2017_2018学年高中数学第二章推理与证明2.1.2演绎推理教学案新人教A版选修1_2(含答案)
2018年秋高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理学案 新人教A版选修2-2

2.1.2 演绎推理学习目标:1.理解演绎推理的含义.(重点)2.掌握演绎推理的模式,会利用三段论进行简单的推理.(重点、易混点)[自主预习·探新知]1.演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.大前提描述的是一般原理,小前提描述的是大前提里的特殊情况,结论是根据一般原理对特殊情况作出的判断,这与平时我们解答问题中的思考是一样的,即先指出一般情况,从中取出一个特例,特例也具有一般意义.例如,平行四边形对角线互相平分,这是一般情况;矩形是平行四边形,这是特例;矩形对角线互相平分,这是特例具有一般意义.[基础自测]1.思考辨析(1)“三段论”就是演绎推理.( )(2)演绎推理的结论是一定正确的.( )(3)演绎推理是由特殊到一般再到特殊的推理.( )(4)演绎推理得到结论的正确与否与大前提、小前提和推理形式有关.( )[答案](1)×(2)×(3)× (4)√2.“四边形ABCD是矩形,所以四边形ABCD的对角线相等”,补充该推理的大前提是( )A.正方形的对角线相等B.矩形的对角线相等C.等腰梯形的对角线相等D.矩形的对边平行且相等B[得出“四边形ABCD的对角线相等”的大前提是“矩形的对角线相等”.]3.三段论:“①小宏在2018年的高考中考入了重点本科院校;②小宏在2018年的高考中只要正常发挥就能考入重点本科院校;③小宏在2018年的高考中正常发挥”中,“小前提”是________(填序号).[解析]在这个推理中,②是大前提,③是小前提,①是结论.[答案]③4.下列几种推理过程是演绎推理的是________. 【导学号:31062133】①两条平行直线与第三条直线相交,内错角相等,如果∠A和∠B是两条平行直线的内错角,则∠A=∠B;②金导电,银导电,铜导电,铁导电,所以一切金属都导电;③由圆的性质推测球的性质;④科学家利用鱼的沉浮原理制造潜艇.[解析]①是演绎推理;②是归纳推理;③④是类比推理.[答案]①[合作探究·攻重难]演绎推理与三段论(1)下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数(2)将下列推理写成“三段论”的形式:①向量是既有大小又有方向的量,故零向量也有大小和方向;②0.332是有理数;③y=sin x(x∈R)是周期函数.[解析](1)对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式.[答案] B(2)①大前提:向量是既有大小又有方向的量.小前提:零向量是向量.结论:零向量也有大小和方向.②大前提:所有的循环小数都是有理数.小前提:0.332是循环小数.结论:0.332是有理数.③大前提:三角函数是周期函数.小前提:y=sin x(x∈R)是三角函数.结论:y=sin x(x∈R)是周期函数.[规律方法]把演绎推理写成“三段论”的一般方法:1用“三段论”写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般性原理,小前提提供了一种特殊情况,两个命题结合起来,揭示一般性原理与特殊情况的内在联系.2在寻找大前提时,要保证推理的正确性,可以寻找一个使结论成立的充分条件作为大前提.[跟踪训练]1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理中“三段论”中的________是错误的.【导学号:31062134】[解析]f(x)=sin(x2+1)不是正弦函数,故小前提错误.[答案]小前提2.将下列演绎推理写成三段论的形式.①平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;②等腰三角形的两底角相等,∠A,∠B是等腰三角形的底角,则∠A=∠B;③通项公式为a n=2n+3的数列{a n}为等差数列.[解]①大前提:平行四边形的对角线互相平分,小前提:菱形是平行四边形,结论:菱形的对角线互相平分.②大前提:等腰三角形的两底角相等,小前提:∠A,∠B是等腰三角形的底角,结论:∠A=∠B.③大前提:数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列,小前提:通项公式为a n=2n+3时,若n≥2,则a n-a n-1=2n+3-[2(n-1)+3]=2(常数),结论:通项公式为a n=2n+3的数列{a n}为等差数列.用三段论证明几何问题=∠A,DE∥BA,求证:DE=AF.写出“三段论”形式的演绎推理.图2112[解] (1)同位角相等,两直线平行,(大前提)∠BFD和∠A是同位角,且∠BFD=∠A,(小前提)所以DF∥AE.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE∥BA且DF∥EA,(小前提)所以四边形AFDE为平行四边形.(结论)(3)平行四边形的对边相等,(大前提)DE和AF为平行四边形的对边,(小前提)所以DE=AF.(结论)1.用“三段论”证明命题的格式××××××(大前提)×××××× (小前提)×××××× (结论)2.用“三段论”证明命题的步骤:①理清楚证明命题的一般思路;②找出每一个结论得出的原因;③把每个结论的推出过程用“三段论”表示出来.[跟踪训练]3.如图2113,在空间四边形ABCD中,E,F分别是AB,AD的中点.求证:EF∥平面BCD.图2113[证明]三角形的中位线平行于底面,(大前提)点E 、F 分别是AB 、AD 的中点,(小前提) 所以EF ∥BD .(结论)若平面外一条直线平行于平面内一条直线, 则这条直线与此平面平行,(大前提)EF ⊂平面BCD ,BD ⊂平面BCD ,EF ∥BD ,(小前提) EF ∥平面BCD . (结论)用三段论证明代数问题[探究问题]1.数的大小比较常见方法有哪些?提示:作差法、作比法、函数性质法(单调性、奇偶性等)、图象法、中间量法(常取0或1作为媒介)等.2.证明函数性质(单调性、奇偶性、周期性)的依据是什么?试以函数单调性给予说明. 提示:证明函数性质(单调性、奇偶性、周期性)的依据是函数性质的相关定义及有关的知识原理.如函数单调性的证明常依据函数单调性的定义及单调性与导数的关系给予证明.3.判断数列是等差(等比)数列的依据是什么?提示:判断数列是等差(等比)数列的依据是等差(等比)数列的定义.(1)设x ,y ,z 为正数,且2x=3y=5z,则( )【导学号:31062136】A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z(2)已知函数f (x )=a x+x -2x +1(a >1),证明:函数f (x )在(-1,+∞)上为增函数. [思路探究] 1.借助于指对互化及不等式大小的比较方法求解;2.利用函数的单调性或导数法求解.(1)D [令t =2x=3y=5z, ∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg t lg 5.∴2x -3y =2lg t lg 2-3lg t lg 3=lg t 2lg 3-3lg 2lg 2×lg 3=lg t lg 9-lg 8lg 2×lg 3>0,∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t 2lg 5-5lg 2lg 2×lg 5=lg t lg 25-lg 32lg 2×lg 5<0,∴2x <5z , ∴3y <2x <5z . 故选D.](2)法一:(定义法)任取x 1,x 2∈(-1,+∞), 且x 1<x 2, 则f (x 2)-f (x 1) =ax 2+x 2-2x 2+1-ax 1-x 1-2x 1+1=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1=ax 1(a x 2-x1-1)+x 1+1x 2-2-x 1-2x 2+1x 2+1x 1+1=ax 1(ax 2-x 1-1)+3x 2-x 1x 2+1x 1+1.因为x 2-x 1>0,且a >1, 所以ax 2-x 1>1.而-1<x 1<x 2,所以x 1+1>0,x 2+1>0, 所以f (x 2)-f (x 1)>0,所以f (x )在(-1,+∞)上为增函数. 法二:(导数法)f (x )=a x+x +1-3x +1=a x +1-3x +1. 所以f ′(x )=a xln a +3x +12.因为x >-1,所以(x +1)2>0, 所以3x +12>0.又因为a >1,所以ln a >0,a x>0, 所以a xln a >0.所以f ′(x )>0. 于是得f (x )=a x+x -2x +1在(-1,+∞)上是增函数. 母题探究:1.(变条件)把本例(1)的条件变换如下:已知2a =3,2b =6,2c=12,则a ,b ,c 的关系是( ) A .成等差数列但不成等比数列 B .成等差数列且成等比数列 C .成等比数列但不成等差数列 D .不成等比数列也不成等差数列 A [由条件可知a =log 23,b =log 26,c =log 212.因为a +c =log 23+log 212 =log 2 36=2log 2 6=2b , 所以a ,b ,c 成等差数列.又因为ac =log 2 3log 2 12≠(log 2 6)2=b 2, 所以a ,b ,c 不成等比数列.故选A.]2.(变条件)把本例(2)的函数换成“y =2x-12x +1”,求证:函数y =2x-12x +1是奇函数,且在定义域上是增函数.[证明] y =2x+1-22x+1=1-22x +1, 所以f (x )的定义域为R .f (-x )+f (x )=⎝⎛⎭⎪⎫1-22-x+1+⎝ ⎛⎭⎪⎫1-22x +1 =2-⎝⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x2x +1=2-22x+12x+1=2-2=0. 即f (-x )=-f (x ),所以f (x )是奇函数. 任取x 1,x 2∈R ,且x 1<x 2.则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1-22x 1+1-⎝ ⎛⎭⎪⎫1-22x 2+1=2⎝⎛⎭⎪⎫12x 2+1-12x 1+1=2·2x 1-2x 22x 2+12x 1+1. 由于x 1<x 2,从而2x 1<2x 2,2x 1-2x 2<0, 所以f (x 1)<f (x 2),故f (x )为增函数. [规律方法] 五类代数问题中的三段论1函数类问题:比如函数的单调性、奇偶性、周期性和对称性等.2导数的应用:利用导数研究函数的单调区间,求函数的极值和最值,证明与函数有关的不等式等.3三角函数问题:利用三角函数公式进行三角恒等变换,证明三角恒等式.4数列问题:数列的通项公式,前n项和公式的应用,证明等差数列和等比数列.5不等式类问题:如不等式恒成立问题,线性规划以及基本不等式的应用问题.[当堂达标·固双基]1.平行于同一直线的两直线平行,因为a∥b,b∥c,所以a∥c,这个推理称为( ) A.合情推理B.归纳推理C.类比推理D.演绎推理D[本题的推理模式是三段论,故该推理是演绎推理.]2.三段论①只有船准时起航,才能准时到达目的港;②这艘船是准时到达目的港的;③这艘船是准时起航的,其中大前提是( )【导学号:31062137】A.①B.②C.①②D.③A[根据三段论的定义,①为大前提,③为小前提,②为结论,故选A.]3.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理出错在( )A.大前提B.小前提C.推理过程D.没有出错A[要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,若这几个方面都正确,才能得到这个演绎推理正确.因为任何实数的平方都大于0,又因为a是实数,所以a2>0,其中大前提是:任何实数的平方都大于0,它是不正确的.]4.函数y=2x+5的图象是一条直线,用三段论表示为:大前提:______________________________________________________.小前提:______________________________________________________.结论:________________________________________________________.[解析]本题忽略了大前提和小前提.大前提为:一次函数的图象是一条直线.小前提为:函数y=2x+5为一次函数.结论为:函数y=2x+5的图象是一条直线.[答案]一次函数的图象是一条直线函数y=2x+5是一次函数函数y=2x+5的图象是一条直线5. 用三段论证明:直角三角形两锐角之和为90°.[证明]因为任意三角形内角之和为180°(大前提),而直角三角形是三角形(小前提),所以直角三角形内角之和为180°(结论).设直角三角形两个锐角分别为∠A、∠B,则有∠A+∠B+90°=180°,因为等量减等量差相等(大前提),(∠A+∠B+90°)-90°=180°-90°(小前提),所以∠A+∠B=90°(结论).。
2017_2018学年高中数学第二章推理与证明2_1_1合情推理教学案新人教A版选修1_2

……
照此规律,
-2+ -2+ -2+…+ -2=________.
解析:通过观看已给出等式的特点,可知等式右边的 是个固定数, 后面第一个数是等式左侧最后一个数括号内角度值分子中π的系数的一半, 后面第二个数是第一个数的下一个自然数,因此,所求结果为 ×n×(n+1),即 n(n+1).
C. D.○
解析:选A 观看可发觉规律:①每行、每列中,方、圆、三角三种形状均各显现一次,②每行、每列有两阴影一空白,即得结果.
2.下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,那么猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).
(1)通项公式法:数清所给图形中研究对象的个数,列成数列,观看所得数列的前几项,探讨其转变规律,归纳猜想通项公式.
(2)递推公式法:探讨后一个图形与前一个图形中研究对象的个数之间的关系,把各图形中研究对象的个数看成数列,列出递推公式,再求通项公式.
[活学活用]
1.用火柴棒摆“金鱼”,如下图:
依照上面的规律,第n个“金鱼”图需要火柴棒的根数为( )
5.观看以下各等式: + =2, + =2, + =2, + =2,依照以上各式成立的规律,取得一样性的等式为( )
A. + =2
B. + =2
C. + =2
D. + =2
解析:选A 观看发觉:每一个等式的右边均为2,左侧是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.
2017_2018版高中数学第二章推理与证明2.1.1合情推理学案新人教A版选修1_22017071

2.1.1 合情推理1.了解合情推理的含义,正确理解归纳推理与类比推理.(重点、易混点) 2.能用归纳和类比进行简单的推理.(难点) 3.了解合情推理在数学发现中的作用.[基础·初探]教材整理 1 归纳推理和类比推理阅读教材 P 22~P 26“例 4”以上内容,完成下列问题.定义特征归纳 推理由某类事物的部分对象具有某些特征,推出 该类事物的全部对象都具有这些特征的推理, 或者由个别事实概括出一般结论的推理归纳推理是由部分到整 体、由个别到一般的推理由两类对象具有某些类似特征和其中一类对类比 类比推理是由特殊到特 象的某些已知特征,推出另一类对象也具有 推理 殊的推理这些特征的推理判断(正确的打“√”,错误的打“×”)(1)因为三角形的内角和是 180°×(3-2),四边形的内角和是 180°×(4-2),…,所以n 边形的内角和是 180°×(n -2),使用的是类比推理.( )(2)类比推理得到的结论可以作为定理应用.( ) (3)归纳推理是由个别到一般的推理.( )【解析】 (1)错误.它符合归纳推理的定义特征,应该为归纳推理. (2)错误.类比推理不一定正确.【答案】(1)×(2)×(3)√教材整理2合情推理阅读教材P27~P29的内容,完成下列问题.1.含义归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.合情推理的过程从具体问观察、分析、→→→题出发比较、联想归纳、类比提出猜想类比a(b+c)=ab+ac,则下列结论正确的是()A.log a(x+y)=log a x+log a yB.sin(x+y)=sin x+sin yC.a x+y=a x+a yD.a·(b+c)=a·b+a·c【解析】由类比推理的定义知两类比对象具有某些相似特征时,才能用类比推理,而A、B、C中的两对象没有相似特征,故不适合应用类比推理.【答案】 D[小组合作型]归纳推理1(1)在数列{a n}中,a1=1,a n+1=-,则a2 017等于()a n+11A.2B.-2C.-2 D.1(2)根据图211中线段的排列规则,试猜想第8个图形中线段的条数为________.【导学号:81092010】图2111【解析】(1)a1=1,a2=-,a3=-2,a4=1,…,数列{a n}是周期为3的数列,2 017=2672×3+1,∴a2 017=a1=1.(2)分别求出前4个图形中线段的数目,发现规律,得出猜想,图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.【答案】(1)D(2)5091.由已知数式进行归纳推理的方法(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律.(2)要特别注意所给几个等式(或不等式)中结构形式的特征.(3)提炼出等式(或不等式)的综合特点.(4)运用归纳推理得出一般结论.2.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:续表[再练一题]1.(1)有两种花色的正六边形地面砖,按图212的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()图212A.26B.31C.32D.36(2)把3,6,10,15,21,…这些数叫做三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图213),试求第六个三角形数是________.图213【解析】(1)法一:有菱形纹的正六边形个数如下表:图案 1 2 3 …个数 6 11 16 …由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1) 外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第六个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.故选B.(2)第六个三角形数为3+3+4+5+6+7=28.【答案】(1)B(2)28类比推理在几何中的应用如图214所示,在平面上,设h a,h b,h c分别是△ABC三条边上的高,P为△ABCp a p b p c内任意一点,P到相应三边的距离分别为p a,p b,p c,可以得到结论++=1. 【导学号:h a h b h c81092011】图214证明此结论,通过类比写出在空间中的类似结论,并加以证明.【精彩点拨】三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.1BC·p ap a 2 S △PBC【自主解答】==,h a 1 S △ABCBC·h a2p b S △PAC p c S △PAB同理,=,=.h b S △ABC h c S △ABC∵S△PBC+S△PAC+S△PAB=S△ABC,p a p b p c S △PBC+S △PAC+S △PAB∴++==1.h a h b h c S △ABC类比上述结论得出以下结论:如图所示,在四面体ABCD中,设h a,h b,h c,h d分别是该四面体的四个顶点到对面的距离,P为该四面体内任意一点,P到相应四个面的距离分别为p a,p b,p a p b p c p dp c,p d,可以得到结论+++=1.h a h b h c h d1S △BCD·p ap a 3 V PBCD证明如下:==,h a 1 V ABCDS △BCD·h a3p b V PACD p c V PABD p d V PABC同理,=,=,=.h b V ABCD h c V ABCD h d V ABCD∵V PBCD+V PACD+V PABD+V PABC=V ABCD,p a p b p c p d∴+++h a h b h c h dV PBCD+V PACD+V PABD+V PABC==1.V ABCD1.一般地,平面图形与空间图形类比如下:平面图形点线边长面积线线角三角形空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.[再练一题]2.在上例中,若△ABC的边长分别为a,b,c,其对角分别为A,B,C,那么由a=b·cosC+c·cos B可类比四面体的什么性质?【解】在如图所示的四面体中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想S=S1·cosα+S2·cosβ+S3·cosγ.[探究共研型]类比推理在其他问题中的应用探究1鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?【提示】类比推理.a1+a2+a3+…+a2n-1探究2在等差数列{a n}中,对任意的正整数n,有=a n.类比这一n性质,在正项等比数列{b n}中,有什么性质?【提示】由a1+a2+…+a2n-1类比成b1·b2·b3…b2n-1,除以n,即商类比成开n次方,即在正项等比数列{b n}中,有=b n.n b1·b2·b3…b2n-1探究3观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式是什么?【提示】观察等式发现等式左边各加数的底数之和等于右边的底数,右边数的指数均为2,故猜想第五个等式应为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率k PM,k PN都存在时,那么k PM与k PN之积是与点P的位置无关的x2 y2定值,试写出双曲线-=1(a>0,b>0)具有类似特征的性质,并加以证明.a2 b2【精彩点拨】双曲线与椭圆类比→椭圆中的结论→双曲线中的相应结论→理论证明x2 y2【自主解答】类似性质:若M,N为双曲线-=1(a>0,b>0)上关于原点对称的两个a2 b2点,点P是双曲线上任意一点,当直线PM,PN的斜率k PM,k PN都存在时,那么k PM与k PN之积是与点P的位置无关的定值.证明如下:设点M,P的坐标分别为(m,n),(x,y),则N(-m,-n).因为点M(m,n)是双曲线上的点,b2 b2所以n2=m2-b2.同理y2=x2-b2.a2 a2y-n y+n y2-n2 b2 x2-m2 b2则k PM·k PN=·==·=(定值).x-m x+m x2-m2 a2 x2-m2 a21.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征;然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.[再练一题]T20 T30 T40 3.在公比为4的等比数列{b n}中,若T n是数列{b n}的前n项积,则有,,也成等T10 T20 T30比数列,且公比为4100;类比上述结论,相应地,在公差为3的等差数列{a n}中,若S n是{a n} 的前n项和.可类比得到的结论是________.【导学号:81092012】【解析】因为等差数列{a n}的公差d=3,所以(S30-S20)-(S20-S10)=(a21+a22+…+a30)-(a11+a12+…+a20)==100d=300,同理可得:(S40-S30)-(S30-S20)=300,所以数列S20-S10,S30-S20,S40-S30是等差数列,且公差为300.即结论为:数列S20-S10,S30-S20,S40-S30也是等差数列,且公差为300.【答案】数列S20-S10,S30-S20,S40-S30也是等差数列,且公差为3001.我们把4,9,16,25,…这些数称做正方形数,这是因为个数等于这些数目的点可以分别排成一个正方形(如图215).图215则第n个正方形数是()A.n(n-1) B.n(n+1)C.n2 D.(n+1)2【解析】观察前4个正方形数,恰好是序号加1的平方,所以第n个正方形数应为(n+1)2.【答案】 D2.如图216所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为()图216A.a n=3n-1 B.a n=3nC.a n=3n-2n D.a n=3n-1+2n-3【解析】∵a1=1,a2=3,a3=9,a4=27,猜想a n=3n-1.【答案】 A底×高3.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=,可知扇形面积2公式为() 【导学号:81092013】r2 l2A. B.2 2lrC. D.无法确定2【解析】扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积lr公式S=.2【答案】 C4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.【答案】1∶81 3a n5.已知在数列{a n}中,a1=,a n+1=.2 a n+3(1)求a2,a3,a4,a5的值;(2)猜想a n.13 ×3a1 2 3【解】(1)a2===,a1+3 1 7+323a2 3 3 3同理a3==,a4=,a5=.a2+3 8 9 103 3 3 3 3(2)由a2=,a3=,a4=,a5=,可猜想a n=.2+5 3+5 4+5 5+5 n+5学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误【解析】合情推理得出的结论不一定正确,故A错;合情推理必须有前提有结论,故B 对;合情推理中类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,可进行猜想,故C错;合情推理得出的结论可以进行判定正误,故D错.【答案】 B2.下面使用类比推理恰当的是()A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”a+b a bC.“(a+b)c=ac+bc”类比推出“=+(c≠0)”c c cD.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”【解析】由实数运算的知识易得C项正确.【答案】 C3.用火柴棒摆“金鱼”,如图217所示,图217按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n-2B.8n-2C.6n+2 D.8n+2【解析】从①②③可以看出,从第②个图开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.【答案】 C4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心【解析】由正四面体的内切球可知,内切球切于四个面的中心.【答案】 D5.已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是()A.(2,10) B.(10,2)C.(3,5) D.(5,3)【解析】由题意,发现所给数对有如下规律:(1,1)的和为2,共1个;(1,2),(2,1)的和为3,共2个;(1,3),(2,2),(3,1)的和为4,共3个;(1,4),(2,3),(3,2),(4,1)的和为5,共4个;(1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n时,有n-1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).【答案】 A二、填空题6.观察下列特殊的不等式:52-22 7≥2×,5-2 245-35 5 7≥2×(2 )3, 42-3298-28 8 11≥×5,93-233 (2 )910-510≥2×75,95-55…a s-b s由以上特殊不等式,可以猜测:当a>b>0,s,r∈Z时,有≥________.a r-b r52-22 7 2 5+2【解析】≥2×=1×( 2 )2-1,5-2 245-35 5 7 5 4+3≥2×(2 )3=2×( 2 )5-2, 42-3298-28 8 11 8 9+2≥×5=3×( 2 )8-3,3 (2 )93-23910-510 10 9+5≥2×75=5×( 2 )10-5, 95-55a s-b s由以上特殊不等式,可以猜测:当a>b>0,s,r∈Z时,有≥a r-b rs a+br( 2 )s-r.s a+b【答案】s-rr( 2 )7.二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;4 三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.已3知四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=________.【解析】因为V=8πr3,所以W=2πr4,满足W′=V.【答案】2πr48.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为________.【解析】结合等差数列的特点,类比等比数列中b1b2b3…b9=29可得,在{a n}中,若a5=2,则有a1+a2+a3+…+a9=2×9.【答案】a1+a2+a3+…+a9=2×9三、解答题112 19.已知数列{a n}的前n项和为S n,a1=-且S n++2=a n(n≥2),计算S1,S2,S3,S4,3 S n并猜想S n的表达式.【解】先化简递推关系:n≥2时,a n=S n-S n-1,1∴S n++2=S n-S n-1,S n1∴+S n-1+2=0.S n2当n=1时,S1=a1=-.31 4 3当n=2时,=-2-S1=-,∴S2=-.S2 3 41 5 4当n=3时,=-2-S2=-,∴S3=-.S3 4 51 6 5当n=4时,=-2-S3=-,∴S4=-.S4 5 6n+1猜想:S n=-,n∈N+.n+21 1 110.在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:=+,那么在四面体ABCD中,AD2 AB2 AC2类比上述结论,你能得到怎样的猜想,并说明理由.【证明】如图所示,由射影定理,得AD2=BD·DC,AB2=BD·BC,1 1AC2=BC·DC,∴=AD2 BD·DCBC2 BC2==.BD·BC·DC·BC AB2·AC21 AB2+AC2 1 1又BC2=AB2+AC2,∴==+.AD2 AB2·AC2 AB2 AC21 1 1 1猜想,在四面体ABCD中,AB,AC,AD两两垂直,AE⊥平面BCD,则=++.AE2 AB2 AC2 AD2证明:如图,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,AC∩AD=A,∴AB⊥平面ACD,又AF⊂平面ACD,∴AB⊥AF.12在Rt△ABF中,AE⊥BF,1 1 1∴=+.AE2 AB2 AF2在Rt△ACD中,AF⊥CD,1 1 1 1 1 1 1∴=+,∴=++.AF2 AC2 AD2 AE2 AB2 AC2 AD2[能力提升]1.根据给出的数塔,猜测123 456×9+7等于()1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=11 111;12 345×9+6=111 111;A.1 111 110 B.1 111 111C.1 111 112 D.1 111 113【解析】由前5个等式知,右边各位数字均为1,位数比前一个等式依次多1位,所以123 456×9+7=1 111 111,故选B.【答案】 BAG 2.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则=GD 2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为AOM,四面体内部一点O到四面体各面的距离都相等”,则=()OMA.1 B.2C.3 D.46此【解析】如图,设正四面体的棱长为1,即易知其高AM=,3时易知点O即为正四面体内切球的球心设,其半径为r利,用等体积法有1 3 1 3 6 6 6 6 64××r=××⇒r=故,AO=AM-MO=-=,故AO∶3 4 3 4 3 12 3 12 46 6OM=∶=3∶1.4 12【答案】 C→→3.如图218所示,椭圆中心在坐标原点,F为左焦点,当FB⊥AB时,其离心率为5-1,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e2等于_____________________________________.13【导学号:81092015】图218x2 y2【解析】如图所示,设双曲线方程为-=1(a>0,b>0),a2 b2则F(-c,0),B(0,b),A(a,0),→→所以FB=(c,b),AB=(-a,b).→→又因为FB⊥AB,→→所以FB·AB=b2-ac=0,所以c2-a2-ac=0,所以e2-e-1=0,1+5 1-5所以e=或e=(舍去).2 21+5【答案】24.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos17°;②sin215°+cos215°-sin 15°cos15°;③sin218°+cos212°-sin 18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【解】(1)选择②式,计算如下:1 1 3sin215°+cos215°-sin 15°cos15°=1-sin 30°=1-=.2 4 43(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.4证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cosα+sin 30°sinα)2-sin α(cos 30°·cosα+sin 30°sinα)143 3 1 3 1=sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α4 2 4 2 23 3 3=sin2α+cos2α=.4 4 415。
2017_2018学年高中数学第二章推理与证明2.1合情推理与演绎推理2.1.2演绎推理课件新人教B版选修2_2

1
2
【做一做2-1】 下面几种推理过程是演绎推理的是 ( ) A.两条直线平行,同旁内角互补,若∠A与∠B是两条平行直线的同 旁内角,则∠A+∠B=180° B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所 有班人数都超过50人 C.由平面三角形的性质,推测空间四面体的性质
联系:从二者在认识事物的过程中所发挥的作用的角度考虑,它 们是紧密联系、相辅相成的.合情推理的结论需要演绎推理的验证, 而演绎推理的内容一般是通过合情推理获得的.在数学中,演绎推 理可以验证合情推理的结论的正确性,合情推理可以为演绎推理提 供方向和思路.
题型一
题型二
题型三
三段论推理 【例题1】 已知A,B,C,D四点不共面,M,N分别是△ABD和△BCD的 重心,求证:MN∥平面ACD. 分析:应用线面平行的判定定理证明. 证明:如图,连接BM,BN并延长,分别交AD,DC于P,Q两点,连接 PQ. 因为M,N分别是△ABD和△BCD的重心, 所以P,Q分别是AD,DC的中点,
证明: 因为 a2+b2≥2ab,a,b,c 为正实数, 所以 2(a2+b2)≥a2+b2+2ab=(a+b)2, 所以 所以
2 ( ������ + ������ ) a2+b2≥ 2 , 2 ������2 + ������2 ≥ 2 (������ + ������).
题型一
题型二
题型三
同理 ������2 + ������ 2 ≥ 2 (������ + ������), ������2 + ������ 2 ≥ 2 (������ + ������ ), 所以有 ������2 + ������2 + ������2 + ������ 2 + ������ 2 + ������2 ≥ 2 (2������ + 2������ + 2������ ) = 2(������ + ������ + ������), 即 ������2 + ������2 + ������2 + ������ 2 + ������ 2 + ������2 ≥ 2(������ + ������ + ������), 又 2(������ + ������ + ������) > ������ + ������ + ������, 所以 ������2 + ������2 + ������ 2 + ������ 2 + ������ 2 + ������2 > ������ + ������ + ������.
高中数学第二章推理与证明2.1.2演绎推理教案新人教A版选修2_2

§2.1.2演绎推理教学目标:1. 了解演绎推理的含义。
2. 能正确地运用演绎推理进行简单的推理。
3. 了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理进行简单的推理;教学难点:了解合情推理与演绎推理之间的联系与差别.教学过程设计(一)、复习引入,激发兴趣。
【教师引入】复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳。
类比――提出猜想合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?(二)、探究新知,揭示概念①所有的金属都能够导电,铜是金属,所以;②太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;③奇数都不能被2整除,2017是奇数,所以 .(填空→讨论:上述例子的推理形式与我们学过的合情推理一样吗?(三)、分析归纳,抽象概括从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。
要点:由一般到特殊的推理。
“三段论”是演绎推理的一般模式:第一段:大前提——已知的一般原理;第二段:小前提——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断.三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)3.三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.(四)、知识应用,深化理解例1:用三段论的形式写出下列演绎推理。
(1)三角形内角和180°,等边三角形内角和是180°.(2) 0.332∙是有理数。
例2.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,D,E 是垂足,求证AB 的中点M 到D,E 的距离相等解: (1)因为有一个内角是只直角的三角形是直角三角形,——大前提在△ABC 中,AD ⊥BC,即∠ADB=90°——-小前提所以△ABD 是直角三角形——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提因为 DM 是直角三角形斜边上的中线,——小前提所以 DM= 21 AB ——结论 同理 EM= AB所以 DM=EM.例3:证明函数2()2f x x x =-+在(],1-∞-上是增函数.证明方法(定义法、导数法) → 指出:大前题、小前题、结论.练习如图,在△ABC 中,AC > BC , CD 是AB 上的高,求证: ∠ACD > ∠BCD.(五)、归纳小结、布置作业布置作业: 中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
2018年高中数学_第二章 推理与证明 2.1.2 演绎推理课件2 新人教B版选修2-2

这种推理规则叫做传递性关系推理
合情推理与演绎推理的区别
合情推理
归纳推理
类比推理
演绎推理
推理 由部分到整体,个 由特殊到特殊的 由一般到特殊的
形式 别到一般的推理 推理 区
推理
别 推理 结论不一定正确,有待进一 结论 步证明
在前提和推理形 式都正确时,得到 的结论一定正确
答案: 〔0,+∞)
练习2:如果A,I是互斥事件,那么 (A)A∪ I是必然事件 (B)Ā与 Ī不是互斥事件 (C) Ā 与 Ī是互斥事件 (D) Ā ∪ Ī 是必然事件
答案:D
例3:函数f(x)= |x+1/a|+|x-a|(a>0). 证明:f(x)≥2;
证明:由a>0,有f(x)= |x+1/a| +|x-a|≥
案例分析2:
从一般性的原理出发,推出某个特殊情况 下的结论,这种推理称为演绎推理.
1.所有的金属都能导电, 因为铜是金属, 所以铜能够导电.
一般性的原理 特殊情况 结论
大前提 小前提 结论
2.一切奇数都不能被2整除, 一般性的原理
因为2007是奇数,
特殊情况
所以2007不能被2整除. 结论
三、建构数学
从具体问题出发――观察、分析 比较、联想――归纳。
类比推理: 从特殊到特殊
类比――提出猜想
案例:
(1)观察 1+3=4=22 , 1+3+5=9=32 , 1+3+5+7=16=42 , 1+3+5+7+9=25=52 , …… 由上述具体事实能 得到怎样的结论?
高中数学第二章推理与证明2.1.2演绎推理学案含解析

2.1.2 演绎推理看下面两个问题:(1)一切奇数都不能被2整除,(22 017+1)是奇数,所以(22 017+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a 是其中一个平面内的一条直线,那么a平行于另一个平面.问题1:这两个问题中的第一句都说的什么?提示:都说的一般原理.问题2:第二句又都说的什么?提示:都说的特殊示例.问题3:第三句呢?提示:由一般原理对特殊示例做出判断.1.演绎推理的概念从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.2.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.“三段论”可以表示为:大前提:M是P.小前提:S是M.结论:S是P.演绎推理的三个特点(1)演绎推理的前提是一般性原理,演绎推理所得的结论是蕴含于前提之中的个别、特殊事实,结论完全蕴含于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演绎推理是由一般到特殊的推理.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n=3n+2,n≥2时,a n-a n-1=3n+2-=3(常数).(小前提)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(结论)三段论的推理形式三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c”.其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.把下列推断写成三段论的形式:(1)y=sin x(x∈R)是周期函数.(2)若两个角是对顶角,则这两个角相等,所以若∠1和∠2是对顶角,则∠1和∠2相等.解:(1)三角函数是周期函数,大前提y=sin x(x∈R)是三角函数,小前提y=sin x(x∈R)是周期函数.结论(2)两个角是对顶角,则这两个角相等,大前提 ∠1和∠2是对顶角,小前提 ∠1和∠2相等.结论角△ABC 中,AD ,BE 是高,D ,E 为垂足,M 为AB 的中点.求证:ME =MD .∵有一个内角为直角的三角形为直角三角形,……大前提 在△ABD 中,AD ⊥CB ,∠ADB =90°,………………………………小前提∴△ABD 为直角三角形.………………………………………………结论 同理△ABE 也为直角三角形.∵直角三角形斜边上的中线等于斜边的一半,………………大前提M 是直角△ABD 斜边AB 上的中点,DM 为中线,………………………………小前提∴DM =12AB . ……………………………………………………………………………结论同理EM =12AB .∵和同一条线段相等的两条线段相等,………………………………………………大前提DM =12AB ,EM =12AB ,……………………………………………………………小前提∴ME =MD .结论三段论在几何问题中的应用(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.如图,已知在梯形ABCD 中,,AB =CD =AD ,AC 和BD 是梯形的对角线,求证:AC 平分∠BCD ,DB 平分∠CBA .证明:∵等腰三角形两底角相等,………………………………………………大前提 △DAC 是等腰三角形,∠1和∠2是两个底角,………………………………小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,………………………………大前提∠1和∠3是平行线AD、BC被AC截得的内错角,………………………………小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,……………………………………………………大前提∠2=∠1,∠3=∠1,………………………………………………………………小前提∴∠2=∠3,即AC平分∠BCD. …………………………………………………………结论同理可证DB平分∠CBA.已知函数f(x)=a x+x+1(a>1),求证:函数f(x)在(-1,+∞)上为增函数.如果在(-1,+∞)上f′(x)>0,那么函数f(x)在(-1,+∞)上是增函数,……………………………………………………………………………………………大前提∵a>1,∴f′(x)=a x ln a+3x +2>0,………………………………………………小前提∴函数f(x)在(-1,+∞)上为增函数.………………………………………………结论使用三段论应注意的问题(1)应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的、严密的,才能得出正确的结论.(2)证明中常见的错误:①条件分析错误(小前提错).②定理引入和应用错误(大前提错).③推理过程错误等.已知a,b,m均为正实数,b<a,用三段论形式证明ba<b+ma+m.证明:因为不等式两边同乘一个正数,不等号不改变方向,……………大前提b<a,m>0,………………………………………………………………小前提所以mb<ma. …………………………………………………………………………结论因为不等式两边同加上一个数,不等号不改变方向,…………………………大前提mb<ma,………………………………………………………………………………小前提所以mb +ab <ma +ab ,即b (a +m )<a (b +m ).………………………………结论 因为不等式两边同除以一个正数,不等号不改变方向,……………………………大前提b (a +m )<a (b +m ),a (a +m )>0,………………………………小前提所以b a +m a a +m <a b +m a a +m ,即b a <b +ma +m.………………………………结论6.混淆三段论的大、小前提而致误定义在实数集R 上的函数f (x ),对任意x ,y ∈R ,有f (x -y )+f (x +y )=2f (x )f (y ),且f (0)≠0,求证:f (x )是偶函数.证明:令x =y =0,则有f (0)+f (0)=2f (0)×f (0). 又因为f (0)≠0,所以f (0)=1. 令x =0,则有f (-y )+f (y )=2f (0)f (y )=2f (y ), 所以f (-y )=f (y ), 因此,f (x )是偶函数.以上证明结论“f (x )是偶函数”运用了演绎推理的“三段论”,其中大前提是________________________________________________________________________.通过两次赋值先求得“f (0)=1”,再证得“f (-y )=f (y )”,从而得到结论“f (x )是偶函数”.所以这个三段论推理的小前提是“f (-y )=f (y )”,结论是“f (x )是偶函数”,显然大前提是“若对于定义域内任意一个x ,都有f (-x )=f (x ),则f (x )是偶函数”.若对于定义域内任意一个x ,都有f (-x )=f (x ),则f (x )是偶函数解本题的关键是透彻理解三段论推理的形式:大前提—小前提—结论,其中大前提是一个一般性的命题,即证明这个具体问题的理论依据.因此结合f (x )是偶函数的定义和证明过程容易确定本题答案.本题易误认为题目的已知条件为大前提而导致答案错误.所有眼睛近视的人都是聪明人,我近视得很厉害,所以我是聪明人.下列各项中揭示了上述推理是明显错误的是________(填序号).①我是个笨人,因为所有的聪明人都是近视眼,而我的视力那么好. ②所有的猪都有四条腿,但这种动物有八条腿,所以它不是猪.③小陈十分高兴,所以小陈一定长得很胖,因为高兴的人都长得很胖. ④所有尖嘴的鸟都是鸡,这种总在树上待着的鸟是尖嘴的,因此这种鸟是鸡. 解析:根据④中的推理可得:这种总在树上待着的鸟是鸡,这显然是错误的.①②③不符合三段论的形式.答案:④1.“四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充该推理的大前提是( )A .正方形的对角线相等B .矩形的对角线相等C .等腰梯形的对角线相等D .矩形的对边平行且相等解析:选B 得出“四边形ABCD 的对角线相等”的大前提是“矩形的对角线相等”. 2.“因为对数函数y =log a x 是增函数(大前提),而y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论).”上述推理错误的原因是( )A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错解析:选A 大前提是错误的,因为对数函数y =log a x (0<a <1)是减函数. 3.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义,即a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论的形式可知,结论是log 2x -2≥0. 答案:log 2x -2≥04.用三段论证明函数f (x )=x +1x在(1,+∞)上为增函数的过程如下,试将证明过程补充完整:①________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________(大前提) ②________________________________________________________________________________________________________________________________________________ ________________________________________________________________________(小前提)③________________________________________________________________________ ________________________________________________________________________(结论)答案:①如果函数f (x )满足:在给定区间内任取自变量的两个值x 1,x 2,若x 1<x 2,则f (x 1)<f (x 2),那么函数f (x )在给定区间内是增函数.②任取x 1,x 2∈(1,+∞),x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2x 1x 2-x 1x 2,由于1<x 1<x 2,故x 1-x 2<0,x 1x 2>1,即x 1x 2-1>0,所以f (x 1)<f (x 2).③函数f (x )=x +1x在(1,+∞)上为增函数.5.将下列推理写成“三段论”的形式.(1)向量是既有大小又有方向的量,故零向量也有大小和方向; (2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等;(3)0.332·是有理数.解:(1)向量是既有大小又有方向的量.………………………………大前提 零向量是向量.……………………………………………………………小前提 零向量也有大小和方向.………………………………………………结论 (2)每一个矩形的对角线相等.……………………………………………大前提 正方形是矩形.………………………………………………………………小前提 正方形的对角线相等.………………………………………………………结论 (3)所有的循环小数都是有理数.……………………………………………大前提0.332·是循环小数.…………………………………………………………小前提0.332·是有理数.……………………………………………………………结论一、选择题1.给出下面一段演绎推理: 有理数是真分数,大前提 整数是有理数,小前提 整数是真分数.结论结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误C .推理形式错误D .非以上错误解析:选A 推理形式没有错误,小前提也没有错误,大前提错误.举反例,如2是有理数,但不是真分数.2.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( ) A .演绎推理 B .类比推理 C .合情推理 D .归纳推理解析:选A 是由一般到特殊的推理,故是演绎推理. 3.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人C .由三角形的性质,推测四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出a n 的通项公式解析:选A B 项是归纳推理,C 项是类比推理,D 项是归纳推理.4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”补充以上推理的大前提( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形解析:选B 推理的大前提应该是矩形的对角线相等,表达此含义的选项为B. 5.有一段演绎推理是这样的:直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a .结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误解析:选A 大前提是错误的,直线平行于平面,则不一定平行于平面内所有直线,还有异面直线的情况.二、填空题6.若有一段演绎推理:“大前提:整数是自然数.小前提:-3是整数.结论:-3是自然数.”这个推理显然错误,则推理错误的是________(填“大前提”“小前提”或“结论”).解析:整数不全是自然数,还有零与负整数,故大前提错误. 答案:大前提7.已知推理:“因为△ABC 的三边长依次为3,4,5,所以△ABC 是直角三角形”.若将其恢复成完整的三段论,则大前提是____________________.解析:大前提:一条边的平方等于其他两条边的平方和的三角形是直角三角形;小前提:△ABC 的三边长依次为3,4,5,满足32+42=52;结论:△ABC 是直角三角形.答案:一条边的平方等于其他两条边的平方和的三角形是直角三角形8.若不等式ax 2+2ax +2<0的解集为空集,则实数a 的取值范围为________. 解析:①a =0时,有2<0,显然此不等式解集为∅.②a ≠0时需有⎩⎪⎨⎪⎧a >0,Δ≤0,⇒⎩⎪⎨⎪⎧a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2,所以0<a ≤2.综上可知,实数a 的取值范围是. 答案: 三、解答题9.如下图,在直四棱柱ABCD A 1B 1C 1D 1中,底面是正方形,E ,F ,G 分别是棱B 1B ,D 1D ,DA 的中点.求证:(1)平面AD 1E ∥平面BGF ; (2)D 1E ⊥AC .证明:(1)∵E ,F 分别是B 1B 和D 1D 的中点, ∴D 1F 綊BE ,∴四边形BED 1F 是平行四边形,∴D 1E ∥BF . 又∵D 1E ⊄平面BGF ,BF ⊂平面BGF , ∴D 1E ∥平面BGF .∵F ,G 分别是D 1D 和DA 的中点, ∵FG 是△DAD 1的中位线,∴FG ∥AD 1. 又∵AD 1⊄平面BGF ,FG ⊂平面BGF ,∴AD 1∥平面BGF . 又∵AD 1∩D 1E =D 1, ∴平面AD 1E ∥平面BGF . (2)如右图,连接BD ,B 1D 1, ∵底面ABCD 是正方形, ∴AC ⊥BD .∵D 1D ⊥AC ,BD ∩D 1D =D , ∴AC ⊥平面BDD 1B 1.∵D 1E ⊂平面BDD 1B 1,∴D 1E ⊥AC .10.在数列{}a n 中,a 1=2,a n +1=4a n -3n +1,n ∈N *.(1)证明数列{}a n -n 是等比数列. (2)求数列{}a n 的前n 项和S n .(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立. 解:(1)证明:因为a n +1=4a n -3n +1, 所以a n +1-(n +1)=4(a n -n ),n ∈N *. 又因为a 1-1=1,所以数列{}a n -n 是首项为1, 公比为4的等比数列. (2)由(1)可知a n -n =4n -1,于是数列{}a n 的通项公式为a n =4n -1+n ,所以数列{}a n 的前n 项和S n =4n-13+nn +2.(3)证明:对任意的n ∈N *, S n +1-4S n =4n +1-13+n +n +2-44n-13+n n +2=-12(3n 2+n -4)≤0,所以不等式S n +1≤4S n ,对任意n ∈N *皆成立.。
2017-2018版高中数学第二章推理与证明2.1.2演绎推理学案新人教A版选修1-2

2.1.2 演绎推理学习目标导航1 •理解演绎推理的意义.(重点)2•掌握演绎推理的基本模式,并能运用它们进行一些简单推理. (难点)〔认知预习质疑3•了解合情推理和演绎推理之间的区别和联系. (易混点)[基础•初探]教材整理演绎推理阅读教材P30〜P32的内容,完成下列问题.1 •演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论的推理.⑵特点:由一般到特殊的推理.2. 三段论一般模式常用格式大前提已知的一般原理M是P小前提所研究的特殊情况S是M结论根据一般原理,对特殊情况做出的判断S是P------- 锻体验---------------判断(正确的打“V”,错误的打“X”)(1)演绎推理一般模式是“三段论”形式. ()(2)演绎推理的结论是一定正确的. ()(3)演绎推理是由特殊到一般再到特殊的推理.()【解析】(1)正确.演绎推理一般模式是“三段论”形式,即大前提、小前提和结论.〔务组討适疑难细究](2)错误.在演绎推理中,只有“大前提”“小前提”及推理形式都正确的情况下,其 结论才是正确的.(3)错误•演绎推理是由一般到特殊的推理. 【答案】⑴V (2) X (3) X介作探究通关[小组合作型]例将下列演绎推理写成三段论的形式.(1) 一切奇数都不能被 2整除,75不能被2整除,所以75是奇数;⑵三角形的内角和为 180°, Rt △ ABC 的内角和为180°;(3)菱形的对角线互相平分;⑷ 通项公式为a n = 3n +2(n 》2)的数列{a n }为等差数列.【精彩点拨】 首先分析出每个题的大前提、小前提及结论,再写成三段论的形式. 【自主解答】 (1) 一切奇数都不能被 2整除.(大前提) 75不能被2整除.(小前提) 75是奇数.(结论)⑵三角形的内角和为180° .(大前提) Rt △ ABC 是三角形.(小前提) Rt △ ABC 的内角和为180° .(结论) (3)平行四边形的对角线互相平分. (大前提)菱形是平行四边形.(小前提) 菱形的对角线互相平分.(结论)⑷ 数列{a n }中,如果当n 》2时,a n — a n -1为常数,则{a n }为等差数列.(大前提) 通项公式a n = 3n + 2, n 》2时,a n — a n -1= 3n + 2— [3( n — 1) + 2] = 3(常数).(小前提)通项公式为a n = 3n +2(n 》2)的数列{a n }为等差数列.(结论)1. 三段论推理的根据,从集合的观点来讲,若集合M的所有元素都具有性质P, S是M的子集,那么S中所有元素都具有性质P.2. 演绎推理最常用的模式是三段论,在大前提和小前提正确,推理形式也正确时,其结论〔务组討适疑难细究]一定是正确的.[再练一题]1 •把下列推断写成三段论的形式.(1)三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港 的,③这艘船是准时起航的”中的“小前提”是()A.①C.①②等.【解析】(1)大前提为①,小前提为③,结论为②【答案】 D(2)两个角是对顶角,则这两个角相等, (大前提)/ 1和/2是对顶角,(小前提)/ 1和/2相等.(结论)如图2-1-9所示,D E 、F 分别是BC CA AB 边上的点,/ BFD-Z A , DE/ BA用三段论的模式依次证明:(1) DF// AE ⑵ 四边形AEDF 为平行四边形; (3) DE= AF(1)同位角相等,两直线平行,(大前提)/ BFD 和/ A 是同位角,且/ BFD =Z A (小前提)所以DF// AE (结论)(2)两组对边分别平行的四边形是平行四边形, (大前提) DE/ BA 且 DF// EA (小前提)所以四边形 AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提)B.② D.③(2)若两个角是对顶角,则这两个角相等,所以若/ 1和/ 2是对顶角,则/ 1和/ 2相卜例国求证:DE= AF 写出 “三段论”形式的演绎推理.【精彩点拨】 【自主解答】演绎推理的应用图 2-1-9DE和AF为平行四边形的对边,(小前提)所以ED- AF.(结论)1.应用三段论解决问题时, 应当首先明确什么是大前提和小前提, 但为了叙述的简洁, 如果前提是显然的,则可以省略.2•数学问题的解决与证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步 推理的依据 -- 大前提、小前提,注意前一个推理的结论会作为下一个三段论的前提.I __________________________________________ I[再练一题]2.已知:在如图 2-1-10所示的梯形 ABCD 中, AD// BC AD= DC= AB AC 和BD 是它的 对角线.图 2-1-10求证:AC 平分/ BCD BD 平分/ CBA【证明】 大前提:等腰三角形的两底角相等;小前提:△ ADC 是等腰三角形,DA DC 是两腰; 结论:/ 1 = 7 2. 大前提:两条平行线被第三条直线所截,内错角相等;小前提:7 1和/ 3是平行线AD BC 被AC 截得的内错角; 结论:7 1 = 7 3.大前提:等于同一个量的两个量相等; 小前提:7 2和7 3都等于7 1; 结论:7 2=7 3,即卩AC 平分7 BCD 同理可证BD 平分7 ABC[探究共研型]1我们已经学过了等比数列, 你有没有想到是否也有等积数列呢?类比“等比数 列”,请你给出“等积数列”的定义. 【提示】 如果一个数列从第 2项起,每一项与它前一项的乘积是同一个常数, 那么这个数列叫做等积数列,其中,这个常数叫做公积.探究2 若{a n }是等积数列,且首项 a 1 = 2,公积为6,试写出{a n }的通项公式及前 n 项合情推理与演绎推理的综合应用 探究和公式.【提示】由于{a n}是等积数列,且首项a1= 2,公积为6,所以a2= 3, a s = 2, a4= 3, a5 = 2, a6= 3,…,即{刘的所有奇数项都等于2,所有偶数项都等于3,因此{a n}的通项公式为a n = 1 2,“为奇数,彎,n为偶数, 其前n项和公式S=」_n—5n—1~2+ 2=—2~,n 为奇数.3, n为偶数.3X1 + X2+ 3 uX1+ 3X2 + 33x1 + 3x2+ 2^33x1 + 3x2 + 2X3= 3X1+ 3X2+ ^31探究 3 设f(x) =-x ,先分别求f(0) + f(1) , f( —1) + f(2) , f( —2) + f(3),然3 +丫3后归纳出一个一般结论,并给出证明., 1 1【提示】f(0) + f(1)= 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 演绎推理
预习课本P30~33,思考并完成下列问题
(1)什么是演绎推理?它有什么特点?
(2)什么是三段论?一般模式是什么?
(3)合情推理与演绎推理有什么区别与联系?
[新知初探]
1.演绎推理
(1)概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
(2)特点:演绎推理是从一般到特殊的推理.
(3)模式:三段论.
2.三段论
“三段论”是演绎推理的一般模式,包括:
[点睛] 用集合的观点理解三段论
若集合M 的所有元素都具有性质P ,S 是M 的一个子集,那么S 中所有元素也都具有性质P .
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)“三段论”就是演绎推理.( )
(2)演绎推理的结论是一定正确的.( )
(3)演绎推理是由特殊到一般再到特殊的推理.( )
答案:(1)× (2)× (3)×
2.平行于同一直线的两直线平行,因为a ∥b ,b ∥c ,所以a ∥c ,这个推理称为( )
A .合情推理
B .归纳推理
C .类比推理
D .演绎推理
答案:D
3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理中“三段论”中的__________是错误的.
答案:小前提
[典例] 将下列推理写成“三段论”的形式:
(1)向量是既有大小又有方向的量,故零向量也有大小和方向;
(2)0.332·是有理数;
(3)y =sin x (x ∈R)是周期函数.
[解] (1)大前提:向量是既有大小又有方向的量.
小前提:零向量是向量.
结论:零向量也有大小和方向.
(2)大前提:所有的循环小数都是有理数.
小前提:0.332·
是循环小数.
结论:0.332·
是有理数.
(3)大前提:三角函数是周期函数.
小前提:y =sin x (x ∈R)是三角函数.
结论:y =sin x (x ∈R)是周期函数.
用三段论写推理过程的技巧
(1)关键:用三段论写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般原理,小前提提供了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.
(2)何时省略:有时可省略小前提,有时甚至也可将大前提、小前提都省略.
(3)如何寻找:在寻找大前提时可找一个使结论成立的充分条件作大前提.
[活学活用]
下面四个推导过程符合演绎推理三段论形式且推理正确的是( )
A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数
B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数
C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数
D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数
解析:选B 对于A ,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B ,符合演绎推理三段论形式且推理正确;对于C ,大小前提颠倒,不符合演绎推理三段论形式;对于D ,大小前提及结论颠倒,不符合演绎推理三段论形式.
演绎推理在几何中的应用
[典例] 如图所示,D ,E ,F 分别是BC ,CA ,AB 边上的点,∠BFD=
∠A ,DE ∥BA ,求证:DE=AF.写出“三段论”形式的演绎推理.
[解] (1)同位角相等,两直线平行,(大前提)
∠BFD 和∠A 是同位角,且∠BFD=∠A ,(小前提)
所以DF ∥AE.(结论)
(2)两组对边分别平行的四边形是平行四边形,(大前提)
DE ∥BA 且DF ∥EA ,(小前提)
所以四边形AFDE 为平行四边形.(结论)
(3)平行四边形的对边相等,(大前提)
DE 和AF 为平行四边形的对边,(小前提)
所以ED=AF.(结论)
几何证明中应用演绎推理的两个关注点
(1)大前提的正确性:几何证明往往采用演绎推理,它往往不是经过一次推理就能完成的,常需要几次使用演绎推理,每一个推理都暗含着大、小前提,前一个推理的结论往往是下一个推理的前提,在使用时不仅要推理的形式正确,还要前提正确,才能得到正确的结论.
(2)大前提可省略:在几何证明问题中,每一步都包含着一般原理,都可以分析出大前提和小前提,将一般原理应用于特殊情况,就能得出相应结论.
提醒:在应用“三段论”进行推理的过程中,大前提、小前提或推理形式之一错误,都可能导致结论错误.
[活学活用]
如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,求证:
EF ∥平面BCD .
证明:三角形的中位线平行于底边,大前提
点E ,F 分别是AB ,AD 的中点,小前提
所以EF ∥BD .结论
若平面外一条直线平行于平面内一条直线,
则这条直线与此平面平行,大前提
EF ⊄平面BCD ,BD ⊂平面BCD ,EF ∥BD ,小前提
所以EF ∥平面BCD .结论
演绎推理在代数中的应用 [典例] 已知函数f (x )=a x +x +1
(a >1),求证:函数f (x )在(-1,+∞)上为增函数. [证明] 对于任意x 1,x 2∈(-1,+∞),且x 1<x 2,若f (x 1)<f (x 2),则y =f (x )在(-1,+∞)上是增函数.(大前提)
设x 1,x 2∈(-1,+∞),且x 1<x 2,
则f (x 1)-f (x 2)=ax 1+x 1-2x 1+1-ax 2-x 2-2x 2+1。