2013年中考数学模拟题(二)
中考数学模拟试卷及答案两套

山东省滕州市初中2016届九年级数学第一次模拟说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷选择题36分一、选择题本大题共12个小题,每小题3分,满分36分在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则m-n2-2m+2n的值是A. 3B. 2C. 1D. -12. 已知点A a,2013与点A′-2014,b是关于原点O的对称点,则ba 的值为A. 1B. 5C. 6D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为图1A .12,B .15,C .12或15,D .184. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个5. 如图,在⊙O 中,弦AB,CD 相交于点P,若∠A=40°,∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上.C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61.7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为图2A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是 A. 0≥a B. 21≠a C. 0≥a 且21≠a D . 一切实数 10. 如图,已知⊙O 的直径CD 垂直于弦AB,∠ACD=°,若CD=6 cm,则AB 的长为A. 4 cmB. 23cmC. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是A .625)1(4502=+xB.625)1(450=+xC .625)21(450=+x D.450)1(6252=+x12. 如图,已知二次函数y=ax2+bx+ca≠0的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m am+bm≠1的实数.其中正确结论的有A. ①②③B. ①③④C. ③④⑤D. ②③⑤山东省滕州初中2016届九年级第一次模拟数学试题第Ⅱ卷总分表题号二三四五六总分总分人复查人得分第Ⅱ卷非选择题84分二、填空题本大题共6个小题,每小题3分,满分18分只要求填写最后结果.13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________.15. 如图,在△ABC 中,AB=2,BC=,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B 的对应点 D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x ,则21____y y 填“>”、“=”或“<”.17. 如图,直线AB 与⊙O 相切于点A,AC 、CD 是⊙O 的两条弦,且CD ∥AB,若⊙O 的半径为52,CD=4,则弦AC 的长为. 18. 已知101=-aa ,则a a 1+的值是______________.得 分 评卷人三、解答题本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分19.1计算题:20)1(3112)3(----+--; 2解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q 的坐标x,y.1画树状图或列表,写出点Q 所有可能的坐标; 2求点Qx,y 在函数y =-x +5的图象上的概率;3小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗说明理由;若不公平,请写出公平的游戏规则.四、解答题本大题共2个题,第21题10分,第22题10分,本大题满分20分21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A,B 的坐标分别是A3,3、B1,2,△AOB 绕点O 逆时针旋转90°后得到△11OB A . 1画出△11OB A ,直接写出点1A ,1B 的坐标;2在旋转过程中,点B 经过的路径的长; 3求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.1如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元2请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润BE五、几何题本大题满分12分23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB,延长CD 交BA 的延长线于点E .1求证:CD 为⊙O 的切线;2求证:∠C=2∠DBE.3若EA=AO=2,六、综合题本大题满分14分24. 如图,抛物线y= 21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A 一1,0.1求抛物线的解析式及顶点D 的坐标; 2判断△ABC 的形状,证明你的结论;得 分 评卷人3点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.数学试题参考答案及评分标准一、选择题本大题共12个小题,每小题3分,满分36分二、填空题本大题共6个小题,每小题3分,满分18分13. -3 14. 0或 2 15. 16. > 17. 52 18. 14三、解答题本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分19.计算题:1原式=1)13(321--+-注:每项1分 ………………3分=13--. ……………………………………………………4分2解:整理原方程,得:0142=--x x . ……………………………………1分解这个方程:……方法不唯一,此略.52,5221-=+=∴x x (4)分20. 解:画树状图得:1点Q 所有可能的坐标有: 1,2,1,3,1,4 2,1,2,3,2,4 3,1,3,2,3,4 4,1,4,2,4,3共12种. …………4分2∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:1,4,2,3,3,2,4,1,……………………………………………5分 ∴点x,y 在函数y=﹣x+5的图象上的概率为:=. …………………7分3∵x 、y 满足xy >6有:2,4,3,4,4,2,4,3共4种情况,x 、y 满足xy <6有1,2,1,3,1,4,2,1,3,1,4,1共6种情况.……………………………………………………9分()31124==小明胜P ,()21126==小红胜P……………………………10分 游戏不公平∴≠2131 . …………………………………………………11分公平的游戏规则为:若x 、y 满足6≥xy 则小明胜, 若x 、y 满足xy<6则小红胜. …………………………………………12分四、解答题本大题共2个题,第21题10分,第22题10分,本大题满分20分21.1如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.2由)2,1(B 可得:5=OB , (4)弧1BB =πππ255241241=⨯⨯=⋅r …6 3由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分22.解:1设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分又要尽可能的让利给顾客,则涨价应最少,所以52=x 舍去. ∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分2设单价涨价x 元时,每天的利润为W 1元,则:810)3(107206010)10120)(1016(221+--=++-=--+=x x x x x W 0≤x ≤12即定价为:16+3=19元时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则:750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W 0≤z ≤6即定价为:16-1=15元时,专卖店可以获得最大利润750元. ………8分综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分五、几何题本大题满分12分 23.1证明:连接OD,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分 ∵CD=CB, ∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD ⊥CD, ……………3分 ∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分2如图,∠DOE=∠ODB+∠OBD=2∠DBE,…………………6分由1得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE =90°, ………………7分∴∠C=∠DOE =2∠DBE. ………………………………………………………8分 3作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线, ∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD,∴ OF=1,BF=, ………………………………10分∴BD=2BF=2,∠BOD=180°-∠DOA=120°, ……………………………11分∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分.六、综合题本大题满分14分24.解:1∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分 ∴抛物线的解析式为223212--=x x y . ………………………………………3分 ∵825)23(212232122--=--=x x x y , ∴顶点D 的坐标为)825,23(-. …………………………………………………5分 2△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC .…6分当0=y 时,0223212=--x x ,∴4,121=-=x x ,则)0,4(B .………7分 ∴1=OA ,4=OB , ∴5=AB .∵252=AB ,5222=+=OC OA AC ,20222=+=OB OC BC , ∴222AB BC AC =+, ……………………………………………………8分∴△ABC 是直角三角形. ……………………………………………………9分 3作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则:则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x y D C …………………………12分 当0=y 时,021241=+-x ,则4124=x ,……13分 ∴)0,4124(M . …………………………………14分济南市2016年初三年级学业水平考试数学全真模拟试卷3第Ⅰ卷选择题共45分一、选择题本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.1.|-2 014|等于014 014 C.±2 014 0142.下面的计算正确的是-5a=1 +2a2=3a3C.-a-b=-a+b a+b=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是>b-c +c<b+c >bc D.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子颗 颗 颗 颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是 ,10 , , ,106.一个几何体的三视图如图所示,则这个几何体是7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是8.对于非零的两个实数a,b,规定ab=11b a-,若22x-1=1,则x 的值为 5531A. B. C. D.6426-9.已知2x y 30-++=(),则x+y 的值为10.如图,已知⊙O 的两条弦AC 、BD 相交于点E,∠A =70°,∠C = 50°,那么sin ∠AEB 的值为A.231C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是12.如图,点D为y轴上任意一点,过点A-6,4作AB垂直于x轴交x轴于点B,交双曲线6yx-=于点C,则△ADC的面积为整个常规赛季中,科比罚球投篮的命中率大约是%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于°°°°15.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为ycm 2,运动时间为xs,则下列图象中能大致反映y 与x 之间的函数关系的是第Ⅱ卷非选择题 共75分二、填空题本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题填“真”或“假”.18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A0,2发出的一束光,经x 轴反射,过点B5,3,则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm,底面半径为3 cm,则它的侧面展开图的面积为________cm2结果保留π.21.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=______度.三、解答题本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.22.本小题满分7分1解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩2解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.本小题满分7分1如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;2已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.本小题满分8分一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.1甲、乙两公司单独完成此项工程,各需多少天2若让一个公司单独完成这项工程,哪个公司的施工费较少25.本小题满分8分自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:1本次调查中,张老师一共调查了多少名同学2求出调查中C类女生及D类男生的人数,将条形统计图补充完整;3为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.本小题满分9分如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.1求y与x的函数关系式;2若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;3如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.27.本小题满分9分已知如图,一次函数1y x 12=+的图象与x 轴交于点A,与y 轴交于点B,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为1,0. 1求二次函数的解析式.2在x 轴上有一动点P,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P,使得△PBC 是以P 为直角顶点的直角三角形若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.3若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值;若不存在,说明理由.28.本小题满分9分如图,已知抛物线y=ax2+bx+ca≠0的顶点坐标为2 43(,),且与y轴交于点C0,2,与x轴交于A,B两点点A在点B的左边.1求抛物线的解析式及A,B两点的坐标.2在1中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小若存在,求AP+CP的最小值,若不存在,请说明理由.3以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案17.假19.π22.1解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,2解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2,在数轴上表示为:23.1证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB, ∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.2证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:1设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.=30,故甲、乙两公司单独完成此项工程,各需20天、30天.2设甲公司每天的施工费为y元,则乙公司每天的施工费为y-1 500元.根据题意得:12y+y-1 500=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000元;乙公司单独完成此项工程所需的施工费:30×5 000-1 500=105 000元;故甲公司的施工费较少.25.解:1张老师一共调查了:6+4÷50%=20人;2C类女生人数:20×25%-3=2人;D类男生人数:20-3-10-5-1=1人;将条形统计图补充完整如图所示:3列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12. 26.解:1∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°, ∴∠APB=∠CEP.又∵∠B=∠C=90°,∴△ABP ∽△PCE,2AB BP 2x 1m ,,y x x.PC CE m x y 22∴==∴=-+-即 22221m 1m m y x x (x ),22228=-+=--+ ∴当m x 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上, 2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤3由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC,∴∠GAP=∠APB,∴∠GAP=∠APG,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG,交于点H,则易知ABCH 为矩形,HE=CH-CE=2-y,GH=AH-AG=4-4-x=x, 在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2, 即:x 2+2-y 2=y 2,化简得:x 2-4y+4=0①.2221m 1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC .∵AG ∥PC,AG=PC,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:4-2x2+22=4-x2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:4-2x2+22=4-x2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C的坐标为4,3.设符合条件的点P存在,令Pa,0.当P为直角顶点时,如图,过C作CF⊥x轴于F.∵∠BPC=90°,∴∠BPO+∠CPF=90°.又∵∠OBP+∠BPO=90°,∴∠OBP=∠CPF,∴Rt △BOP ∽Rt △PFC,BO OP 1t ,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0,解得:t=1或t=3,∴所求的点P 的坐标为1,0或3,0, ∴运动时间为1秒或3秒.3存在符合条件的t 值,使△APQ 与△ABD 相似. 设运动时间为t,则AP=2t,AQ=at.∵∠BAD=∠PAQ, ∴当AP AQ AP AQ AB AD AD AB==或时,两三角形相似.at 2t AB 5AD 333a a ,53====∴==,或∴存在a使两三角形相似且a a 53== 28.解:1由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()() ∵抛物线经过0,2,22a 042,3∴--=() 解得:a=16, 22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时, 解得:x=2或x=6,∴A2,0,B6,0.2存在,如图2,由1知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P,则AP=BP,∴AP+CP=BC 的值最小.∵B6,0,C0,2 ,∴OB=6,OC=2,BC AP CP BC ∴=∴+== ∴AP+CP的最小值为 3如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△COD ≌△MEDAAS, ∴OD=DE,DC=DM.设OD=x,则CD=DM=OM-OD=4-x, 则Rt △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=4-x 2. 33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b, ∵直线CE 过C0,2,D 3,02两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,, ∴直线CE 的解析式为4y x 2.3=-+。
江苏省淮安市中考数学模拟卷解析版

江苏省淮安市中考数学模拟卷一、单选题(每题3分,共24分)1.在-3,0.3,0,-这四个数中,绝对值最小的数是()A.-3B.0.3C.0D.-2.今年的春晚继续拓展中央广播电视总台全媒体融合传播优势,刷新了跨媒体传播纪录.数据显示,春晚跨媒体受众总规模达12.72亿人.其中数据12.72亿用科学记数法表示为()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.在下面的四个几何体中,主视图是三角形的是()A.圆锥B.正方体C.三棱柱D.圆柱5.下列事件中,属于必然事件的是()A.任意抛掷一只纸杯,杯口朝下B.a为实数,|a|<0C.打开电视,正在播放动画片D.任选三角形的两边,其差小于第三边6.下面命题中,为真命题的是()A.内错角相等B.一组对边平行,另一组对边相等的四边形是平行四边形C.弧长相等的弧是等弧D.平行于同一直线的两直线平行7.如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为()cm.A.B.5C.D.88.我国古代数学著作《增删算法统宗》中有这么一首诗:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?价钞各该分端的.若人算得无差讹,堪把芳名题郡邑.”其大意是:今有绵与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,欲问绢布有多少,分开把价算,若人算得无差错,你的名字城镇到处扬.设有绢疋,布疋,依据题意可列方程组为()A.B.C.D.二、填空题(每题3分,共24分)9.分解因式:a2﹣ab=;10.某校数学课外兴趣小组10个同学数学素养测试成绩如图所示,则该兴趣小组10个同学的数学素养测试成绩的众数是分.11.分式方程的解是.12.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是.13.已知三角形两边长分别是2和9,第三边的长为一元二次方程x2-14x+48=0的一个根,则这个三角形的周长为14.正比例函数和反比例函数的图象都经过点A(-1, 2),若,则x的取值范围是.15.如图,已知⊙O是⊙ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,⊙ABD=56°,则⊙BCD 等于.16.如图,点D为边长是的等边⊙ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持⊙ADB=120°不变,则四边形ADBC的面积S的最大值是.三、解答题(共11题,共102分)17.计算或解方程(1).(2)(配方法)18.先化简,再求值:(1,其中x=3.19.如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.20.某校要加强中小学生作业、睡眠、手机、读物、体质管理.数学社团成员采用随机抽样的方法,抽取了七年级若干名学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计图表和扇形统计图:请根据图表信息回答下列问题:(1)本次被抽取的七年级学生共有名;(2)统计图表中,m=;(3)扇形统计图中,C组所在扇形的圆心角的度数是°;(4)请估计该校800名七年级学生中睡眠不足7小时的人数.21.现有三张完全相同的不透明卡片。
备考2021年中考数学复习专题:统计与概率_概率_概率的意义,单选题专训及答案

7、 (2017邗江.中考模拟) 下列说法正确的是( ) A . 要了解一批灯泡的使用寿命,采用全面调查的方式 B . 要了解全市居民对环境的保护意识,采用抽样调查的方式 C . 一个游 戏的中奖率是1%,则做100次这样的游戏一定会中奖 D . 若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲
的概率是 表示每抛硬币2次就有1次正面朝上 D . 计算甲组和乙组数据,得知 =
比乙组数据稳定
19、 (2017东莞.中考模拟) 下列说法正确的是( )
=10,
=0.1,
=0.2,则甲组数据
A . 要调查人们对“低碳生活”的了解程度,宜采用普查方式 B . 一组数据3,4,4,6,8,5的众数和中位数都是3 C . 必然事件 的概率是100%,随机事件的概率是50% D . 若甲组数据的方差S甲2=0.128,乙组数据的方差S乙2=0.036;则乙组数据比甲组数据稳
②直线AC的函数表达式为
;
③第40天,该植物的高度为14厘米; ④该植物最高为15厘米.
A . ①②③ B . ②④ C . ②③ D . ①②③④ 30、 (2020铁西.中考模拟) 下列说法正确的是( ) A . 为了解全国中学生视力的情况,应采用普查的方式 B . 某种彩票中奖的概率是
,买1000张这种彩票一定会中奖 C . 从
”表示每抛2次就有一次正面
朝上 C . “彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D . “抛一枚正方体骰子,朝上的点数为2的概率为 ”表示随着抛掷次
数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在 附近
2、 (2014徐州.中考真卷) 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率( ) A . 大于 B . 等于 C . 小于 D . 不能确定
中考数学:二次函数的推理计算与证明综合问题真题+模拟(原卷版北京专用)

中考数学二次函数的推理计算与证明综合问题【方法归纳】据北京历年中考题型来推测,二次函数的压轴题目多数会以参数的形式出现的,难度之大,可想而知。
在解决含参数二次函数的题目时,通常先观察解析式,看能否求出对称轴,图像与坐标轴交点能否用参数来表示?根据设出点的坐标可求出相应的线段,然后观察题意,再考虑我们所学过的知识点(勾股,相似等)能否用上.常用的二次函数的基础知识有:1.几种特殊的二次函数的图象特征如下:2.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)(3)交点式:已知图象与x 轴的交点坐标x 1、x 2,通常选用交点式:(a≠0).(由此得根与系数的关系:,). 3. 二次函数图象和一元二次方程的关系:【典例剖析】【例1】(2021·北京·中考真题)在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y=2y ax bx c =++()2y a x h k =-+2y ax =()()12y a x x x x =--12b x x a +=-12c x x a⋅=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(−1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.【例2】(2022·北京·中考真题)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+ bx+c(a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m<n<c,求t的取值范围及x0的取值范围.【真题再现】1.(2013·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0))与轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.2.(2014·北京·中考真题)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,−2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)CD与图象G有公共点,结合函数图像,求点D纵坐标t的取值范围.3.(2015·北京·中考真题)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.4.(2016·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.5.(2017·北京·中考真题)在平面直角坐标系xOy中,抛物线y=x2-4x+3与x轴交于点A 、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.6.(2018·北京·中考真题)在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx−3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.7.(2019·北京·中考真题)在平面直角坐标系xOy中,抛物线y=ax2+bx−1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(12,−1a),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.8.(2020·北京·中考真题)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+ bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t.若对于x1+x2>3,都有y1<y2,求t的取值范围.【模拟精练】一、解答题(共30题)1.(2022·北京市广渠门中学模拟预测)已知抛物线y=ax2+2ax+3a2−4(a≠0)(1)该抛物线的对称轴为_____________;(2)若该抛物线的顶点在x轴上,求a的值;(3)设点M(m,y1),N(2,y2)该抛物线上,若y1>y2,求m的取值范围.2.(2022·北京·二模)在平面直角坐标系xOy中,抛物线y=x2−2mx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的顶点坐标(用含m的式子表示);(3)若抛物线上存在两点A(m−1,y1)和B(m+2,y2),其中m>0.当y1⋅y2>0时,求m的取值范围.3.(2022·北京昌平·二模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx−1(a>0).(1)若抛物线过点(4,−1).①求抛物线的对称轴;②当−1<x<0时,图像在x轴的下方,当5<x<6时,图像在x轴的上方,在平面直角坐标系中画出符合条件的图像,求出这个抛物线的表达式;(2)若(−4,y1),(−2,y2),(1,y3)为抛物线上的三点且y3>y1>y2,设抛物线的对称轴为直线x=t,直接写出t的取值范围.4.(2022·北京房山·二模)在平面直角坐标系xOy中,点A(2,−1)在二次函数y=x2−(2m+ 1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值的取值范围是−1≤y≤4−n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x−ℎ)2+k,当x<2时,y随x的增大而减小,求k的取值范围.5.(2022·北京朝阳·二模)在平面直角坐标系xOy中,已知抛物线y=x2+(a+2)x+2a.(1)求抛物线的对称轴(用含a的式子表示);(2)若点(-1,y1),(a,y2),(1,y3)在抛物线上,且y1<y2<y3,求a的取值范围.6.(2022·北京东城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3.(1)直接写出抛物线与y轴的交点坐标;(2)求抛物线的顶点坐标(用含a的式子表示);(3)若抛物线与x轴相交于A,B两点,且AB≤4,求a的取值范围.7.(2022·北京平谷·二模)在平面直角坐标系xOy中,点(−1,y1)、(1,y2)、(3,y3)是抛物线y=x2+bx+1上三个点.(1)直接写出抛物线与y轴的交点坐标;(2)当y1=y3时,求b的值;(3)当y3>y1>1>y2时,求b的取值范围.8.(2022·北京四中模拟预测)在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,直接写出t的取值范围.9.(2022·北京丰台·二模)在平面直角坐标系xOy中,已知抛物线y=x2−2ax−3.(1)求该抛物线的对称轴(用含a的式子表示)(2)A(x1,y1),B(x2,y2)为该抛物线上的两点,若x1=1−2a,x2=a+1,且y1>y2,求a的取值范围.10.(2022·北京密云·二模)已知二次函数y=ax2+bx+2的图象经过点(1,2).(1)用含a的代数式表示b;(2)若该函数的图象与x轴的一个交点为(−1,0),求二次函数的解析式;(3)当a<0时,该函数图象上的任意两点P(x1,y1)、Q(x2,y2),若满足x1=−2,y1>y2,求x2的取值范围.11.(2022·北京大兴·二模)关于x的二次函数y1=x2+mx的图象过点(−2,0).(1)求二次函数y1=x2+mx的表达式;(2)已知关于x的二次函数y2=−x2+2x,一次函数y3=kx+b(k≠0),在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.①求b的值;②直接写出k的值.12.(2022·北京顺义·xOy中,已知抛物线y=x2+mx+n.(1)当m=−3时,①求抛物线的对称轴;②若点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,求x2的取值范围;(2)已知点P(−1,1),将点P向右平移3个单位长度,得到点Q.当n=2时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.13.(2022·北京市十一学校模拟预测)已知二次函数y=ax2−4ax−3的图象与x轴交于A、B两点(点A在点B的左侧),顶点为D.(1)直接写出函数图象的对称轴:_____;(2)若△ABD是等腰直角三角形,求a的值;(3)当−1≤x≤k(2≤k≤6)时,y的最大值m减去y的最小值n的结果不大于3,求a的取值范围.14.(2022·北京房山·二模)已知二次函数y=ax2−4ax.(1)二次函数图象的对称轴是直线x=__________;(2)当0≤x≤5时,y的最大值与最小值的差为9,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t−1≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.15.(2022·北京海淀·二模)在平面直角坐标系xOy中,点(m – 2, y1),(m, y2),(2- m, y3)在抛物线y = x2-2ax + 1上,其中m≠1且m≠2.(1)直接写出该抛物线的对称轴的表达式(用含a的式子表示);(2)当m = 0时,若y1= y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.16.(2022·北京西城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,−2),(2,−2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=−6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当−2≤t≤4时,都有|y2−y1|<7.直接写出a2的取值范围.17.(2022·北京东城·一模)在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+1与y 轴交于点A.点B(x1,y1)是抛物线上的任意一点,且不与点A重合,直线y=kx+b(k≠0)经过A,B两点.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若点C(m−2,a),D(m+2,b)在抛物线上,则a_______b(用“<”,“=”或“>”填空);(3)若对于x1<−3时,总有k<0,求m的取值范围.18.(2022·北京市十一学校二模)在平面直角坐标系xOy中,点A(t,2)(t≠0)在二次函数y=ax2+bx+2(a≠0)的图象上.(1)当t=4时,求抛物线对称轴的表达式;(2)若点B(5−t,0)也在这个二次函数的图象上.①当这个函数的最小值为0时,求t的值;②若在0≤x≤1时,y随x的增大而增大,求t的取值范围.19.(2022·北京石景山·一模)在平面直角坐标xOy中,点(4,2)在抛物线y=ax2+bx+2(a>0)上.(1)求抛物线的对称轴;(2)抛物线上两点P(x1,y1),Q(x2,y2),且t<x1<t+1,4−t<x2<5−t.①当t=3时,比较y1,y2的大小关系,并说明理由;2②若对于x1,x2,都有y1≠y2,直接写出t的取值范围.20.(2022·北京大兴·一模)在平面直角坐标系xOy中,已知关于x的二次函数y=x2−2ax+ 6.(1)若此二次函数图象的对称轴为x=1.①求此二次函数的解析式;②当x≠1时,函数值y______5(填“>”,“<”,或“≥”或“≤”);(2)若a<−2,当−2≤x≤2时,函数值都大于a,求a的取值范围.21.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,抛物线y=ax2−(a+ 4)x+3经过点(2,m).(1)若m=−3,①求此抛物线的对称轴;②当1<x<5时,直接写出y的取值范围;(2)已知点(x1,y1),(x2,y2)在此抛物线上,其中x1<x2.若m>0,且5x1+5x2≥14,比较y1,y2的大小,并说明理由.22.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3a(a≠0)与x轴的交点为点A(1,0)和点B.(1)用含a的式子表示b;(2)求抛物线的对称轴和点B的坐标;(3)分别过点P(t,0)和点Q(t+2,0)作x轴的垂线,交抛物线于点M和点N,记抛物线在M,N之间的部分为图象G(包括M,N两点).记图形G上任意一点的纵坐标的最大值是m,最小值为n.①当a=1时,求m−n的最小值;②若存在实数t,使得m−n=1,直接写出a的取值范围.23.(2022·北京平谷·一模)在平面直角坐标系xOy中,抛物线y=x2﹣2bx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的对称轴(用含b的式子表示);(3)若抛物线上存在两点A(b﹣1,y1)和B(b+2,y2),当y1•y2<0时,求b的取值范围.24.(2022·北京门头沟·一模)在平面直角坐标系xOy中,已知抛物线y=−x2+2mx−m2+ m−2(m是常数).(1)求该抛物线的顶点坐标(用含m代数式表示);(2)如果该抛物线上有且只有两个点到直线y=1的距离为1,直接写出m的取值范围;(3)如果点A(a,y1),B(a+2,y2)都在该抛物线上,当它的顶点在第四象限运动时,总有y1>y2,求a的取值范围.25.(2022·北京房山·一模)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.26.(2022·北京朝阳·一模)在平面直角坐标系xOy中,点(−2,0),(−1,y1),(1,y2),(2,y3)在抛物线y=x2+bx+c上.(1)若y1=y2,求y3的值;(2)若y2<y1<y3,求y3值的取值范围.27.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D 两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.28.(2022·北京顺义·一模)在平面直角坐标系xOy中,点(2,−2)在抛物线y=ax2+bx−2(a<0)上.(1)求该抛物线的对称轴;(2)已知点(n−2,y1),(n−1,y2),(n+1,y3)在抛物线y=ax2+bx−2(a<0)上.若0<n< 1,比较y1,y2,y3的大小,并说明理由.29.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.30.(2022·北京市第七中学一模)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+(2a−2)x−a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a;(3)若对于x1+x2<−5,都有y1<y2,求a的取值范围.。
2023年中考数学第二次模拟考试卷及解析(宁波卷)

2023年中考数学第二次模拟考试卷及解析(宁波卷)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中,最小的一个数是()A.﹣3B.﹣1C.0D.2【答案】A【分析】根据有理数大小比较法则判断即可.【解答】解:因为|﹣3|=3,|﹣1|=1,而3>1,所以﹣3<﹣1<0<2,所以其中最小的一个数是﹣3.故选:A.【点睛】本题考查了有理数大小比较,有理数大小比较法则:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.下列运算中,正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a5D.a5÷a3=a2【答案】D【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、a2与a3不是同类项,所以不能合并,故本选项不合题意;C、(a2)3=a6,故本选项不合题意;D、a5÷a3=a2,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.3.2021年是中国共产党建党百年,走过百年光辉历程的中国共产党,成为拥有9100多万名党员的世界最大的马克思主义执政党.将“9100万”用科学记数法表示应为()A.9.1×103B.0.91×104C.9.1×107D.91×106【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:9100万=91000000=9.1×107.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.如图是某工厂要设计生产一类由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:A.甲B.乙C.丙D.丁【答案】A【分析】根据方差的意义比较出甲、乙、丙、丁的大小,即可得出答案.【解答】解:∵甲的方差最小,∴成绩发挥最稳定的是甲,故选:A.【点睛】此题考查方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.如图所示,小红要制作一个母线长为8cm,底面圆周长是12πcm的圆锥形小漏斗,若不计损耗,则她所需纸板的面积是()A.60πcm2B.96πcm2C.120πcm2D.48πcm2【答案】D【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥形小漏斗的侧面积=×12π×8=48πcm2.故选:D.【点睛】本题考查了圆锥的计算,圆锥的侧面积=×底面周长×母线长.7.在等腰直角三角形ABC中,=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°【答案】A【分析】根据等腰直角三角形,的性质得BC=AB=4,∠B=45°,则OB=2,再根据切线的性质得∠ODB=90°,则可判定△ODB为等腰直角三角形,所以OD=OB=2,∠BOD=45°,然后根据圆周角定理得到∠MND 的度数.【解答】解:∵△ABC为等腰直角三角形,∴BC=AB=4,∠B=45°,∵点O为BC的中点,∴OB=2,∵AB为切线,∴OD⊥AB,∴∠ODB=90°,∴△ODB为等腰直角三角形,∴OD=OB=×2=2,∠BOD=45°,∴∠MND=BOD=22.5°.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰直角三角形的性质.8.小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟,设小颖上坡用了x分钟,下坡用了y分钟,根据题意列方程组()A.B.C.D.【答案】D【分析】根据小颖跑步去学校所用时间及小颖家到学校的路程,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵小颖跑步去学校共用了16分钟,∴x+y=16;∵小颖家离学校1880米,小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟,∴80x+200y=1880.∴根据题意可列方程组.故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知二次函数y=ax2﹣4ax+5(其中x是自变量),当x⩽﹣2时.y随x的增大而增大,且﹣6⩽x⩽5时,y的最小值为﹣7,则a的值为()A.3B.C.D.﹣1【答案】B【分析】由x⩽﹣2时.y随x的增大而增大可判断抛物线开口方向,由抛物线解析式可得抛物线对称轴,进而求解.【解答】解:∵x⩽﹣2时.y随x的增大而增大,∴抛物线开口向下,即a<0,∵y=ax2﹣4ax+5,∴抛物线对称轴为直线x=﹣=2.∵2﹣(﹣6)>5﹣2,∴x=﹣6时,y=36a+24a+5=﹣7为最小值,解得a=﹣,故选:B.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.10.如图,等边△ABC和等边△DEF的边长相等,点A、D分别在边EF,BC 上,AB与DF交于G,AC与DE交于H.要求出△ABC的面积,只需已知()A.△BDG与△CDH的面积之和B.△BDG与△AGF的面积之和C.△BDG与△CDH的周长之和D.△BDG与△AGF的周长之和【答案】C【分析】先判断出∠BAD=∠FDA,进而判断出△ABD≌△DFA(ASA),得出S△ABD=S△DF A,进而得出S△BDG=S△F AG,同理:△ACD≌△DEA(SAS),得出S△ACD=S△DEA,进而得出S△CDH=S△EAG,即可选项A,B不符合题意,由△ABD≌△DFA,得出BD=AF,∠BAD=∠FDA,BG=AG,BG=FG,同理:CD=AE,DH=AH,CH=EH,进而得出BD+BG+DG+CD+DH+CH=3BC,即可判断出选项C,D.【解答】解:如图,连接AD,过点A作AM⊥BC于M,过点D作DN⊥EF 于N,则∠BAM=∠FDN=30°,∵等边△ABC和等边△DEF的边长相等,∴AM=DN,∵AD=AD,∴Rt△ADM≌Rt△DNA(HL),∴∠DAM=∠NDA,∴∠BAD=∠FDA,∵等边△ABC和等边△DEF的边长相等,∴BC=AC=AB=DF,∠B=∠F=60°,∵AD=AD,∴△ABD≌△DFA(ASA),=S△DF A,∴S△ABD=S△F AG,∴S△BDG同理:△ACD≌△DEA(SAS),=S△DEA,∴S△ACD=S△EAG,∴S△CDH选项A:当△BDG与△CDH的面积之和已知时,S△BDG+S△CDH可求出,而四边形AGDH的面积没办法求出,即△ABC的面积没办法求出,故选项A不符合题意;可以求出,选项B:当△BDG与△AGF的面积之和已知时,S△BDG而四边形AGDC的面积没办法求出,即△ABC的面积没办法求出,故选项B不符合题意;选项C:当△BDG与△CDH的周长之和时,BD+BG+DG+CD+DH+CH可以求出,∵△ABD≌△DFA,∴BD=AF,∠BAD=∠FDA,∴BG=AG,∵AB=DF,∴BG=FG,同理:CD=AE,DH=AH,CH=EH,∴BD+BG+DG+CD+DH+CH=BD+BG+AG+CD+AH+CH=(BD+CD)+(BG+AG)+(AH+CH)=BC+AB+AC=3BC,即BC可以求出,过点A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=BC,根据勾股定理得,AM=BC,=BC•AM=BC2,即可求出△ABC的面积;∴S△ABC选项D:当△BDG与△AGF的周长之和已知时,可以求出BD+BG+DG,但求不出△ABC的边长,即△ABC的面积没办法求出,故选项D不符合题意;故选:C.【点睛】此题主要考查了全等三角形的判定和性质,等边三角形的性质,三角形的周长和面积,作出辅助线构造出全等三角形是解本题的关键.第Ⅱ卷二、填空题(每小题5分,共30分)11.若第三象限内的点P(x,y)满足x=﹣,y=,则点P的坐标是(﹣2,﹣4).【答案】(﹣2,﹣4).【分析】根据第三象限内点的横坐标为负数,纵坐标是负数判断出x、y的正负情况,然后根据算术平方根与立方根的定义求出x、y,即可得解.【解答】解:∵P(x,y)为第三象限内的点,∴x<0,y<0,∵x=﹣,y=,∴x=﹣2,y=﹣4,∴点P的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点睛】本题考查了点的坐标,立方根,算术平方根的定义,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.12.分解因式:a2b﹣2ab+b=b(a﹣1)2.【答案】见试题解答内容【分析】先提取公因式b,然后利用完全平方公式进行因式分解.【解答】解:原式=b(a2﹣2a+1)=b(a﹣1)2.故答案是:b(a﹣1)2.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.不透明的袋子中有8个球,其中3个红球,2个黄球,3个绿球,除颜色外无差别,从袋子中随机取出1个,则它是黄球的概率是.【答案】.【分析】用黄球的个数除以总球的个数即可得出黄球的概率.【解答】解:∵不透明的口袋中有8个小球,其中有2个黄球,3个红球和3个绿球,∴从袋子中随机取出1个球,则它是黄球的概率是=;故答案为:.【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.定义新运算:a*b=,则方程1*(2x+1)=1*(x﹣2)的解为x=﹣3.【答案】见试题解答内容【分析】由定义可得=,再解分式方程即可.【解答】解:∵1*(2x+1)=1*(x﹣2),∴=,∴x﹣2=2x+1,解得x=﹣3,经检验,x=﹣3是方程的解,∴方程的解为x=﹣3,故答案为:x=﹣3.【点睛】本题考查新定义,分式方程的解,理解定义的内容,根据定义列出分式方程,并能准确求解分式方程是解题的关键.15.如图,在正六边形ABCDEF内取一点O,作⊙O与边DE,EF相切,并经过点B,已知⊙O的半径为,则正六边形的边长为2+.【答案】2+.【分析】根据对称性可得点O以及正六边形ABCDEF的外接圆的圆心O′均在线段BE上,由切线的性质和锐角三角函数可求出OE,进而求出正六边形ABCDEF的外接圆半径,再根据正六边形的性质可求出答案.【解答】解:如图,连接BE,由对称性可知,点O以及正六边形ABCDEF 的外接圆的圆心O′均在线段BE上,设⊙O与EF、DE相切于点M、N,连接OM、ON、O′D,则OM=ON=OB =2,∵六边形ABCDEF是正六边形,∴∠DEF=120°,由对称性可得,∠OEF=∠OED=∠DEF=60°,在Rt△OEM中,OM=2,∠OEM=60°,∴OE==4,∴BE=OE+OB=4+2,∴正六边形ABCDEF的外接圆半径O′E==2+,∵六边形ABCDEF是正六边形,∴△DO′E是正三角形,∴EF=O′E=2+,即正六边形ABCDEF的边长为2+,故答案为:2+.【点睛】本题考查切线的性质,正多边形与圆,掌握正六边形的对称性以及正六边形与圆的性质是正确解答的前提.16.如图,矩形OABC的顶点A、C分别在x轴、y轴上,B(﹣2,1),将矩形OABC绕点O顺时针旋转,点B落在y轴上的点D处,若反比例函数(x <0)的图象经过点E,则k的值为﹣.【答案】﹣.【分析】先根据旋转的性质得到DE=AB=1,OE=OA=2,再证明△OEF∽△ODE,利用相似比计算出EF=,OF=,则E(﹣,),然后把E点坐标代入(x<0)中求出k的值.【解答】解:作EF⊥y轴于F,∵B(﹣2,1),∴AB=1,OA=2,∵△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,∴DE=AB=1,OE=OA=2,∴OD==,∵∠EOF=∠EOD,∠EFO=∠OED=90°,∴△OEF∽△ODE,∴==,即==,解得EF=,OF=∴E(﹣,),∵反比例函数(x<0)的图象经过点E,∴k=﹣×=﹣.故答案为:﹣.【点睛】本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了旋转的性质、矩形的性质和相似三角形的判定与性质.三、解答题(本大题共8小题,共80分.解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:(x+y)2+y(3x﹣y).(2)解不等式组:.【答案】(1)x2+5xy;(2)﹣1≤x<5.【分析】(1)先根据完全平方公式和单项式乘多项式进行计算,再合并同类项即可;(2)先求出两个不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:(1)原式=x2+2xy+y2+3xy﹣y2=x2+5xy;(2),解不等式①,得x<5,解不等式②,得x≥﹣1,所以不等式组的解集是﹣1≤x<5.【点睛】本题考查了解一元一次不等式组和整式的混合运算,能正确根据整式的运算法则进行化简是解(1)的关键,能根据求不等式组解集的规律求出不等式组的解集是解(2)的关键.18.如图,在6×5的方格纸中,线段AB的端点在格点上.(1)在图1中,画一个以AB为边,面积为6的格点平行四边形ABCD(点C,D在点上);(2)在图2中,画一个以AB为直角边,斜边为整数的格点直角△ABC(点C 在格点上).【答案】(1)(2)作图见解析部分.【分析】(1)画一个底为3,高为2的平行四边形即可;(2)画一个斜边为5的直角三角形即可.【解答】解:(1)如图1中,四边形ABCD即为所求;(2)如图2中,△ABC即为所求.【点睛】本题考查作图﹣应用与设计作图,解题的关键是理解题意,学会利用数形结合的思想解决问题.19.某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的圆心角度数是144°;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B 口味的牛奶共约多少盒?【答案】见试题解答内容【分析】(1)利用A类别人数及其百分比可得总人数;(2)总人数减去A、B、D类别人数,求得C的人数即可补全图形;(3)360°×C类别人数所占比例可得;(4)总人数乘以样本中A、B人数占总人数的比例即可.【解答】解:(1)30÷20%=150(人),答:本次调查的学生有150人;(2)C类别人数为150﹣(30+45+15)=60(人),补全条形图如下:(3)扇形统计图中C对应的圆心角度数是360°×=144°,故答案为:144°;(4)600×=300(盒),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只20.在平面直角坐标系xOy中,直线y=2x+b经过点A(1,m),B(﹣2,﹣3).(1)求b和m的值;(2)将点B向右平移到y轴上,得到点C,设点B关于原点的对称点为D,记线段BC与线段AD为图形G.若双曲线与图形G恰有一个公共点,直接写出k的取值范围.【答案】(1)b=1,m=1;(2)0<k<3.【分析】(1)把B的坐标代入即可求得b,然后代入A(1,m),即可求得m,得出A(1,3);(2)根据平移的性质、轴对称以及中心对称的性质即可求得C、D的坐标,函数y=的图象经过点A,k=3,函数y=的图象经过点D,k=1,此时双曲线也经过点B,根据图象即可求得k的取值范围.【解答】解:(1)∵直线y=2x+b经过点B(﹣1,﹣1),∴b=1,∴直线y=2x+1,又∵直线y=2x+,1经过点A(1,m),∴m=3,∴A(1,3);(2)∵B(﹣2,﹣3),将点B向右平移到y轴上,得到点C(0,﹣3),∴点B关于原点的对称点为D(2,3),函数y=的图象经过点A,k=1×3=3,函数y=的图象经过点D,k=3×2=6,此时双曲线也不经过点B,∴k的取值范围是0<k<3.【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数、反比例函数解析式.数形结合结合思想的运用是解题的关键.21.图1是某种手机支架在水平桌面上放置的实物图,图2是其侧面的示意图,其中支杆AB=BC=20cm,可绕支点C,B调节角度,DE为手机的支撑面,DE=18cm,支点A为DE的中点,且DE⊥AB.(1)若支杆BC与桌面的夹角∠BCM=70°,求支点B到桌面的距离;(2)在(1)的条件下,若支杆BC与AB的夹角∠ABC=110°,求支撑面下端E到桌面的距离.(结果精确到1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.78,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【答案】(1)B到桌面距离为19cm;(2)E到桌面距离大约为25cm.【分析】(1)过B作BF⊥CM于F,则,代入数值即可求解;(2)过A作AG⊥CM于G,过B作BH⊥AG于H,过E作EK⊥AG于K,由,,求得AH,AK根据E到桌面的距离AH﹣AK+HG 即可求解.【解答】解:(1)过点B作BF⊥CM于F,∵∠BCM=70°,∴,∴BF=20×0.94=18.8≈19cm∴B到桌面距离为19cm;(2)过点A作AG⊥CM于G,过点B作BH⊥AG于H,过点E作EK⊥AG 于K,∴BH∥FG,∴∠HBC=∠BCM=70°,∵∠ABC=110°,∴∠ABH=40°,∵∠EAB=90°,∠EAK=40°,∴,,∴AH=20×0.64=12.8cm,AK=9×0.77=6.93cm,∴支撑面下端E到桌面的距离为:AH﹣AK+HG=12.8﹣6.93+19≈25cm.答:E到桌面距离大约为25cm.【点睛】本题考查解直角三角形的应用,添加辅助线构造直角三角形是解题的关键.22.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y2(km),慢车离乙地的距离为y1(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图1所示,S与x的函数关系图象如图2所示.请根据条件解答以下问题:(1)图中的a=3,C点坐标为(3,180);(2)当x何值时两车相遇?(3)当x何值时两车相距200千米?【答案】(1)3,(3,180);(2)当x为时两车相遇;(3)x为或时,两车相距200km.(1)由S与x之间的函数的图象可知a=3,即得快车的速度为100km/h,【分析】由慢车5h行驶300km,知慢车的速度为60km/h,即可得快车到达乙地时,慢车行驶了180km,故C(3,180);(2)由300÷(100+60)=(h),可得当x为时两车相遇;(3)分两种情况:①当两车行驶的路程之和为100km时,x=100÷(100+60)=;②当两车行驶的路程和为500km时,快车到达乙地,即快车行驶了300km,x=200÷60=.【解答】解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,∴快车的速度为300÷3=100(km/h),由图可得,慢车5h行驶300km,∴慢车的速度为300÷5=60(km/h),∵3×60=180(km),∴快车到达乙地时,慢车行驶了180km,即两车相距180km,∴C(3,180),故答案为:3,(3,180);(2)由(1)可知,快车的速度为100km/h,慢车的速度为60km/h,∴两车相遇所需时间为300÷(100+60)=(h),∴当x为时两车相遇;(3)①当两车行驶的路程之和为300﹣200=100(km)时,两车相距200km,此时x=100÷(100+60)=;②当两车行驶的路程和为300+200=500(km)时,两车相距200km,∵x=3时,快车到达乙地,即快车行驶了300km,∴当慢车行驶200km时,两车相距200km,此时x=200÷60=,综上所述,x为或时,两车相距200km.【点睛】本题考查了一次函数的应用,根据图象准确获取信息是解题的关键,要注意要分情况讨论.23.【证明体验】(1)如图1,△ABC中,D为BC边上任意一点,作DE⊥AC 于E,若∠CDE=∠A,求证:△ABC为等腰三角形;【尝试应用】(2)如图2,四边形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的长;【拓展延伸】(3)如图3,△ABC中,点D在AB边上满足CD=BD,∠ACB=90°+∠B,若AC=10,BC=20,求AD的长.【答案】(1)证明见解答过程;(2)2;(3)18.【分析】(1)根据直角三角形的性质得到∠C=90°﹣∠CDE,根据三角形内角和定理得到∠B=90°﹣∠CDE,得到∠B=∠C,根据等腰三角形的判定定理证明结论;(2)延长AD,BC交于点F,证明△ADE≌△CDF,得到DF=DE=2,进而求出AD,根据勾股定理计算即可;(3)过点A作AE⊥BC于E,并把△ACE沿着AE折叠得△AFE,作DG⊥BC 于G,根据△FAC∽△FBA求出CF,再根据平行线分线段成比例定理列出比例式求出AD.【解答】(1)证明:∵DE⊥AC,∴∠C=90°﹣∠CDE,∵∠CDE=∠A,∴∠A=2∠CDE,∵∠A+∠B+∠C=180°,∴2∠CDE+∠B+90°﹣∠CDE=180°,∴∠B=90°﹣∠CDE,∴∠B=∠C,∴△ABC为等腰三角形;(2)解:如图2,延长AD,BC交于点F,∵AE平分∠BAD,∴∠EAD=∠BAD,∵∠BCD+∠EAD=180°,∠BCD+∠DCF=180°,∴∠DCF=∠EAD=∠BAD,在△ABF中,∠ADC=∠CDF=90°,由(1)得:AF=AB=6,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DF=DE=2,∴AD=4,∴AE===2;(3)解:如图3,过点A作AE⊥BC于E,并把△ACE沿着AE折叠得△AFE,作DG⊥BC于G,∵DC=DB,DG⊥BC,∴CG=GB=BC=10,∵∠ACB=90°+∠B,∠ACB=∠AEC+∠EAC,∴∠F AE=∠EAC=∠B,由(1)可得:AB=BF,∴∠AFB=∠F AB=∠ACF,∴△F AC∽△FBA,∴=,即=,解得:CF=10(负值舍去),∴AB=FB=30,DG∥AE,∴=,即=,解得:AD=18.【点睛】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰三角形的性质,掌握相似三角形的判定定理是解题的关键.24.【证明体验】(1)如图1,⊙O是等腰△ABC的外接圆,AB=AC,在上取一点P,连结AP,BP,CP.求证:∠APB=∠P AC+∠PCA;【思考探究】(2)如图2,在(1)条件下,若点P为的中点,AB=6,PB=5,求P A 的值;【拓展延伸】(3)如图3,⊙O的半径为5,弦BC=6,弦CP=5,延长AP交BC的延长线于点E,且∠ABP=∠E,求AP•PE的值.【答案】(1)证明见解析;(2)4;(3)20+15.【分析】(1)利用等弦对等弧和同弧所对的圆周角相等的性质解答即可;(2)延长BP至点D,使PD=PC,连接AD,设PA=x,则PD=x,BD=5+x,利用相似三角形的判定与性质解答即可;(3)连接OP,OC,过点C作CH⊥BP于点H,利用等边三角形的判定与性质和解直角三角形的知识求得BP,再利用相似三角形的判定与性质,通过证明△EPC∽△BPA即可得出结论.【解答】(1)证明:∵AB=AC,∴.∴∠APB=∠ABC.∵∠ABC=∠ABP+∠CBP,∠ABP=∠ACP,∠CBP=∠PAC,∴∠ABC=∠PAC+∠PCA.∴∠APB=∠P AC+∠PCA.(2)解:延长BP至点D,使PD=PC,连接AD,如图,∵点P为的中点,∴.∴P A=PC,∠ABP=∠CBP.∴P A=PD.∴∠D=∠PAD.∴∠APB=∠P AD+∠D=2∠PAD.∵AB=AC,∴.∴∠APB=∠ABC.∵∠ABC=∠ABP+∠CBP=2∠ABP,∴∠P AD=∠ABP.∵∠D=∠D,∴△DAP∽△DBA,∴.∵∠D=∠PAD,∠PAD=∠ABP,∴∠D=∠ABP.∴AD=AB=6.设P A=x,则PD=x,BD=5+x,∴.∴x2+5x﹣36=0.解得:x=4或﹣9(负数不合题意,舍去).∴P A=4;(3)连接OP,OC,过点C作CH⊥BP于点H,如图,∵⊙O的半径为5,CP=5,∴OP=OC=PC=5,∴△OPC为等边三角形.∴∠POC=60°.∴∠PBC=∠POC=30°.在Rt△BCH中,BH=BC•cos30°=6×=3,CH=BC=3.在Rt△PCH中,PH==4.∴PB=PH+BH=4+3.∵四边形ABCP是圆的内接四边形,∴∠PCE=∠BAP.∵∠E=∠ABP,∴△EPC∽△BPA.∴.∴AP•PE=PC•BP=5(4+3)=20+15.【点睛】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,圆的内接四边形的性质,勾股定理,解直角三角形,特殊角的三角函数值,等边三角形的判定与性质,相似三角形的判定与性质,依据题意构造恰当的辅助线是解题的关键.。
2013年数学中考汇编-四边形综合

2013年中考数学模拟试题汇编 四边形综合题一、选择题1. 如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b+ ④四边形A n B n C n D n 的面积是12n ab+.A 、①②B 、②③C 、②③④D 、①②③④2.如图,在平行四边形 ABCD 中(AB≠BC),直线EF 经过其对角线的交点O,且分别交AD 、BC 于点M 、 N ,交BA 、DC 的延长线于点E 、F ,下列结论: ①AO=BO;②OE=OF; ③△EAM∽△EBN; ④△EAO≌△CNO,其中正确的是A. ①②B. ②③C. ②④D.③④9题图B3. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .44. 己知直角梯形ABCD 中,AD∥BC.∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分 D .△A BF 为等腰三角形5.如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于G ,AF=2cm ,DF=4cm ,AG=3cm ,则AC 的长为( )A 、9cmB 、14cmC 、15cmD 、18cm6.下列四边形中,对角线相等且互相垂直平分的是( ) A 、平行四边形 B 、正方形 C 、等腰梯形 D 、矩形ABC D FE G10题图8.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=2OA;(4)AE2+CF2=2OP•OB,正确的结论有()个.A、1B、2C、3D、49.)A、6B、12C、D、二、填空题1.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是60 °.2. 1.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是3. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为 4 .三、解答题1. 如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证四边形ABFC是矩形.2.如图5所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=12BE.EDCBA3.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.AB EGCDF24题图图54. 如图,四边形ABCD 是矩形,直线l 垂直平分线段AC ,垂足为O ,直线l 分别与线段AD 、CB 的延长线交于点E 、F .(1)△ABC 与△FOA 相似吗?为什么? (2)试判定四边形AFCE 的形状,并说明理由.5. 如图,矩形ABCD 中,AB =6,BC点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧.设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由.AD26题图6.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=32,求AG,MN的长.7.如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.9.如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.11.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.12.以四边形ABCD的边AB.BC.CD.DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E.F.G.H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.13.如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.16.如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).17.如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:DF=BE.18.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.19.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.20.如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.21.如图.矩形ABCD的对角线相交于点0.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为AC的长.22.矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的相等;或者先证明四边形是菱形,在证明这个菱形有一个角是.(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.23. 把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F两点均在BD 上),折痕分别为BH 、DG 。
北师大版九年级中考数学模拟试卷(含答案)

北师大版九年级中考数学模拟试卷(满分150分 时间120分钟)一.选择题(共40分) 1.2023的相反数是( )A.2023B.12023 C.﹣12023 D.﹣20232.如图四个几何体中,主视图、左视图、俯视图都相同的几何体是( )A. B. C. D. 3.神舟十五号载人飞船,搭载3名航天员于2022年11月29日成功发射,它的飞行速度大 约是474000米/分,这个数字用科学记数法表示为( )A.4.74×105B.4.74×106C.47.4×104D.0.474×1064.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=( ) A.60° B.50° C.40° D.30°(第4题图) (第 6题图) (第7题图) 5.下列标志图中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.数a 、b 、c 在数轴上的位置如图所示,其中b 、c 到原点的距离相等,下列式子正确的 是( )A.a+c >0B.a+b >0C.b+c >0D.a -b <07.在如图所示的电路图,当随机闭合开关K 1、K 2、K 3中的任意两个时,能使灯泡发亮的概率为( )A.13 B.12 C.23 D.34 8.计算mm -1+11-m 的结果是( )A.1B.﹣1C.2D.﹣29.如图,在△ABC 中,已知∠B=45°,∠C=30°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若DE=3,则AB 的长为( )A.5√2B.5C.3√6D.4√3(第9题图)10.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点为整点.对于题目:抛物线 y=ax (x -4)+m (a ≠0)与x 轴分别交于M 、N 两点(点M 在点N 的左侧),MN=2,线段 MN 与抛物线围成的封闭区域记作G (包括边界),若区域G 内有6个整点,求a 的取值范围.则( )A.3≤a <4B.﹣4<a ≤﹣3C.﹣4<a ≤﹣3或3≤a <4D.﹣4<a <﹣3或3≤a <4 二.填空题(共24分)11.分解因式:x 2-116= .12.正方形地板由9块边长均相等的小正方形组成,一粒米随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是 。
中考仿真模拟考试《数学卷》附答案解析

6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学模拟试题(二)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷10小题,共30分,第Ⅱ卷90分,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分) 1、下列计算中,正确的是( )A 、623x x x =⋅B 、x x x =-23C 、32)()(x x x -=-⋅-D 、326xxx =÷2、现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于600。
其中不正确的命题的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个3、下面四个图形都是由六个相同的正方形组成,将其折叠后能围成正方体的是( )4、将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )A 、矩形B 、三角形C 、梯形D 、菱形5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲x =82分,乙x =82分,甲2S =245,乙2S =190,那么成绩较为整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定6、某商场的营业额1999年比1998年上升10%,2000年比1999年上升10%,而2001年和2002年连续两年平均每年比上一年降低10%,那么2002年的营业额比1998年的营业额( )A 、降低了2%B 、没有变化C 、上升了2%D 、降低了1.99% 7、下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的是( )8、某村办工厂今年前5个月生产某种产品的总量c (件)关于时间t (月)的函数图象如图所示,则该厂对这种产品来说( )A 、1月至3月每月生产总量逐月增加,4、5两月每 月生产总量逐月减少B 、1月至3月每月生产总量逐月增加,4、5两月每 月生产总量与3月份持平C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产D 、1月至3月每月生产总量不变, 4、5两均停止生产9、某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )10、长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是( )(A ) (B ) (C ) (D )3t(月)c (件)O5124thO thOthO thOA .B .C .D .A .36,37B .37,36C .36.5,37D .37,36.5第Ⅱ卷(非选择题部分共90分)二、填空题(每小题3分,共18分)11、分解因式:=++a ax ax 22 ; 12.函数函数12-+=x x y 中自变量x 的取值范围是 ;13.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其中使用寿命跟踪调查.结果如下:(单位:年) 甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12 三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲 ,乙 ,丙 ; 14.二次函数x x y 2212+-=,当x时,0<y ;且y 随x 的增大而减小;15.两个长、宽各为a 米、b 米的矩形花圃,都修建了形状不同的一条宽为c 米的小路,问:这两条小路的面积是否相等? (填相等或不相等),若相等,面积是 ;16.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为 。
三、解答题(共72分)17、(6分)计算:092π⎛⎫--+ ⎪3⎝⎭.18.(6分)先化简再求值: ,其中a 满足20a a -=.19、(5分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将A B C △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90 ,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).20.(6分)某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度?AB C(3)补全频数分布折线图.21、(6分)将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?阅读 运动 娱乐 其它 项目1020 30 40 50人数O其它娱乐 40%运动20%阅读 图1 图222、(10分)在下图中,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 … n (奇数)黑色小正方形个数…正方形边长 2 4 6 8 … n (偶数)黑色小正方形个数…(2)在边长为n (1≥n )的正方形中,设黑色小正方形的个数为1P ,白色小正方形的个数为2P ,问是否存在偶数..n ,使125P P =?若存在,请写出n 的值;若不存在,请说明理由。
23、(12分)近期,海峡两岸关系的气氛大为改善。
大陆相关部门于2005年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。
某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元)38 37 36 35 (20)每天销量(千克)50 52 54 56 (86)设当单价从38元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,问一次进货最多只能是多少千克?24、(9分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗?欢迎你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高的.25、(12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.参考答案一、1、C ;提示:32)()(x x x -=-⋅- 2、A ;提示:正确的是④ 3、C ;提示:根据展开图 4、B ;提示:三角形 5、B ;提示:根据方差比较 6、D ;提示:没有变化 7、D ;提示:根据图形的割补关系,注意到小正方形的面积为1 8、B ;提示:1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月份持平 答案:9、B ;提示:在每小部分水上涨成直线,当它们的比例系数k 是不同的 10、A ;提示:根据中位数的概念,又37出现4次,次数最多二、11、2)1(+x a ;提示:=++a ax ax 22a(x 2+2x+1)=a(x+1)212.2-≥x 且1≠x ; 13.众数,平均数,中位数; 14.4>x ;提示:解不等式x x y 2212+-=<0并取左侧的部分15.相等,bc 米2;提示:根据图形割部关系 16.17或18或19三、17、解:原式3212=-+= ··············· 6分 18.解:原式221(2)(2)(1)(1)(2)(1)22(1)1a a a a a a a a a a a -+-+-==-+=--+-·· 4分 由20a a -=得原式022=-=- ················ 6分 19、 ·························· 5分A4050 人数20.(1)100名 ······················· 2分 (2)36 ························· 4分(3)如上图 ······················· 6分21.(1)()P 偶数23=···················· 2分(2)能组成的两位数为:86,76,87,67,68,78······ 4分恰好为“68”的概率为16. ················· 6分22、解:(1)1,5,9,13 ………………………………………(2分) (奇数)12-n ……………………………………(4分) 4,8,12,16 ………………………………………(5分)(偶数)n 2 …………………………………………(6分)(2)由(1)可知n 位偶数时n P 21=n n P 222-=∴………………………………………………(7分) 根据题意得n n n 2522∙=-………………………………(8分) 0122=-n n0,12==n n (不合题意舍去)………………(9分)∴ 存在偶数 12=n ,使得125P P =…………………………(10分)23.解:(1)x y 250+=………………………………………(4分)(2)销售价定位30元/千克时83038=-=x ……………………………………………………(5分) 668250=⨯+=y …………………………………………………(6分) ()660203066=-⨯ ∴这天销售利润是660元…………………………………………(8分)(3)设一次进货最多m 千克73066-≤m…………………………………………………………(10分)1518≤m∴一次进货最多不能超过1518千克。