基于matlab的天线方向图

合集下载

双极天线方向图仿真实验报告(B5)

双极天线方向图仿真实验报告(B5)

双极天线方向图仿真实验报告(B5)天线与电波传播实验报告级队区队学员姓名学号实验组别3同组人无实验日期实验成绩实验项目:双极天线方向图仿真实验实验目的:1.熟悉matlab 的使用。

2.加深对双极天线工作原理的理解;3.理解双极天线的方向性及天线臂长、架设高度对天线方向性的影响;实验器材:计算机一台、matlab 软件。

实验原理阐述、实验方案:双极天线可以理解成架设在地面上的对称振子,因此,研究双级天线的性质(这里主要指方向性)可以分两步进行。

1.对称振子的方向性(1)电基本振子的远区辐射场如果对称振子的电流分布已知,则由电基本振子的远区辐射场表达式沿对称振子几分,就可以得到对称振子的辐射场表达式。

电基本振子的远区(满足kr>>1,即πλ<<2r )辐射场表达式如下:====θλπ=θλ=?θ-θ-?0E E H H e sin r Il 60j E e sin r 2Il jH r r jkr jkr (1-1)式中:I——电基本振子的电流;l——电基本振子的长度;r——远区中一点到电基本振子的距离。

根据远区辐射场的性质可知,Eθ和Hφ的比值为常数(称为媒质的波阻抗),所以,在研究天线的辐射场时,只需要讨论其中的一个量即可。

通常总是采用电场强度作为分析的主体。

(2)对称振子的电流分布如果将细对称振子看成是末端开路的传输线张开形成,则细对称振子的电流分布与末端开路线上的电流分布相似,即非常接近于正弦驻波分布。

以振子中心为原点,忽略振子损耗,则细对称振子的电流分布为:≤+≥-=-=0z )z l (k sin I 0z )z l (k sin I )z l (k sin I )z (I m mm (1-2)(3)对称振子的辐射场及方向函数已知对称振子的电流分布后,将电基本振子的远区电场表达式沿对称振子进行积分,就可以得到对称振子的远区电场表达式。

图1双极天线及其坐标建立上图的坐标系,即可得到对称振子的辐射场表达式:dz e )z l (k sin sin re I 60j )(E cos jkz l l jkr m θ--θ?-θλπ=θjkr m e sin )kl cos()coskl cos(I 60j -θ-θλ=(1-3)根据方向函数的定义,对称振子的方向函数如下:θ-θ=θ=θθsin )kl cos()cos kl cos(r /I 60)(E )(f m (1-4)2.地面的影响当天线并非架设在自由空间中,而是架设在地面上时,地面将对天线的辐射场产生影响。

天线辐射方向图及其matlab仿真

天线辐射方向图及其matlab仿真

Keywords element antenna;array antenna;MATLAB;antenna pattern
--
II
目录
摘要 ...................................................................................................................... I Abstract .............................................................................................................. II
第 1 章 绪论........................................................................................................1
1.1 课题背景...................................................................................................1
3.3.6 有效长度..........................................................................................17
3.4 本章小结.................................................................................................17
本文首先介绍天线是如何产生电磁波的,并介绍辐射场的几种情况。 接下来介绍单个天线的基本参数包括主瓣宽度,增益系数,极化特性,方 向性等。然后介绍和分析了边射阵,端射阵和均匀线性阵。阵列天线的方 向相乘性原理,随后使用了 MATLAB 仿真软件分别对二项阵,三角阵和 道尔夫切比雪夫阵模型进行了仿真。在综合对比了阵元的数量,间距,排 列方式后得出天线阵列辐射场的特性。

matlab.方向图

matlab.方向图
用Matlab画阵天线 二维、三维方向图
概述
天线的远区场分布是一组复杂的函数,分析不同天线的辐射场可从 中得到该天线的 各种重要性能参数。方向性函数F(θ,Φ)是表 征辐射场在不同方向辐射特性的重要关系式,对它的分析和认识如 果仅仅停留在方向性函数以及公式中各参数的讨论上,很难理解天 线辐射场的空间分布以及定向天线集中辐射的概念。表征天线辐射 场空间分布的方向性函数通过二维、三维图形显示,可直观描述、 形象化展示及揭示各参量之间的内在关系,借助matlab的绘图功能 可以加深对天线辐射场空间分布理论的理解和认识,并可得到更有 效更直观的分析结果。我分别用matlab画了六元端和十四元端的方 向图,因为他们的最大辐2*pi); %生成一个等差数列 b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); subplot(221); polar(a,f.*sin(b)); %极坐标 title('14元端射式H面,d=波长/2,相位=滞后'); y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); subplot(223); surf(x1,y1,z1);特征匹配算法 axis equal %纵、横坐标采用等长刻度 title('14元端射式三维图'); a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)+1)*(6/2)*pi)./(sin((cos(a).*sin(b)+1)*pi/2)*6); subplot(222); polar(a,f.*sin(b)); title('6元端射式H面,d=波长/2,相位=超前'); y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); subplot(224); surf(x1,y1,z1); axis equal title('6元端射式三维图');

天线线列阵方向图

天线线列阵方向图

阵列方向图与MATLAB 仿真1、线阵的方向图2()22cos(cos )R φψπφ=+-MATLAB 程序如下〔2元〕:clear;a=0:0.1:2*pi;y=sqrt(2+2*cos(pi-pi*cos(a)));polar(a,y); 图形如下:若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g eg e φφ⋅⋅⋅加以组合的话,阵列的方向图为 [(1)cos()]1()m Mj m m m R g e ψπφφ--==∑MATLAB 程序如下〔10个阵元〕:clear;f=3e10;lamda=(3e8)/f;beta=2.*pi/lamda;n=10;t=0:0.01:2*pi;d=lamda/4;W=beta.*d.*cos(t);z1=((n/2).*W)-n/2*beta* d;z2=((1/2).*W)-1/2*beta* d;F1=sin(z1)./(n.*sin(z2));iK1=abs(F1) ;polar(t,K1);方向图如下:2、圆阵方向图程序如下:clc;clear all;close all;M = 16; % 行阵元数k = 0.8090; % k = r/lambdaDOA_theta = 90; % 方位角DOA_fi = 0; % 俯仰角% 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180));% w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置% w = chebwin(M, 20) .* w; % 行加切比雪夫权% 绘制水平面放置的均匀圆阵的方向图theta = linspace(0,180,360);fi = linspace(0,90,180);for i_theta = 1 : length(theta)for i_fi = 1 : length(fi)a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180));%a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置Y(i_theta,i_fi) = w'*a;endendY= abs(Y); Y = Y/max(max(Y));Y = 20*log10(Y);% Y = (Y+20) .* ((Y+20)>0) - 20; % 切图Z = Y + 20;Z = Z .* (Z > 0);Y = Z - 20;figure; mesh(fi, theta, Y); view([66, 33]);title('水平放置时的均匀圆阵方向图');% title('竖面放置时的均匀圆阵方向图'); % 竖直放置axis([0 90 0 180 -20 0]);xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB');figure; contour(fi, theta, Y);方向图如下:3、平面阵方向图:clc;clear all;close all;Row_N = 16; % 行阵元数Col_N = 16; % 列阵元数k = 0.5; % k = d/lambdaDOA_theta = 90; % 方位角DOA_fi = 0; % 俯仰角% 形成方位角为theta,俯仰角位fi的波束的权值Row_n = [0 : Row_N-1]; Col_n = [0 : Col_N-1];W_Row = exp(-j*2*pi*k*Row_n'*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_fi*pi/180)); % 竖直放置W_Row = chebwin(Row_N, 20) .* W_Row; % 行加切比雪夫权W_Col = chebwin(Col_N, 30) .* W_Col; % 列加切比雪夫权W = kron(W_Row, W_Col); % 合成的权值N*N x 1% 绘制水平面放置的平面阵的方向图theta = linspace(0,180,180);fi = linspace(0,90,90);for i_theta = 1 : length(theta)for i_fi = 1 : length(fi)row_temp = exp(-j*2*pi*k*Row_n'*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 行导向矢量N x 1col_temp = exp(-j*2*pi*k*Col_n'*sin(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 列导向矢量N x 1% col_temp = exp(-j*2*pi*k*Col_n'*sin(fi(i_fi)*pi/180)); % 竖直放置Y(i_theta,i_fi) = W'*kron(row_temp, col_temp); % 合成的导向矢量N*N x 1 endendY= abs(Y); Y = Y/max(max(Y));Y = 20*log10(Y);Y = (Y+60) .* ((Y+60)>0) - 60; % 切图% Z = Y + 60;% Z = Z .* (Z > 0);% Y = Z - 60;figure; mesh(fi, theta, Y); view([66, 33]);title('水平面放置时的面阵方向图');axis([0 90 0 180 -60 0]);xlabel('俯仰角/(\circ)'); ylabel('方位角(\circ)'); zlabel('P/dB');figure; contour(fi, theta, Y);方向图如下:4、CAPON方法波束形成MATLAB程序如下〔阵元16,信号源3,快拍数1024〕:clear alli=sqrt(-1);j=i;M=16;%均匀线阵列数目P=3;%信号源数目f0=10;f1=50;f2=100;%信号频率nn=1024;%快拍数angle1=-15;angle2=15;angle3=30;%the signal angleth=[angle1;angle2;angle3]';SN1=10;SN2=10;SN3=10;%信噪比sn=[SN1;SN2;SN3];degrad=pi/180;tt=0:.001:1024;x0=exp(-j*2*pi*f0*tt);%3个信号x0、x1、x2x1=exp(-j*2*pi*f1*tt); %x2=exp(-j*2*pi*f2*tt); %t=1:nn;S=[x0(t);x1(t);x2(t)];nr=randn(M,nn);ni=randn(M,nn);u=nr+j*ni;%复高斯白噪声Ps=S*S'./nn;%信号能量ps=diag(Ps);refp=2*10.^(sn/10);tmp=sqrt(refp./ps);S2=diag(tmp)*S;%加入噪声tmp=-j*pi*sin(th*degrad);tmp2=[0:M-1]';a2=tmp2*tmp;A=exp(a2);X=A*S2+.1*u;%接收到的信号Rxx=X*X'./nn;%相关矩阵invRxx=inv(Rxx);%搜寻信号th2=[-90:90]';tmp=-j*pi*sin(th2'*degrad);tmp2=[0:M-1]';a2=tmp2*tmp;A2=exp(a2);den=A2'*invRxx*A2;doa=1./den;semilogy(th2,doa,'r');title('spectrum'); xlabel('angle'); ylabel('spectrum'); axis([-90 90 1e1 1e5]); grid;。

基于Matlab的阵列天线方向图仿真

基于Matlab的阵列天线方向图仿真

赋形的性能受阵列天线[4]的类型及相关参数的影响, 可通过阵列天线的方向图进行直观展现,因此,对阵 列天线的方向图进行仿真研究具有重要的现实意义。
Matlab 能够将数值分析、矩阵计算、科学数据可 视化以及系统建模和仿真等诸多强大的功能都集成在 一个易于使用的视窗环境中,是计算机仿真实验中非 常实用的一种工具。使用 Matlab 对不同类型的天线阵 列的方向图进行仿真研究,首先建立 3 种类型的天线 阵——直线阵、圆阵及平面阵的数学模型并推导各自 的阵因子表达式,之后通过仿真,对比分析阵元数、 波长、阵元间距等参数对不同类型的阵列天线方向图 的影响。
收稿日期: 2019-12-10 基金项目: 重庆市教育教学改革重大项目(171014);重庆邮电大
学教育教学改革019-06);重庆邮电大学 大学生科研训练计划项目(A2018-56) 作者简介: 张承畅(1975—),男,湖北利川,博士,副教授、高 级实验师,研究方向为软件无线电、实验教学改革。 E-mail: zhangcc@
影响,仿真结果表明:直线阵、平面阵的性能与阵元数、阵元间距呈正相关,与波长呈负相关;圆阵的性能
与阵元数呈正相关,而与圆阵半径和波长的关系并不是线性的。
关键词:天线阵列;方向图;Matlab
中图分类号:TN710-45
文献标识码:A
文章编号:1002-4956(2020)08-0062-06
Directional diagram of array antenna based on Matlab
Abstract: The mathematical models of linear arrays antenna, circular arrays and planar arrays are constructed, and the corresponding array factor expressions are derived. The simulation research on three kinds of array antenna directional diagrams are carried out with Matlab. Through a comparative study of the influence of the number of elements, wavelength, spacing and other parameters on the different types of array antenna directional diagrams, the simulation results show that the performance of linear array and plane array is positively correlated with the number of array elements and the spacing of array elements, and negatively correlated with the wavelength. The performance of circular array is positively correlated with the number of array elements, but not linearly correlated with the radius and wavelength of circular array. Key words: antenna array; directional diagram; Matlab

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图吴正琳天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

在无线电设备中用来发射或接收电磁波的部件。

无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。

此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。

一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。

同一天线作为发射或接收的基本特性参数是相同的。

这就是天线的互易定理。

天线的基本单元就是单元天线。

1、单元天线对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图主要是说明一下以下几点:1、在Matlab中的极坐标画图的方法:polar(theta,rho,LineSpec);theta:极坐标坐标系0-2*pirho:满足极坐标的方程LineSpec:画出线的颜色2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。

也就是说这时的方向图只剩下一半。

3、半波振子天线方向图归一化方程:Matlab程序:clear alllam=1000;%波长k=2*pi./lam;L=lam/4;%天线臂长theta=0:pi/100:2*pi;f1=1./(1-cos(k*L));f2=(cos(k*L*cos(theta))-cos(k*L))./sin(theta);rho=f1*f2;polar(theta,abs(rho),'b');%极坐标系画图2、线性阵列天线2.1方向图乘积定理阵中第i 个天线单元在远区产生的电场强度为:2(,)ij i i i i ie E K If r πλθϕ-=式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θϕ为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为:Bji i i I a e φ-∆=式中,i a 为幅度加权系数,B φ∆为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。

MATLAB在天线方向图中的应用与研究

MATLAB在天线方向图中的应用与研究

MATLAB在天线方向图中的应用与研究王曼珠1,张民1,崔红跃2(1.北京电子科技学院 通信工程系,北京100070;2.中国民用航空大学,天津300300)ª摘 要:以天线方向图函数为例,分析了对称阵子天线、阵列天线方向图函数F(H,U)随各参量变化的规律以及二维图形的特点,并讨论了直线天线阵(单向端射阵)的最大辐射方向和主瓣宽度随各参量变化的二维、三维图形特点。

借助M AT LAB的绘图功能,对各种天线的方向图函数的二维、三维图形进行研究,可以观察到天线辐射场在不同方向的辐射能量分布,直观清楚地表现出辐射方向图的特点。

关键词:天线;M AT LAB;辐射方向图中图分类号:TN820.1+2;TP391.77 文献标识码:A文章编号:1008-0686(2004)04-0024-04The Application and Study of Antenna Radiation Pattern Based on MATLABWANG Man-zhu1,ZHANG Zhe-min1,C UI Hong-yue2(1.Dep t.of Communication Eng ineer ing B eij ing E le ctronic S cience&T echnology I nstitute,B eij ing100070,China;2.Civ il A viation Unive rsity of China,T ianj ing300300,China)Abstract:This paper takes the antenna radiation pattern as an exam ple,and analy zes the rules of the function F(H,U)varg ing w ith the par am eters for the dipole and antenna ar rays r adiation pattern,as w ell as the characteristic of the tw o-dimensio nal fig ure.In addition,w e discuss the characteristics of the two and thr ee-dimensional fig ure when the max imum radiation and the width o f m ajo r lobe vary s w ith the param eters in the end-fire array.It introduces the w ay of plo tting co mplicated antenna directional r adiation pattern of two and three-dim ensional figure w ith the help of plo tting functions of MAT LAB,the radiating energy distribution of the antenna radiation field in different directions can be observed from r adiation pattern of the antenna,and the characteristic of the radiation pattern can be sho w n clearly.Keywords:antenna;M AT LA B;radiation pattern 天线的远区场分布是一组复杂的函数,分析不同天线的辐射场可从中得到该天线的各种重要性能参数。

天线辐射方向图及其matlab仿真

天线辐射方向图及其matlab仿真
.............................................................................................................. I Abstract .............................................................................................................. II 第 1 章 绪论 ........................................................................................................ 1 1.1 课题背景 ................................................................................................... 1 1.2 国内外研究的现状 .................................................................................. 2 1.2.1 天线发展史 ........................................................................................ 2 1.2.2 算法成果 ............................................................................................ 4 1.2.3 阵列天线应用 .................................................................................... 5 1.3 本文的研究内容 ....................................................................................... 5 1.4 章节安排 ................................................................................................... 5 第 2 章 电磁场与电磁波 .................................................................................... 6 2.1 引言 ........................................................................................................... 6 2.2 电磁波的干涉与叠加 ............................................................................... 6 2.3 辐射场的三种情况 ................................................................................... 7 2.4 本章小结 ................................................................................................. 10 第 3 章 天线的基本参数 .................................................................................. 11 3.1 引言 ......................................................................................................... 11 3.2 天线的分类 ............................................................................................. 11 3.3 天线方向图及相关参数 ......................................................................... 12 3.3.1 天线效率 .......................................................................................... 15 3.3.2 增益系数 .......................................................................................... 15 3.3.3 极化特性 .......................................................................................... 16 3.3.4 频带宽度 .......................................................................................... 16 3.3.5 输入阻抗 .......................................................................................... 16 3.3.6 有效长度 .......................................................................................... 17 3.4 本章小结 ................................................................................................. 17 第 4 章 阵列天线分析与仿真 .......................................................................... 18 4.1 引言 ......................................................................................................... 18 4.2 二元阵天线 ............................................................................................. 18 4.2.1 二元阵在 H 面内的方向性函数 ..................................................... 18 4.2.2 二元阵在 E 面内的方向性函数 ..................................................... 21 4.3 均匀直列天线分析 ................................................................................. 21 4.3.1 主瓣方向 .......................................................................................... 22 4.3.2 零辐射方向 ...................................................................................... 23 4.3.3 主瓣宽度 .......................................................................................... 23 III - -
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算天线均匀直线阵方向性系数的程序
clc;clear;
global n posai sita d;
sita=(0:pi/600:pi);k=2*pi;
nn=(2:19/100:20);d=0.25;
for jj=1:length(nn);
n=nn(jj);
beta=0;
%beta=k*d;
%beta=-k*d-pi/n;
posai=beta+k*d*cos(sita);
jifen=0;
f=zxz(sita);
for i=1:length(sita);
jifen=jifen+f(i)*pi/600;
end;
fxxs(jj)=2/jifen;
end;
plot(nn,fxxs);hold on
function y=zxz(sita);
f1=abs(sin(n*posai/2));eps=2.2204e-016;
f2=abs(sin(posai/2));
for j=1:length(posai);
if f1(j)<eps&f2(j)<eps;
f1(j)=abs(n/2*cos(n/2*posai(j)));
f2(j)=abs(1/2*cos(posai(j)/2));
end;
end;
y=f1./f2;
y=y/max(y);
y=y.*y.*sin(sita);
演示方向图乘积定理
sita=meshgrid(0:pi/90:pi);
fai=meshgrid(0:2*pi/90:2*pi)';
l=0.25;%对称阵子的长度
d=1.25;%二元阵的间隔距离
beta=0;%电流初始相位差
m=1;%电流的振幅比
r1=abs(cos(2*pi*1*cos(sita))-cos(2*pi*1))./abs(sin(sita)+eps); r2=sqrt(1+m*m+2*m*cos(beta+2*pi*d*sin(sita).*sin(fai)));
r3=r1.*r2;
r1max=max(max(r1));r2max=max(max(r2));r3max=max(max(r3));
[x1,y1,z1]=sph2cart(fai,pi/2-sita,r1/r1max);
[x2,y2,z2]=sph2cart(fai,pi/2-sita,r2/r2max);
[x3,y3,z3]=sph2cart(fai,pi/2-sita,r3/r3max);
subplot(2,2,1);
surf(x1,y1,z1);axis([-1 1 -1 1 -1 1]);shading interp;
subplot(2,2,2);
surf(x2,y2,z2);axis([-1 1 -1 1 -1 1]);shading interp;
subplot(2,2,2);
surf(x3,y3,z3);axis([-1 1 -1 1 -1 1]);shading interp;
有两个半波阵子组成一个共线二元阵,其间隔距离d=λ,电流比I m2=I m1。

相关文档
最新文档