f,h)㊂2.4㊀低氧抑制红细胞成熟瑞氏吉姆萨染色结果显示,同一发育时期,低氧下斑马鱼的总红细胞(包括幼稚红细胞和成熟红细胞)比例低于常氧(图4A㊁4B)㊂图4A 中,蓝色箭头处为未成熟红细胞,胞体呈圆形,胞质丰富,细胞核呈圆形或类圆形,蓝色,多居中;红色箭头处为成熟的红细胞,胞体比未成熟红细胞小,呈椭圆形,胞质丰富,细胞核呈椭圆形,深紫色㊂低氧下84hpf 的斑马鱼血液中只有未成熟的红细胞存在㊂但是同一发育阶段下常氧和低氧相比较,红细胞总数的比例没有统计学意义(图4C)㊂以往的研究表明,斑马鱼血液中的红细胞呈连续性年龄分布,成熟的红细胞血红蛋白含量较高[18]㊂这些结果表明低氧在一定程度上抑制了红细胞的成熟㊂2.5㊀低氧对于斑马鱼胚胎发育过程中造血相关基因表达的影响通过绘制斑马鱼胚胎发育早期的造血细胞分化发育图谱,我们选定了部分重要的造血相关基因进行表达检测㊂首先使用RT-PCR 的方法观察了在正常培养过程中斑马鱼胚胎发育6㊁12㊁24㊁48㊁72hpf 时一些重要造血相关基因的表达情况(图5A),在24hpf 之后,红系特异性造血因子GATA1和Globin 随着发育时间的增加其表达强度逐渐增加;注:A:斑马鱼胚胎的邻联茴香胺染色图片和AO 染色图片(ˑ150);B:斑马鱼胚胎的代表性联苯胺染色图片(ˑ100);C:联苯胺染色量化图㊂图3㊀低氧对斑马鱼胚胎血红蛋白的生成和细胞凋亡的影响Note.A.O-dianisidine staining pictures and Acridine orange staining pictures of zebrafish embryos(ˑ150).B.Representative benzidine staining of zebrafish embryos(ˑ100).C.Quantitative line chart of Benzidine staining.Figure 3㊀Effects of hypoxia on hemoglobin production and cell apoptosis of zebrafishembryos注:A:斑马鱼胚胎血细胞的瑞氏吉姆萨染色(ˑ1000);B:不同发育时期斑马鱼胚胎中红细胞的比例;C:在相同的发育阶段,斑马鱼胚胎中红细胞的比例㊂图4㊀低氧抑制红细胞成熟Note.A.May-Grunwald Giemsa staining of zebrafish embryonic blood cells(ˑ1000).B.The proportion of red blood cells in blood of zebrafish embryos at different developmental time.C.At the same developmental stage,the proportion of red blood cells in blood of zebrafish embryos.Figure 4㊀Hypoxia inhibits red blood cell maturity同时其他的与造血相关的基因c-myc㊁scl㊁GATA2和NFIL3等在斑马鱼胚胎发育早期,也随着发育时间呈逐渐升高的趋势,而l-plastin 在早期的表达更加明显㊂另外,Real time PCR 结果显示了常氧和低氧下一些红系相关基因的表达差异㊂Globin 在相同的发育时期低氧下的表达强度要明显低于常氧下的表达强度,与之相反Epo 基因在低氧下则显示较高,同时其他相关造血基因在某些发育阶段也显示出低氧下表达强度低于常氧下(图5B)㊂这些基因表达的变化情况证实并解释了先前观察到的低氧抑制斑马鱼胚胎早期红系分化的结果㊂注:A:RT-PCR 分析常氧条件下斑马鱼胚胎发育过程中的mRNA 表达水平;B:Real time PCR 分析比较常氧和低氧条件下造血相关mRNA 的表达差异㊂图5㊀低氧对于斑马鱼胚胎发育中基因表达的影响Note.A.Some mRNA level was analyzed by RT-PCR during embryonic development of zebrafish.B.Real time PCR was employed to analyze the differential expression of hematopoietic related mRNA.Figure 5㊀Effects of hypoxia on gene expression in embryonic development of zebrafish3㊀讨论为了探讨低氧对斑马鱼胚胎发育和造血作用的影响,我们使用了不同的低氧浓度和低氧处理时间㊂前期的实验结果表明当受精后的胚胎直接暴露于1%O 2浓度下超过24h,死亡率几乎是100%㊂我们最终选定了5%O 2浓度作为最适低氧浓度,而12hpf 作为最佳低氧处置时间㊂斑马鱼胚胎是一个 封闭系统 ,且发育早期不能合成血红蛋白来供应自身氧气的需求,只能通过外界氧气的被动扩散才能满足斑马鱼胚胎的正常生长发育,所以绒毛膜上的孔洞是氧气和营养物质从外部水环境运输到胚胎和清除废物所必需的[19],通过独特的绒毛膜结构,未孵化的胚胎感受到低氧并影响其发育,本研究发现低氧延缓了斑马鱼的孵化时间㊂卵黄囊的主要作用是为斑马鱼早期发育提供所需的营养物质,使发育不受外界干扰[20]㊂但有研究发现抵抗动物缺氧的最重要的防御机制之一是能量消耗的下调[21],本实验结果显示:低氧下斑马鱼胚胎卵黄囊的体积占比大于常氧,即实验证实低氧抑制卵黄囊的消耗㊂同时低氧减少了胚胎的体外色素沉着,这可能是由于低氧降低细胞色素P450的表达[22],或者因为低氧影响了酪氨酸酶的活性从而延迟了胚胎色素细胞的发育[23]㊂总之,低氧从整体上抑制了斑马鱼胚胎的发育过程,而持续的低氧不利于胚胎发育和生物学进化,在某些情况下甚至可能导致严重的疾病或死亡㊂鱼类心脏对多种环境因素敏感,其中之一就是低氧㊂在低氧状态下,由于外部氧气浓度较低,通过绒毛膜被动扩散进入斑马鱼胚胎的氧气含量无法满足斑马鱼胚胎心脏形成和发挥功能的需求,从而导致其出现持续性心动过缓,通过降低心率和能量消耗从而提高成活率[24]㊂与文献报道相一致,本研究发现低氧会导致斑马鱼心率发生复杂的变化,其确切的变化取决于发育阶段,并且在较小的程度上取决于饲养温度[25]㊂同时,以往文献显示,低氧导致斑马鱼胚胎出现一定程度的心包水肿,伴有卵黄囊水肿,胚胎血管系统发育不良,血液流速变缓[26-28]㊂我们的研究结果再一次证实了这一结果,心包水肿影响血液循环㊁心率,并很可能对血细胞生成有一定影响㊂低氧不仅影响斑马鱼胚胎的形态和心脏功能,造血分化和红细胞生成也受到了影响㊂斑马鱼是研究胚胎红细胞生成的理想系统[29]㊂红细胞的产生在许多水平上受到调节,包括基因表达的控制,环境条件的改变㊂本研究结果显示胚胎发育早期低氧对红细胞产生和成熟具有抑制作用㊂这可能是由于在胚胎发育的早期,低氧下卵黄囊前部和上部的血供不足引起的细胞凋亡,但在发育后期斑马鱼胚胎出现低氧耐受,凋亡模式发生改变,细胞凋亡数量减少㊂为了揭示低氧对红细胞生成过程中基因表达可能存在的调控机制,我们检测了一些重要的造血相关基因㊂有研究表明斑马鱼胚胎发育后期,12hpf胚胎血红蛋白的表达水平开始增加,并在孵化前后达到高峰,且胚胎血红蛋白基因水平一直保持在高水平,直到成年[30]㊂本实验的初步结果表明,常氧下12hpf,红系特异性造血因子Globin开始表达,随着发育时间的增加其表达强度逐渐增加,这与已有的研究报道结果是一致的;但是低氧下Globin的表达水平降低,及HiF1α的表达水平升高,提示在斑马鱼胚胎发育早期,低氧确实影响基因表达,但其分子机制尚不清楚㊂据报道,低氧可以通过调节斑马鱼胚胎的HIF通路,影响斑马鱼胚胎造血干细胞的产生和造血末期红细胞的终末分化[31-33]㊂综上所述,低氧延缓了斑马鱼胚胎的发育,抑制了红细胞的产生和成熟㊂我们的结果加深了人们对低氧诱导脊椎动物产生影响的认识,同时也提供了低氧对斑马鱼胚胎发育和红细胞生成的最新认识㊂由于斑马鱼相对于小鼠模型具有许多优势,斑马鱼疾病模型的进一步发展将加速我们对疾病各种病理㊁生理过程的了解㊂随着斑马鱼疾病模型的可用性和日益增加的多样性,该动物系统将为疾病诊断,有效治疗和预后提供强大的基础㊂在高海拔地区,低氧与中风或癌症等疾病相关[34]㊂所以此项研究在一定程度上为探索临床上低氧性疾病提供了新的认识和见解,但低氧究竟如何影响斑马鱼的胚胎发育和造血分化,还有待进一步研究㊂参㊀考㊀文㊀献(References)[1]㊀王小琦,孙岩,张洋,等.斑马鱼模型在常见骨疾病研究中的应用[J].中国比较医学杂志,2017,27(6):86-91.Wang XQ,Sun Y,Zhang Y,et al.Application of zebrafishmodels in the research on bone diseases[J].Chin J Comp Med,2017,27(6):86-91.[2]㊀Kimmel CB,Ballard WW,Kimmel SR,et al.Stages ofembryonic development of the zebrafish[J].Dev Dyn,1995,203(3):253-310.[3]㊀Gore AV,Pillay LM,Venero GM,et al.The zebrafish:Afintastic model for hematopoietic development and disease[J].Wiley Interdiscip Rev Dev Biol,2018,7(3):e312. [4]㊀王雪,韩利文,何秋霞,等.斑马鱼模型在糖尿病研究中的应用[J].中国比较医学杂志,2017,27(8):1-5.Wang X,Han LW,He QX,et al.Application of zebrafishmodels in research of diabetes[J].Chin J Comp Med,2017,27(8):1-5.[5]㊀Woo K,Shih J,Fraser SE.Fate maps of the zebrafish embryo[J].Curr Opin Genet Dev,1995,5(4):439-443. [6]㊀Brönnimann D,Annese T,Gorr TA,et al.Splitting of circulatingred blood cells as an in vivo mechanism of erythrocyte maturationin developing zebrafish,chick and mouse embryos[J].J ExpBiol,2018,221(15):184564.[7]㊀de Jong JL,Zon e of the zebrafish system to study primitiveand definitive hematopoiesis[J].Annu Rev Genet,2005,39:481-501.[8]㊀Fitzgerald JA,Jameson HM,Fowler VH,et al.Hypoxiasuppressed copper toxicity during early development in zebrafishembryos in a process mediated by the activation of the HIFsignaling pathway[J].Environ Sci Technol,2016,50(8):4502-4512.[9]㊀Kwong RW,Kumai Y,Tzaneva V,et al.Inhibition of calciumuptake during hypoxia in developing zebrafish is mediated byhypoxia-inducible factor[J].J Exp Biol,2016,219(24):3988-3995.[10]㊀Rasighaemi P,Basheer F,Liongue C,et al.Zebrafish as amodel for leukemia and other hematopoietic disorders[J].JHematol Oncol,2015,8:29.[11]㊀Varga ZM,Ekker SC,Lawrence C.Workshop report:zebrafishand other fish models-description of extrinsic environmentalfactors for rigorous experiments and reproducible results[J].Zebrafish,2018,15(6):533-535.[12]㊀Yu HC,Zhao HL,Wu ZK,et al.Eos Negatively regulateshumanγ-globin gene transcription during erythroid differentiation[J].PLoS One,2011,6(7):e22907.[13]㊀Liu C,Han T,Stachura DL,et al.Lipoprotein lipase regulateshematopoietic stem progenitor cell maintenance through DHAsupply[J].Nat Commun,2018,9(1):1310. [14]㊀Ghersi JJ,Mahony CB,Bertrand JY.bif1,a new BMP signalinginhibitor,regulates embryonic hematopoiesis in the zebrafish[J].Development,2019,146(6):164103.[15]㊀Bertrand JY,Kim AD,Violette EP,et al.Definitivehematopoiesis initiates through a committed erythromyeloidprogenitor in the zebrafish embryo[J].Development,2007,134(23):4147-4156.[16]㊀杨菲,华永庆,林紫薇,等.斑马鱼眼部细胞凋亡模型的建立[J].中国药理学通报,2019,35(9):1320-1325.Yang F,Hua YQ,Lin ZW,et al.Establishment of apoptoticmodel of zebrafish eye[J].Pharmacol Bulletin,2019,35(9):1320-1325.[17]㊀李梦婷,张慧琼,文瑞琪,等.基于斑马鱼研究附子脂溶性总生物碱的神经毒性[J].中药药理与临床,2019,35(6):63-66.Li MT,Zhang HQ,Wen RQ,et al.Study on the Neurotoxicity offat-soluble alkaloids from radix aconiti lateralis based on zebrafish[J].Pharmacol Clin Chin Mater Med,2019,35(6):63-66.[18]㊀Nikinmaa M.Environmental regulation of the function ofcirculating erythrocytes via changes in age distribution in teleostfish:Possible mechanisms and significance[J].Mar Genomics,2020,49:100717.[19]㊀Zhang Q,Kopp M,Babiak I,et al.Low incubation temperatureduring early development negatively affects survival and relatedinnate immune processes in zebrafish larvae exposed tolipopolysaccharide[J].Sci Rep,2018,8(1):4142. [20]㊀Fraher D,Sanigorski A,Mellett NA,et al.Zebrafish embryoniclipidomic analysis reveals that the Yolk cell is metabolically activein processing lipid[J].Cell Rep,2016,14(6):1317-1329.[21]㊀Ton C,Stamatiou D,Liew CC.Gene expression profile ofzebrafish exposed to hypoxia during development[J].PhysiolGenomics,2003,13(2):97-106.[22]㊀Shang EH,Wu RSS.Aquatic hypoxia is a teratogen and affectsfish embryonic development[J].Environ Sci Technol,2004,38(18):4763-4767.[23]㊀Cheng J,Flahaut E,Cheng SH.Effect of carbon nanotubes ondeveloping zebrafish(Danio rerio)embryos[J].Environ ToxicolChem,2007,26(4):708-716.[24]㊀Steele SL,Lo KH,Li VW,et al.Loss of M2muscarinic receptorfunction inhibits development of hypoxic bradycardia and alterscardiacβ-adrenergic sensitivity in larval zebrafish(Danio rerio)[J].Am J Physiol Regul Integr Comp Physiol,2009,297(2):R412-R420.[25]㊀Barrionuevo WR,Burggren WW.O2consumption and heart ratein developing zebrafish(Danio rerio):influence of temperatureand ambient O2[J].Am J Physiol,1999,276(2):505-513.[26]㊀Damalas DE,Bletsou AA,Agalou A,et al.Assessment of theacute toxicity,uptake and biotransformation potential ofbenzotriazoles in zebrafish(Danio rerio)larvae combiningHILIC-with RPLC-HRMS for high-throughput identification[J].Environ Sci Technol,2018,52(10):6023-6031. [27]㊀Antkiewicz DS,Geoffrey BC,Carney SA,et al.Heartmalformation is an early response to TCDD in embryonic zebrafish[J].Toxicol Sci,2005,84(2):368-377.[28]㊀Wu BJ,Chiu CC,Chen CL,et al.Nuclear receptor subfamily2group F member1a(nr2f1a)is required for vasculardevelopment in zebrafish[J].PLoS One,2014,9(8):e105939.[29]㊀Brownlie A,Hersey C,Oates AC,et al.Characterization ofembryonic globin genes of the zebrafish[J].Dev Biol,2003,255(1):48-61.[30]㊀Tiedke J,Gerlach F,Mitz SA,et al.Ontogeny of globinexpression in zebrafish(Danio rerio)[J].J Comp Physiol B,2011,181(8):1011-1021.[31]㊀Zhang Y,Jin H,Li L,et al.cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis[J].Blood,2011,118(15):4093-4101.[32]㊀Wang Y,Liu X,Xie B,et al.The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2oxygen sensing pathway triggers erythropoiesisterminal differentiation[J].Redox Biol,2020,28:101313.[33]㊀Pelster B,Egg M.Hypoxia-inducible transcription factors in fish:expression,function and interconnection with the circadian clock[J].J Exp Biol,2018,221(13):jeb163709. [34]㊀Ward AC,McPhee DO,Condron MM,et al.The zebrafish spi1promoter drives myeloid-specific expression in stable transgenicfish[J].Blood,2003,102(9):3238-3240.[收稿日期]㊀2020-05-27。

肌肉卫星细胞与肌腱干细胞生物学特性检测及其在肌肉和肌腱损伤动物模型上的研究

肌肉卫星细胞与肌腱干细胞生物学特性检测及其在肌肉和肌腱损伤动物模型上的研究

肌肉卫星细胞与肌腱干细胞生物学特性检测及其在肌肉和肌腱损伤动物模型上的研究肌肉卫星细胞与肌腱干细胞生物学特性检测及其在肌肉和肌腱损伤动物模型上的研究摘要:肌肉和肌腱组织受损伤后,肌肉卫星细胞和肌腱干细胞能够参与修复和再生过程,但它们的生物学特性尚未完全了解。

本研究中,我们对肌肉卫星细胞和肌腱干细胞的特性进行了检测,并研究了它们在肌肉和肌腱损伤动物模型中的应用。

通过细胞培养和Western blot检测,我们发现肌肉卫星细胞具有干细胞标志物如CD34、MyoD和Pax7等;而肌腱干细胞则表达了干细胞标志物如CD29、CD44和CD90等。

在肌肉和肌腱损伤动物模型中,我们发现移植的肌肉卫星细胞和肌腱干细胞能够促进组织修复和再生,但肌腱干细胞的效果更佳。

我们认为肌肉卫星细胞和肌腱干细胞在肌肉和肌腱组织修复和再生中具有重要作用,可以作为治疗策略的一部分。

关键词:肌肉卫星细胞,肌腱干细胞,生物学特性,肌肉损伤,肌腱损伤,动物模型Introduction肌肉和肌腱组织是人体运动和支撑系统的重要组成部分。

这些组织容易受到损伤,例如肌肉拉伤和肌腱断裂等。

肌肉卫星细胞和肌腱干细胞是这些组织中的专门细胞类型,它们能够参与组织修复和再生过程。

然而,这些细胞的特性尚未完全了解。

了解这些细胞的特性,有助于我们更好地利用它们来促进组织修复和再生。

Materials and Methods肌肉卫星细胞和肌腱干细胞分别从小鼠肌肉和肌腱中分离得到,通过细胞培养和Western blot检测来检测它们的生物学特性。

对于肌肉和肌腱损伤动物模型,小鼠分别接受肌肉和肌腱损伤,移植肌肉卫星细胞和肌腱干细胞后观察组织修复和再生情况。

Results通过细胞培养和Western blot检测,我们发现肌肉卫星细胞具有干细胞标志物如CD34、MyoD和Pax7等;而肌腱干细胞则表达了干细胞标志物如CD29、CD44和CD90等。

在肌肉和肌腱损伤动物模型中,我们发现移植的肌肉卫星细胞和肌腱干细胞能够促进组织修复和再生,但肌腱干细胞的效果更佳。

生物专业英语考试材料

生物专业英语考试材料

词根:植物学Botany ;动物学Zoology ;普通生物学Biology ;微生物学Microbiology ;生物化学Biochemistry ;高等生物化学Advanced Biochemistry ;有机化学Organic Chemistry ;无机化学Inorganic Chemistry;遗传学Genetics;微生物遗传育种Microbial genetics and strain improvement;微生物学实验技术Experimental technique in microbiology;分子生物学Molecular Biology ;基因组学Genomics;细胞生物学Cell Biology ;普通生态学General Ecology ;生物统计学Biological Statistics ;免疫学Immunology ;微生物工程Microbial engineering;酶工程Enzyme engineering;发酵工程Fermentation engineering ;基因工程原理Principles of Gene Engineering;基因工程技术Technique for Gene Engineering;化工原理Principles of Chemical Engineering;生物信息学Bio-informatics ;bio- :生物的;cyto-:细胞的表示数量的前缀:1、haplo, mono, uni :单,一,独haploid:单倍体;monoxide:一氧化碳;monoatomic:单原子的;monoacide:一价酸;monobasic:一价碱;unicell:单细胞2. bi, di, dipl, twi, du :二,双,两,偶3. tri:三,丙triangle三角;triacylglycerol三酰甘油;tricarboxylic acid cycle 三羧酸循环;4. quadri, quadru, tetra:四quadrivalent四价的;quadruped四足动物;tetrode四极管;tetracycline四环素;5. pent, penta, quintu:五pentagon:五角形;6. hex, hexa, sex:六hexose :已糖;hexapod :六足动物;hexapoda:昆虫纲;hexamer:六聚体;Hexagon:六角形;7. Hepta:七heptane:庚烷;heptose :庚糖;heptoglobin:七珠蛋白;8. oct :八9. enne,nona :九nonapeptide:九肽;enneahedron:九面体;nonane :[化]壬烷;10. deca, deka :十decapod:十足目动物;decahedron :十面体;decagram :十克;11. hecto:百12. kilo,:千13. deci :十分之一,分14. centi :百分之一centigram :厘克;centimeter :厘米15. milli,:千分之一,毫millimole :毫摩(尔)16. micro :百万分之一,微,微小,微量microgram :微克17. nano:十亿分之一,毫微,纳nanosecond:十亿分之一秒18. demi, hemi, semi :半demigod:半人半神19. holo:全,整体,完全holoenzyme:全酶;holoprotein:全蛋白20. mega :巨大,兆,百万megaspore:大孢子;megavolt :兆伏21. macro :大,巨大,多macroelement:宏元素;Macrophage:巨噬细胞22poly,multi :多,复合表示颜色的词:1 、chrom:颜色chromosome:染色体;chromatography:色谱法;chromoplast:[植]有色体;2、melan, melano:黑melanoma:黑素瘤;melanian:黑色的,黑色素的;melancholia:精神抑郁症;3 、erythro:红erythrocyte :红细胞;erythromycin :红霉素;erythrophyll:叶红素;4 、chloro, chlor:绿,氯chlorophyll:叶绿素;chloroplast:叶绿体;chloride:氯化物;chloromycin:氯霉素;5、cyan, cyano:蓝,青紫色,氰cyanobacteria:蓝细菌;cyanide:氰化物;cyanomycin:青霉素;6 leu, leuc, leuk,:无色,白色leucine:亮氨酸;leukaemia=leucosis:白血病;leucocyte:白细胞;表示方位和程度的词:1 endo :内,在内endocrine:内分泌;endocytosis:细胞内吞作用;endogamy=inbreed:近亲繁殖;endoblast:内胚层;2 ecto, extra:外,外面,表面extract:抽取,浸出;ectoblast:外胚层;ectoparasite:外寄生生物;ectoskeleton:外骨骼;3 meso :中,中间mesosphere:中圈,中层;mesoblast:中胚层;4 intra, 在内,向内; inter,表示―在一起, 交互‖intracardial:心脏内的;intracellular:细胞内的;interurban:城市之间;intercellular:细胞间的;5 centri, centro:中心,中央,中间centrifuge:离心;centriole:中心粒;centrosome:中心体;6 epi, 在上,外,旁epidermal growth factor(EGF):表皮生长因子;epicarp:外果皮;7 sub, suc, suf, sug:下,低,小subdivision:亚门;suborder:亚目;subfamily:亚科;subacute :亚急性;subcellular :亚细胞;sublethal:亚致死的;subconscious:潜意识的;8 super, supra:上,高,超superconductor:超导体;superfluid :超流体;superoxide:超氧化物;supramolecular:超分子的;9 hyper:超过,过多,过度等hypersensitive:过敏的,过于敏感的;hyperelastic:超弹性的;hypertension:高血压;hyperploid:超倍体(haploid) ;hyperlethal:超致死量的(sublethal) ;10 hypo 在……下,低,次hypoactivity:活动减低;hypoglycemia:低血糖;hypotension:低血压;hypocenter:地震震源;hypophysis:脑下垂体;11 iso:等,相同,同;iso-osmotic:等渗的;isopod:等足目动物;isotope:同位素;12 oligo:少数,低,寡,狭oligochrome:(装饰物等)只用少数颜色的;oligogene:寡基因;oligomer:寡聚体,低聚物,低聚体;oligophagous:寡食性;13 eury :多,宽,广euryphage:广食性(指能吃各种食物生存);eurythermal :广温的;eurytopic species:广幅种;14 ultra :超ultrasonic:超声;ultra-structure:超微结构;ultraviolet:紫外线;ultracentrifuge:超高速离心器;15 infra:在……下,低,远infrabar:低气压;infrahuman:类人猿生物;infrared:红外线的;infrastructure:下部构造,基础下部组织;表示摄食的词:1 、–vore:食…动物,-vorous:食…动物的;algivore:食藻动物(algae);carnivore:食肉动物;herbivore:食草动物;omnivore:杂食动物;omnivorous:杂食动物的;2、-phage:吃(食)食…生物;-phagous:吃(食)…的phage=bacteriophage:噬菌体;phagocyte:吞噬细胞;macrophage:巨噬细胞;zoophage:食肉动物;saprophage:腐食者;saprophagous:腐食者的表示无、抗、非的前缀:1、a-,an-:无,非。

细胞生物学英文原版

细胞生物学英文原版

细胞生物学英文原版Cell Biology (细胞生物学) is a branch of biology that studies the structure, function, and behavior of cells, which are the basic units of life. It encompasses various aspects of cellular processes, including cell division, metabolism, signaling, and communication.In the field of Cell Biology, researchers investigate the organization and dynamics of cellular components, such as organelles, membranes, and cytoskeleton. They study how cells interact with their environment, including othercells and extracellular matrix, and how they respond to various stimuli.Cell Biology also explores the processes of cell growth, differentiation, and development. It examines the mechanisms behind cell specialization and the formation of tissues and organs in multicellular organisms. Additionally, it investigates the regulation of gene expression and the role of genetic information in cellular functions.Furthermore, Cell Biology plays a crucial role in understanding diseases and developing new treatments. Scientists study abnormal cell behavior and the underlying molecular mechanisms that lead to diseases like cancer, neurodegenerative disorders, and genetic disorders. This knowledge helps in the development of targeted therapies and interventions.The techniques used in Cell Biology research include microscopy, molecular biology, genetics, biochemistry, and biophysics. Microscopy allows scientists to visualize cellular structures and processes at various levels of resolution. Molecular biology techniques, such as DNA sequencing and gene editing, help in understanding the genetic basis of cellular functions. Biochemical and biophysical techniques enable the study of cellular processes at a molecular level.In summary, Cell Biology is a multidisciplinary field that investigates the structure, function, and behavior of cells. It provides insights into fundamental biologicalprocesses and has applications in various areas, including medicine, biotechnology, and agriculture. By understanding the intricacies of cell biology, scientists can unravel the mysteries of life and contribute to advancements in science and technology.。

2024上海松江区高三英语二模

2024上海松江区高三英语二模

松江区2023学年度第二学期模拟考质量监控试卷高三英语(满分140分,完卷时间120分钟)2024.4 考生注意:1.本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。

2.答题前,务必在答题纸上填写学校、班级、姓名和考号。

3.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

Ⅰ.Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1.A.At 8:00. B.At 8:15. C.At 8:30. D.At 8:45.2.A.A professor. B.A coach. C.An engineer. D.A nurse.3.A.In a restaurant. B.In a hairdres ser’s.C.At a cinema. D.At a tailor’s. 4.A.Ways to visit a university. B.Two student tour guides.C.A tour of Fudan University. D.The campus of Fudan University.5.A.They did not make it there finally.B.They were not well received there.C.They experienced something unpleasant on the way.D.They had a wonderful time before they arrived there.6.A.Excited. B.Interested. C.Confused. D.Annoyed. 7.A.Practice the presentation in front of him. B.Watch how he makes a presentation. C.Reduce the time spent in practicing. D.Find out who her audience will be.8.A.She is always absent-minded. B.She forgot to tell the man about it.C.She is unclear about Sophie’s plan.D.She slipped in the neighboring town. 9.A.Because it took him much time to go to work.B.Because he had to save money for his journey.C.Because the job arranged many business journeys.D.Because he considered it unlucky to have that job.10.A.Buy a new printer with less noise. B.Ask the man to borrow a printer.C.Read a book on how to fix the printer. D.Get someone to repair the printer.Section BDirections: In Section B, you will hear two passages and one longer conversation. After each passage or conversation, you will be asked several questions. The passages and the conversation will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.Questions 11 through 13 are based on the following passage.11.A.How encores came into existence. B.How bands perform encores properly.C.Why audiences used to need encores. D.Why encores are part of a performance. 12.A.The 17th century. B.The 18th century. C.The 19th century. D.The 20th century. 13.A.French people were more interested in encores than others.B.Bands usually prepare more than two encores for each show.C.Recording technology boosted audiences’ needs for encores.D.Musicians can get recharged during the break before encores.Questions 14 through 16 are based on the following passage.14.A.Because of the rule for the class. B.Because of the course materials.C.Because the speaker changed his topics. D.Because the speaker disliked technology. 15.A.The students do not assess the speaker’s class fairly.B.The students are satisfied with the class environment.C.The speaker did not favor leaving technology at the door.D.The speaker were worried about students’ evaluation on him.16.A.It will stop students getting on well together.B.It may help students better understand themes.C.It will improve teaching effect by giving students more help.D.It may distract students from digging deep within themselves.Questions 17 through 20 are based on the following conversation.17.A.Doctor and patient. B.Salesman and customer.C.Teacher and student. D.Employer and employee.18.A.Fishing industry. B.Statistics. C.Computer modeling. D.Note-taking. 19.A.She is good at making model computers. B.She has decided on the title of the essay. C.She is uninterested in coping with statistics. D.She has always been weak at note-taking. 20.A.Learn to take notes immediately. B.Find out possible strategies alone.C.Read for more useful information. D.Work on her weaknesses by herself. Ⅱ.Grammar and VocabularySection ADirections: After reading the passage below, fill in the blanks to make the passage coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.Remote Work Slows Senior Housing Market RecoveryWith the rise of remote work, the market for senior housing has met with problems in its recovery. Only a few old people choose to live in senior-living communities (21)______the growing senior population and the cancelation of COVID-19 restrictions once making family visits difficult.(22)______ this trend suggests is that people’s shift to remote work contributes to the slow rebound of the senior housing market. That is, remote work is keeping many older Americans from moving into senior-living communities once warmly (23)______(welcome).When more adults began working remotely during the pandemic(流行病), they were able to check in on aging parents easily —they (24)______ take care of their parents’ issues on short notice.Experts have been analyzing the phenomenon in different ways. Some found that the greater flexibility to care for parents (25)______(mean)people’s delay in sending aged parents to expensive senior-housing accommodations. Therefore, markets with high levels of people working from home usually have lower senior-housing occupancy rates. Others said remote work might have some effect but also pointed to different factors. For instance, many seniors think that their family wallets are getting thinner, making some of them reluctant (26)______(send)to senior-living communities.The age at which people enter senior housing is also increasing, (27)______serves as another sign that shows people are choosing to delay transitioning. The rising cost of senior living weighs heavily on that decision. The CPI (consumer-price index)for nursing homes and adult day services rose 4.5% last May compared with (28)______in May, 2022.Still, many senior-housing operators are optimistic. When (29)______(illustrate)their point, they showed an increase in the number of people turning 80 years old over the following years and the actual wealth they have collected. Moreover, they find remote work arrangements are decreasing in some parts of the country, (30)______ employees there have seen their lowered productivity while working from home.Section BDirections: After reading the passage below, fill in each blank with a proper word chosen from the box. Each word can be used only once. Note that there is one word more than you need.A.accompanied B.allowed C.feasibly D.fueled E.intensity F.option G.prompting H.routine I.surgically J.underlying K.variedBrain Signals for Lasting PainBrain signals that reveal how much pain a person is in have been discovered by scientists who say the work is a step towards new treatments for people living with lasting pain.It is the first time researchers have decoded the brain activity 31 patients’ lasting pain. That has raised the hope that brain stimulation treatment alre ady used for Parkinson’s and major depression can help those running out of any other 32 . “We’ve learned that lasting pain can be tracked and predicted in the real world,” said Prasad Shirvalkar, lead researcher on the project at the University of California.Lasting pain affects nearly 28 million adults in the UK alone, and the causes are 33 . ranging from cancer to back problems. That being the case, lasting pain has 34 a rise in taking powerful painkillers. But nomedical treatments work well for the condition, 35 experts to call for a complete rethink in how health services handle patients with lasting pain.For the latest study, Shirvalkar and his colleagues 36 implanted electrodes(电极)into four patients with lasting pain hard to deal with after the loss of legs. The devices 37 the patients to record activity and collect data in two brain regions—the ACC and the OFC—at the press of one button on a remote handset. Several times a day, the volunteers were asked to complete short surveys on the 38 of pain, meaning how strong the pain was, and then record their brain activity. These scientists, armed with the survey responses and brain recordings, found they could use computers to predict a person’s pa in based on the electrical signals in their OFC. “We found very different brain activity 39 severe pain and have developed an objective biomarker for that kind of pain,” said Shirvalkar. The finding may explain, at least in part, why 40 painkillers are less effective for lasting pain. “The hope is that we can use the information to develop personalized brain stimulation treatment for the most severe forms of pain.”Ⅲ.Reading ComprehensionSection ADirections: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.The way of recording things has never ceased to develop. In the 1980s, as sales of video recorders went up, old 8mm home movies were gradually replaced by VHS (video home system)tapes. Later, video tapes of family holidays lost their appeal and the use of DVDs 41 . Those, too, have had their day. Even those holding their childhood memories in digital files on their laptops now know these files face the risk of 42 .Digitising historical documents brings huge benefits—files can be 43 and distributed, reducing the risk of their entire loss through physical damage caused by fire or flooding. And developing digital versions reduces44 on the original items. The International Dunhuang Project, 45 , has digitised items like manuscripts(手稿)from the Mogao caves in China, enabling scholars from around the world to access records easily without touching the real items.But the news that the Ministry of Justice of the UK is proposing to scan the 110 million people’s wills it holds and then destroy a handful of 46 after 25 years has shocked historians. The ministry cites this as a way of providing easier access for researchers. But that only justifies digitisation, not the 47 of the paper copies. The officials note the change will be economically efficient (saving around £4.5m a year)while keeping all the essential information.Scholars 48 . Most significantly, physical records can themselves carry important information — the kind of ink or paper used may be part of the history that historians are 49 . and error s are often made in scanning. Besides, digital copies are arguably more 50 than the material items, just in different ways. The attack from the Internet on the British Library last October has prevented scholars from 51 digitised materials it holds: imagine if researchers could not return to the originals. Some even think digitised information can easily be lost within decades no matter what 52 are put in place.The government says that it will save the original wills of “famous people for historic record”, such as that of Princess Diana’s. However, assuming that we know who will 53 to future generations is extraordinarilyproud. Mary Seacole, a pioneering nurse who now appears on the national school course in the UK, was largely54 for almost a century.The digitisation of old documents is a valuable, even essential measure. But to destroy the originals once they have been scanned, is not a matter of great 55 , but of huge damage.41.A.paused B.boomed C.recovered D.disappeared 42.A.getting outdated B.coming into style C.being fined D.making an error 43.A.deleted B.named C.copied D.altered 44.A.fight or flight B.life or death C.wear and tear D.awe and wonder 45.A.unfortunately B.additionally C.in summary D.for example 46.A.the originals B.the essentials C.the visualised D.the digitised 47.A.preservation B.classification C.publication D.destruction 48.A.applaud B.disagree C.discriminate D.withdraw 49.A.revising B.abandoning C.uncovering D.enduring 50.A.meaningful B.favourable C.resistant D.delicate 51.A.inventing B.adjusting C.accessing D.damaging 52.A.outcomes B.safeguards C.deadlines D.byproducts 53.A.matter B.respond C.lose D.live 54.A.spared B.discussed C.forgotten D.protected 55.A.sacrifice B.courage C.efficiency D.admirationSection BDirections: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)Charles Robert Darwin was born on 12 February 1809 in Shropshire, England. Darwin’s childhood passion was science, and his interest in chemistry, however, was clear; he was even nicknamed ‘Gas’ by his classmates.In 1825, his father sent him to study medicine at Edinburgh University, where he learned how to classify plants. Darwin became passionate about natural history and this became his focus while he studied at Cambridge. Darwin went on a voyage together with Robert Fitzroy, the captain of HMS Beagle, to South America to facilitate British trade in Patagonia. The journey was life-changing. Darwin spent much of the trip on land collecting samples of plants, animals and rocks, which helped him to develop an understanding of the processes that shape the Earth’s surface. Darwin’s analysis of the plants and animals that he gathered led him to express doubts on former explanations about how species formed and evolved over time.Darwin’s work convinced him that natural selection was key to understanding the development of the natural world. The theory of natural selection says that individuals of a species are more likely to survive when they inherit (经遗传获得)characteristics best suited for that specific environment. These features then become more widespread and can lead eventually to the development of a new species. With natural selection, Darwin argued how a wide variety of life forms developed over time from a single common ancestor.Darwin married his cousin, Emma Wedgwood, in 1839. When Darwin’s eldest daughter, Annie, died from a sudden illness in 1851, he lost his belief in God. His tenth and final child, Charles Waring Darwin, was born in 1856.Significantly for Darwin, this baby was disabled, altering how Darwin thought about the human species. Darwin had previously thought that species remained adapted until the environment changed; he now believed that every new variation was imperfect and that a struggle to survive was what drove species to adapt.Though rejected at the beginning, Darwin’s theory of evolution by natural selection is nowadays well acc epted by the scientific community as the best evidence-based explanation for the diversity and complexity of life on Earth. The Natural History Museum’s library alone has 478 editions of his On the Origin of Species in 38 languages.56.What made Darwin reconsider the origin and development of species?A.Examining plants and animals collected.B.His desire for a voyage to different continents.C.Classifying samples in a journey to South America.D.His passion for natural history at Edinburgh University.57.We can learn from paragraphs 1 to 3 that Darwin ______.A.used natural selection to develop new speciesB.enjoyed being called nicknames related to scienceC.learned some knowledge about plants when studying medicineD.argued with others over the diversity of life forms for a long period58.Which of the following changed Darwin’s view on the human species?A.That he had ten children in all. B.His youngest son’s being disabled.C.That he lost his eldest daughter. D.His marriage with Emma Wedgwood.59.This passage is mainly about ______.A.Darwin’s passion for medical science B.Darwin’s theory and experimentsC.Charles Darwin’s changing interest D.Charles Darwin’s life and work(B)Welcome to Muir Woods! This rare ancient forest is a kingdom of coast redwoods, many over 600 years old. How to get here?People using personal vehicles must have reservations before arriving at the park. (Details at.)Muir Woods National Monument is open daily, 8 a. m. to sunset. Stop by Visitor Center to get trails(路线)and program information, and to take in exhibits.What’s your path?Enjoy a walk on the paved Redwood Creek Trail (also called Main Trail). Choose short, medium, or long loops(环线). Other trails go deep into Muir Woods and Mount Tamalpais State Park.(Refer to the map of Muir Woods on the right for details.)Ready to explore more?Muir Woods is part of Golden Gate National Recreation Area, which includes Marin Headlands, Alcatraz, the Presidio, and Ocean Beach. Download the app at /goga.Stay safe and protect your park.Wi-Fi and cell service are not available. ·Watch for poisonous plants and falling branches. ·Do not feed or disturb animals. ·Fishing is prohibited in the park. ·Do not mark or remove trees, flowers, or other natural features. ·Go to the park website for more safety tips and regulations.AccessibilityWe make a great effort to make facilities, services, and programs accessible to all. For information, go to Visitor Center, ask a ranger, call, or check our website.More InformationMuir Woods National Monument /muwo Mill Valley, CA 94941-269660.Muir Woods will probably attract ______.①redwood lovers ②hunting lovers ③fishing lovers ④hiking loversA.①②B.③④C.①④D.②③61.What can be learned from the passage?A.Muir woods is surrounded by highland and ocean beaches.B.Visitors can read electronic maps using Wi-Fi in Muir Woods.C.Visitors are advised to call Visitor Center for safety tips and regulations.D.Reservations should be made if visitors drive private cars to Muir Woods.62.According to the map of Muir Woods, ______.A.Bridge 4 is the farthest from the parking lots of all bridgesB.Mill Valley is located on the southwest side of Muir BeachC.Bootjack Trail can lead one to Visitor Center from Bridge 3D.food and gifts can be bought on various sites in Muir Woods(C)Precognitive dreams are dreams that seemingly predict the future which cannot be inferred from actually available information. Former US President Abraham Lincoln once revealed the frightening dream to his law partner and friend Ward Hill Lamon, “…Then I heard people weep… ‘Who is dead in the White House?’ I demanded. ‘The President,’ ‘he was killed!’…” The killing did happen later.Christopher French, Professor in the Department of Psychology at Goldsmiths, stated the most likely explanation for such a phenomenon was coincidence(巧合). “In addition to pure coincidences we must also consider the unreliability of memory”, he added. Asked what criteria would have to be met for him to accept that precognitive dreams were a reality, he said, “The primary problem with tests of the claim is that the subjects are unable to tell when the event(s)they’ve dreamed about will happen.”However, some claimed to make such tests practicable. Professor Caroline Watt at the University of Edinburgh, has conducted studies into precognitive dreaming. She stated that knowing future through dreams challenged the basic assumption of science — causality (relationship of cause and effect).Dick Bierman, a retired physicist and psychologist, who has worked at the Universities of Amsterdam, Utrecht and Groningen, has put forward a theory that may explain precognitive dreams. It is based on the fact that when scientists use certain mathematical descriptions to talk about things like electromagnetism(电磁学), these descriptions favour the belief that time only moves in one direction. However, in practice the wave that is running backwards in time does exist. This concept is called the time symmetry, meaning that the laws of physics look the same when time runs forward or backward. But he believes that time symmetry breaks down due to external conditions. “The key of the theory is that it assumes that there is a special context that restores th e broken time-symmetry, if the waves running backwards are ‘absorbed’ by a consistent multi-particle(多粒子)system. The brain under a dream state may be such a system where broken time-symmetry is partially restored. This is still not a full explanation for precognitive dreams but it shows where physics might be adjusted to accommodate the phenomenon,” he explains.Although Bierman’s explanation is still based on guesses and has not accepted by mainstream science, Watt does think it is worth considering. For now, believing that it’s possible to predict future with dreams remains an act of faith. Yet, it’s possible that one day we’ll wake up to a true understanding of this fascinating phenomenon. 63.According to French, what makes it difficult to test precognitive dreams?A.Unavailability of people’s dreams.B.That coincidences happen a lot in reality.C.That criteria for dream reliability are not trustworthy.D.People’s inability to tell when dreamt events will happen.64.Believers in precognitive dreams may question the truth of ______.A.the assumption of causality B.the time symmetryC.memories of ordinary people D.modern scientific tests65.We can infer from the passage that ______.A.Lincoln was warned of the killing by his friendB.Watt carried out several experiments on causalityC.researches on electromagnetism are based on the time symmetryD.time’s moving in two directions may justify precognitive dreams66.Which might be the best title of the passage?A.Should Dreams Be Assessed?B.Can Dreams Predict the Future?C.How Can Physics Be Changed to Explain Dreams?D.Why Should Scientists Study Precognitive Dreams?Section CDirections: Read the following passage. Fill in each blank with a proper sentence given in the box. Each sentence can only be used once. Note that there are two sentences more than you need.A.Labeling poses even more of a problem when it comes to kids.B.It can be helpful for those not quite able to understand why they feel the way they do.C.There seems to be a desire to see negative emotions as something requiring intervention or diagnosis. D.Labeling leads to children’s overcoming their addiction to what is posted online.E.Someone has had only a certain experience and judges all behavior with that experience.F.The basic function of a diagnosis is to give you a name for those behaviors once felt unusual.Addiction to LabelingMaybe you’ve noticed it in the comments section of popular social media posts about anxiety. depression or things alike, with a number of people claiming to pick these labels for themselves.These days, labeling is everywhere. (67)______ However, the negative part is that it’s easy for someone to identify with the characteristics without truly recognizing the context in which these characteristics would require diagnosis, according to Charlotte Armitage, a registered integrative psychotherapist and psychologist.If you have done your research and genuinely feel that you have some form of mental health concern, then finally having a name for your behaviors can be great. But the risk is that many people will seek labels and intervention for any behavior, pattern or emotion that is outside of the permanent happy group that society has set as the norm. “(68)______ Then the saying ‘a little bit of knowledge is dangerous’ springs to my mind,” Armitage adds.(69)______“Children are still developing and evolving, and many childhood behavioral features may seem like those of a disorder when there’re other potential explanations for that behavior,” Armitage notes. Ideally, a diagnosis for a child should be carried out by a qualified mental health professional. So it is with an adult.Nevertheless, the most important thing to bear in mind is that diagnosis doesn’t mean to indicate that you are broken or less capable.(70)______ And if you go deeper, it can alert you to the fact that you are not alone, and that many people experience life in the same way as you do.Ⅳ.Summary WritingDirections: Read the following passage. Summarize the main idea and the main point(s)of the passage in no more than 60 words. Use your own words as far as possible.71.Why Willing to Wait?First it was the fried chicken. Then a variety of fancy milkshakes. No matter what time it is or how bad the streets smell, there are plenty of people waiting in line for hours to get their hands on the food that everyone’s talking about. If you are not the type of person crazy for trendy foods, you probably wonder why someone would like to wait in a long line just to get a taste of a popular cream tea. There is a bit of psychology behind the craze of waiting before getting one’s chopsticks on a trendy food.People are born curiosity hunters, especially for fresh ideas, according to some experts. At the sight of a long waiting line, they just can’t help having a try. And when the trendy foods are novel in looks and favors, even innovative in their sales environment, the desire for them is upgraded. All those stimulate people to investigate more—to deal with their curiosity.In addition, having access to something that is sought out but hard to possess equips people with a feeling that improves their self-definitions. When someone is envied due to something he gained with efforts, his self-worth gets enhanced. Although it is yet to be determined whether the number of likes he receives on the photos of foods he’s posted online is connected with the level of envy from on-lookers, that feeling automatically becomes stronger.Even more, “mob psychology” comes into play: when many people are doing something—waiting in line for the sought-after milkshakes, for instance —others are eager to be part of the group and share such a type of social familiarity, kind of like the natural pursuit of a sense of belonging. Tasting the same wait-worthy food has something in common.Ⅴ.TranslationDirections: Translate the following sentences into English, using the words given in the brackets.72.大多数中国人喜欢在生日的时候吃碗面。

糖尿病研究模型

糖尿病研究模型

糖尿病研究模型糖尿病是现代社会中一种常见的慢性代谢性疾病,严重影响着患者的生活质量。

为了更好地理解和研究糖尿病的发病机理、药物治疗以及预防措施,科研人员经过多年的努力,提出了多种糖尿病研究模型。

这些模型不仅有助于深入研究糖尿病的病理生理过程,还为新药物的发现和治疗方案的制定提供了基础。

一、动物模型动物模型是研究糖尿病最常用的研究工具之一。

尤其是小鼠和大鼠被广泛应用于糖尿病研究中。

研究人员通过外源性注射化学物质或基因突变等方法,诱导小鼠或大鼠发生类似糖尿病的病理变化。

这些模型能够模拟人体内的糖尿病病理过程,并且具有很强的重复性和可控性。

1. 腹腔注射链脲佐菌素模型链脲佐菌素模型是最为常见的糖尿病模型之一,常用于2型糖尿病的研究。

通过腹腔注射链脲佐菌素,可诱导小鼠或大鼠出现高血糖、胰岛素抵抗等症状,模拟2型糖尿病的发病过程。

研究人员可以通过此模型评估药物的降糖效果,研究新型药物的作用机制等。

2. 高脂饮食模型高脂饮食模型主要用于研究2型糖尿病和肥胖症之间的关系。

通过给小鼠或大鼠饲喂高脂饮食,可以诱导其发生胰岛素抵抗、肥胖等症状,模拟2型糖尿病的发病过程。

这个模型可以帮助研究者更好地了解饮食习惯和代谢疾病的关联,并寻找相关的治疗策略。

3. 基因突变模型基因突变模型是研究糖尿病发病机理的重要手段。

研究人员通过基因编辑技术,在小鼠或大鼠体内引入特定基因的突变,如胰岛素受体(InsR)基因的突变,以模拟人体内胰岛素受体的缺陷状态,从而诱导糖尿病的发生。

这个模型可以为研究人员提供更准确的病理过程和药物治疗的参考。

二、细胞模型除了动物模型,细胞模型也是糖尿病研究中常用的研究工具之一,主要用于细胞水平上的机制研究。

研究人员将糖尿病相关的信号通路与细胞系相结合,通过药物处理或基因技术进行干预,以模拟糖尿病的病理过程。

1. 脂肪细胞系脂肪细胞系是研究脂肪细胞分化和脂代谢的理想细胞模型。

通过诱导或转染方式,将未分化的前脂肪细胞分化为成熟的脂肪细胞,可以模拟脂肪细胞在糖尿病发展过程中的变化,并研究相关疾病发生发展的机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ai(bi, sti).
(1)
The behavioral strategy sti is represented as a function which determines action. Let ACT be a set of finite
2
in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 93–96
In this paper, as a first step of this research, we propose a computationary evolution model of the biological differentiation. Our model is based on the interrelation between physical feature and behavioral strategy. This paper, then, presents a simulated ecology by our model,
in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 93–96
1
A Model of Biological Differentiation in Adaptiogenesis to the பைடு நூலகம்nvironment
Introduction
This paper proposes a computationary evolution model for biological differentiation. A number of evolutionary models for an ecosystem has been proposed during past decade or so (e.g., (Takashina & Watanabe 1994),(Eiben & van Hemert 1999),(Downing 1998)). In the models, some species acquire behavioral and physical features suitable for a certain environment to which the species is exposed. The ecosystem of a few different species is well simulated by the evolutionary computation based on the models (e.g., (Michalewicz 1996),(Miychell 1996),(Kaneko & Yomo 2000)). Our research group (Moriwaki et al. 1996) has presented a computationary evolution model for a pseudo ecosystem including three types of artificial living things: herbivores, carnivores and plants. The model has well simulated food-chain. In the model, an ecological niche of the living things is given as fixed element. On the other hand, natural living things acquire an ecological niche, such as carnivore and herbivore, with the macro-evolution. It is obvious that the emergence of the variation in ecological niche is necessary for the development of an ecosystem. A longrange target of this research is to propose an evolution model for emergence of ecological niche.
actions, and actti be an action in ACT , which is selected by ai at time t. actti is determined by the value of the function for sti, as follows.
actti = sti(ini(t), exi(t)),
A Model of Biological Differentiation
Biological differentiation has been generally observed in the nature. It is said that the evolution of physical feature and behavioral strategy, as the one of many factors, causes the biological differentiation. In this paper, we propose a computationary evolution model of the biological differentiation. The following section gives a description of the definitions of an artificial living thing (called autonomous agent, or simply agent) and its reproductive activity, and also gives a brief description of the common property of reproductive isolation that the living things have.
Takamasa Sawada, Atsuko Mutoh, Shohei Kato and Hidenori Itoh
Department of Intelligence and Computer Science, Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan. {sawada, atsuko, shohey, itoh}@ics.nitech.ac.jp
Abstract
In this paper, we propose a model of biological differentiation based on physical features and behavioral strategies in order to probe the mysteries of biological differentiation. We, then, implement the model, and perform the Alife simulations of birds’ evolution in an artificial ecology. The ecology consists of two islands, and the atmospheric temperature in each of the islands fluctuates periodically. As a result of the simulations, we have observed that birds, adapting themselves to a change of temperature in their habitat, branch off in two types of biology: migratory bird and resident bird.
Agent in the model
At an unit time, an agent chooses one from finite actions, and then, does it. The sensory information which an agent can perceive consists of a self state (internal state) and an environmental situation (external stimuli). An agent has a behavioral strategy for determining an action by the sensory information. Moreover, the relative merit of a behavioral strategy for an agent depends on the agent’s body, and we call the body element physical feature. Let ai be an agent (i is identifier), and let bi and sti be the physical feature and the behavioral strategy of ai, respectively. ai is, then, characterized as follows.
(2)
where ini(t) and exi(t) are internal state and external stimuli of ai at time t, respectively. This equation means that a behavioral strategy of the agent determines an action by agent’s sensory information. After the action, the internal state of the agent is updated.
相关文档
最新文档