七年级数学练习卷(十)_3
广东深圳宝安区2023~2024学年上学期七年级数学期末考前练习卷及参考答案

2023—2024学年第一学期深圳市宝安区七年级数学期末考前练习卷一、选择题(本部分共10小题,每小题3分,共30分)1.2023−的相反数是()A.2023 B.12013C.12013−D.2023−2.如图,从左面观察这个立体图形,得到的平面图形是()A.B. C. D.3.2022年2月4日,北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行,中国大陆地区观看人数约316000000人.用科学记数法表示316000000是()A.3.16×107B.31.6×107C.3.16×108D.0.316×1094.2022年10月12日,“天宫课堂”第三课在中国空间站开讲.这也是中国航天员首次在问天实验舱内进行授课.微重力环境下毛细效应实验、水球变“濑”实验、太空趣味饮水、会调头的扳手、植物生长研究项目介绍……来自全国各地的青少年,一同收看了这场来自400公里之上的奇妙科学课.某校为了解学生观看“天宫课堂”的情况,随机抽取了300名学生参加“你最喜爱的一项太空实验”的问卷调查,下列说法正确的是()A. 这是一次普查B. 总体是300名学生C. 个体是每名学生的问卷调查情况D. 样本容量是300名学生的问卷调查情况5. 下列说法中,正确的是()A .22x y − 的系数是2− B .22x y −的系数是12 C .2342x y x +−的常数项为2− D .22422x y x −+−是四次三项式6. 已知=1x −是方程29x m +=的解,则m 的值为( )A. 4−B. 4C. 5−D. 57 .如图,AB =6,C 为AB 中点,点D 在线段AC 上,且AD :CB =1:3,则DC 的长度为( )A .1B .2C .3D .48. 我国古代名著《九章算术》中有一题:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”题意是:“有若干人凑钱合伙买鸡,如果每人出9文钱,多出11文钱;如果每人出6文钱,还差16文钱.问买鸡的人数、鸡的价钱各是多少?设有x 人共同买鸡,则可列方程为( )A .111696x x −+=B .111696x x +−= C .9x +11=6x ﹣16 D .9x ﹣11=6x +169. 某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元10. 一列数1a ,2a ,3a ,…,n a ,其中则11a =−,2111a a =−,3211a a =−,…,111n n a a −=−, 则12320222023a a a a a ×××⋅⋅⋅××=( )A .1−B .12C .2022D .2022−二、填空题(每小题3分,共15分,请把答案填到答题卡相应位置上)11. 若2121 3n a b +与3225n a b −是同类项,则n = . 12. 如果关于x 的一元一次方程x +a =2x -1的解是x =2,那么a 的值为 ;13.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于 度.14. 如图所示,ABC 90 ∠=,CBD 30∠= ,BP 平分ABD.∠则ABP ∠= 度.15. 如图,已知线段40cm AB =,动点P 从点A 由发以每秒3cm 的速度向点B 运动,同时动点Q 从点B 出发以每秒2cm 的速度向点A 运动,有一个点到达终点时另一点也随之停止运动. 当15cm PQ =时,则运动时间t = s .三、解答题(本题共7小题,其中第16题9分,第17题6分,第18题6分,第19题6分,第20题9分,第21题10分,第22题9分,共55分)16. 计算:(1)()1235+−+−−;(2)()523121234 +−×−; (3)()()20232540.25818 −×−×−×−.17. 先化简,再求值:()()223243x xy x xy −−++−,其中2x =,1y =. 18 .解方程.443142x x −+=+ 19. 如图,平面上有A 、B 、C 、D 四个点,请根据下列语句作图.(1)画直线AC ;(2)线段AD 与线段BC 相交于点O ;(3)射线AB 与射线CD 相交于点P .20 .某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组, 要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向, 并将抽查结果绘制成如下统计图(不完整).根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.21 .某中学组织了元旦书法大赛,为了表彰在比赛中成绩突出的学生,购买了钢笔40支,毛笔70支,共用了2880元,其中每支毛笔比钢笔贵5元,设每支钢笔的价格为x 元.(1)每支毛笔的价格为______元(用含x 的代数式表示); (2)求钢笔和毛笔的单价各为多少元?(3)学校想扩大奖励面,又给采购员930元,用完这些钱购买上面的两种笔共35支(每种笔的单价不变),请帮采购员计算两种笔各买多少支?22. 已知O 是直线AB 上一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1,若50AOC ∠=°,则DOE ∠= .(2)如图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,试探究DOE ∠和AOC ∠度数之间的关系,写出你的结论,并说明理由.(3)将图1中的DOC ∠绕顶点O 逆时针旋转至图3的位置,其他条件不变,若AOC α∠=,则DOE ∠的度数是 (用含有α式子表示),不必说理由.2023—2024学年第一学期深圳市宝安区七年级数学期末考前练习卷解析一、选择题(本部分共10小题,每小题3分,共30分)1.2023−的相反数是()A.2023 B.12013C.12013−D.2023−【答案】A【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:2023−的相反数是2023,故选:A.2.如图,从左面观察这个立体图形,得到的平面图形是()A.B. C. D.【答案】A【分析】根据从左面看得到的图形的形状,对比选项即可得出答案.【详解】解:从左面看,上面是一个正方形,下面是两个正方形,且上面正方形在下面正方形的最左边.故选:A.3.2022年2月4日,北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行,中国大陆地区观看人数约316000000人.用科学记数法表示316000000是()A.3.16×107B.31.6×107C.3.16×108D.0.316×109【答案】C【分析】用科学记数法表示较大数字时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位少1,据此判断即可求解.【详解】8316000000 3.1610=×,故选C .4. 2022年10月12日,“天宫课堂”第三课在中国空间站开讲.这也是中国航天员首次在问天实验舱内进行授课.微重力环境下毛细效应实验、水球变“濑”实验、太空趣味饮水、会调头的扳手、植物生长研究项目介绍……来自全国各地的青少年,一同收看了这场来自400公里之上的奇妙科学课.某校为了解学生观看“天宫课堂”的情况,随机抽取了300名学生参加“你最喜爱的一项太空实验”的问卷调查,下列说法正确的是( )A. 这是一次普查B. 总体是300名学生C. 个体是每名学生的问卷调查情况D. 样本容量是300名学生的问卷调查情况【答案】C【解析】【分析】根据调查方法、总体、个体及样本容量的定义进行分析即可.【详解】解:某校为了解学生观看“天宫课堂”的情况,随机抽取了300名学生参加“你最喜爱的一项太空实验”的问卷调查,这个问题中的总体是全校每一个学生 “最喜爱的一项太空实验”的情况,样本是抽取的300名学生进行“你最喜爱的一项太空实验”的问卷调查情况,个体是每一个学生的“你最喜爱的一项太空实验” 问卷调查情况,样本容量是300,故选:C .5. 下列说法中,正确的是( ) A .22x y − 的系数是2− B .22x y −的系数是12 C .2342x y x +−的常数项为2− D .22422x y x −+−是四次三项式【答案】C【分析】根据单项式的系数和次数,多项式的项和次数的概念进行分析判断.【详解】解:A . 22x y− 的系数是12−,故此选项不符合题意;B . 22x y− 的系数是12−,故此选项不符合题;C .2342x y x +−的常数项为2−,故此选项符合题意;D .22422x y x −+−是三次三项式,故此选项不符合题意;故选: C .6. 已知=1x −是方程29x m +=的解,则m 的值为( )A. 4−B. 4C. 5−D. 5【答案】D【解析】【分析】将x 的值代入方程中即可求出m .【详解】将=1x −代入方程得:129m −+=;解得5m =;故选:D .7 .如图,AB =6,C 为AB 中点,点D 在线段AC 上,且AD :CB =1:3,则DC 的长度为()A .1B .2C .3D .4【答案】B【分析】直接利用AB =6,C 为AB 的中点,得出BC 的长,进而得出DC 的长.【详解】解:∵AB =6,C 为AB 的中点,∴AC =BC =3,∵AD :CB =1:3,∴AD =1,∴DC =3-1=2.故选:B .8. 我国古代名著《九章算术》中有一题:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”题意是:“有若干人凑钱合伙买鸡,如果每人出9文钱,多出11文钱;如果每人出6文钱,还差16文钱.问买鸡的人数、鸡的价钱各是多少?设有x 人共同买鸡,则可列方程为( )A .111696x x −+=B .111696x x +−= C .9x +11=6x ﹣16D .9x ﹣11=6x +16【答案】D 【分析】设有x 人共同买鸡,根据鸡的价钱不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:设有x 人共同买鸡,根据题意得:9x ﹣11=6x +16.故选:D .9. 某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元【答案】C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】解:设在这次买卖中第一件的原价是x 元,则可列方程:(125%)135x +=, 解得:108x =,比较可知,第一件赚了27元,设第二件的原价为y 元,则可列方程:()125%135y −=, 解得:180y =,比较可知亏了45元,两件相比则一共亏了18元.故选:C .10. 一列数1a ,2a ,3a ,…,n a ,其中则11a =−,2111a a =−,3211a a =−,…,111n n a a −=−, 则12320222023a a a a a ×××⋅⋅⋅××=( )A .1−B .12C .2022D .2022−【答案】A 【分析】根据题意和题目中的数据,可以计算出这列数的前几个数据,从而可以发现数字的变化特点,然后即可求得所求式子的值.【详解】∵11a =−,2111111(1)2a a ===−−−, 221121112a a ===−−, 43111112a a ===−−−, ∴这列数是1−、12、2、1−、12、2、 ,发现这列数每三个循环,∵202336741÷=,且()12311212a a a =−××××=−, ∴()()2612307423111a a a a ×=−×−×⋅⋅×=−⋅,故选:A .二、填空题(每小题3分,共15分,请把答案填到答题卡相应位置上)11. 若2121 3n a b +与3225n a b −是同类项,则n = . 【答案】3【分析】依据同类项的定义列方程求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】解:∵21213n a b +与5a 3n ﹣2b 2是同类项, ∴2n +1=3n ﹣2,解得:n =3.故答案为:3.12. 如果关于x 的一元一次方程x +a =2x -1的解是x =2,那么a 的值为 ;【答案】1【分析】将方程的解代入方程可求解.【详解】解:∵x =2是方程x +a =2-1的解,∴2+a =2×2-1,∴a =1,故答案为:1.13.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于 度.【答案】30【分析】由图象可知,两个三角板直角组成∠AOD ,其中∠COB 为重合部分,故有∠AOD =∠AOB +∠COD -∠COB ,易求得∠COB =30°.【详解】已知三角板的角∠AOB =∠COD =90°有∠AOD =∠AOB +∠COD -∠COB即150°=90°+90°-∠COB解得∠COB =30°.故答案为:30.14. 如图所示,ABC 90 ∠=,CBD 30∠= ,BP 平分ABD.∠则ABP ∠= 度.【答案】60【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠= ,CBD 30∠= ,ABD 120∠∴= ,BP 平分ABD ∠,ABP 60∠∴= .故答案为60.15. 如图,已知线段40cm AB =,动点P 从点A 由发以每秒3cm 的速度向点B 运动,同时动点Q 从点B 出发以每秒2cm 的速度向点A 运动,有一个点到达终点时另一点也随之停止运动. 当15cm PQ =时,则运动时间t = s .【答案】5或11/11或5【分析】由题意可分当点Q 在点P 的右侧和当点Q 在点P 的左侧时,然后根据线段的和差关系可分别进行求解.【详解】解:由题意得:3cm,2cm AP t BQ t ==,则可分: ①当点Q 在点P 的右侧时,15cm PQ =,∴403215t t −−=, 解得:5t =;②当点Q 在点P 的左侧时,15cm PQ =,∴321540t t +−=, 解得:11t =;综上所述:当15cm PQ =时,则运动时间t =5或11;故答案为5或11.三、解答题(本题共7小题,其中第16题9分,第17题6分,第18题6分,第19题6分,第20题9分,第21题10分,第22题9分,共55分)16. 计算:(1)()1235+−+−−;(2)()523121234 +−×−; (3)()()20232540.25818−×−×−×− .解:(1)()1235+−+−−1235=−+−3=−;(2)()523121234 +−×−()()()5231212121234=×−+×−−×− 589=−−+4=−;(3)()()20232540.25818−×−×−×−()516218 =−×+×−102=−−12=−.17. 先化简,再求值:()()223243x xy x xy −−++−,其中2x =,1y =.【答案】22712x xy −+−,6−.【解析】【分析】先去括号然后合并同类项,然后把x 和y 的值代入即可求得答案.【详解】解:()()223243x xy x xy −−++− 22634412x xy x xy =−+++−22712x xy =−+−当2x =,1y =时,∴原式22272112=−×+××−81412=−+−6=−.18 .解方程.443142x x −+=+ 【答案】2x =−【分析】根据一元一次方程的解法:去分母、去括号、移项、合并同类项、系数化为1求解即可得到答案. 【解:443142x x −+=+, 去分母得()42434x x −=++, 去括号得4864x x −++,移项得8446x x −=−−−,合并同类项得714x =−,系数化为1得2x =−.19. 如图,平面上有A 、B 、C 、D 四个点,请根据下列语句作图.(1)画直线AC ;(2)线段AD 与线段BC 相交于点O ;(3)射线AB 与射线CD 相交于点P .【答案】(1)图见解析(2)图见解析(3)图见解析【分析】(1)根据题意即可作图;(2)根据题意即可作图;(3)根据题意即可作图.【详解】解:(1)直线AC 如图所示.(2)线段AD与线段BC相交于点O,如图所示.(3)射线AB与射线CD相交于点P,如图所示.20 .某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.【答案】(1)200人;36°(2)见解析(3)400人【分析】(1)从两个统计图中可知,在抽查人数中,选择“体育运动”兴趣小组的人数为60人,占调查人数的30%,可求出调查人数,样本中选择“美工制作”兴趣小组占调查人数的20200,即10%,因此相应的圆心角的度数为360°的30%;(2)求出选择“音乐舞蹈”兴趣小组的人数,即可补全条形统计图;(3)用1600乘以样本中选择“爱心传递”兴趣小组的学生所占的百分比即可.【详解】(1)解:本次被抽查学生的总人数是6030%200÷=(人),扇形统计图中表示选择“美工制作”兴趣小组的扇形的圆心角度数是2036036 200×°=°;(2)解:选择“音乐舞蹈”兴趣小组的人数为200-50-60-20-40=30(人),补全条形统计图如图所示.(3)解:估计全校选择“爱心传递”兴趣小组的学生人数为501600400200×=(人).21 .某中学组织了元旦书法大赛,为了表彰在比赛中成绩突出的学生,购买了钢笔40支,毛笔70支,共用了2880元,其中每支毛笔比钢笔贵5元,设每支钢笔的价格为x元.(1)每支毛笔的价格为______元(用含x的代数式表示);(2)求钢笔和毛笔的单价各为多少元?(3)学校想扩大奖励面,又给采购员930元,用完这些钱购买上面的两种笔共35支(每种笔的单价不变),请帮采购员计算两种笔各买多少支?【答案】(1)()5+x(2)钢笔每支23元,毛笔每支28元(3)购买钢笔10支,则购买毛笔25支【解析】【分析】(1)设每支钢笔的价格为x 元,根据每支毛笔比钢笔贵5元,即可列出代数式;(2)设每支钢笔的价格为x 元,每支毛笔的价格为()5+x 元,根据题意列出一元一次方程,解方程即可求解;(3)设购买钢笔a 支,则购买毛笔()35a −支,根据题意列出一元一次方程,解方程即可求解.【小问1详解】解:设每支钢笔价格为x 元,每支毛笔比钢笔贵5元,∴每支毛笔的价格为()5+x 元,故答案为:()5+x .【小问2详解】解:设每支钢笔的价格为x 元,每支毛笔的价格为()5+x 元,根据题意得,()407052880x x ++=解得:23x =,∴523528x ++(元)答:钢笔每支23元,毛笔每支28元;【小问3详解】设购买钢笔a 支,则购买毛笔()35a −支,根据题意得,的()232835930a a +−=解得:10a =,351025−=,答:购买钢笔10支,则购买毛笔25支.22. 已知O 是直线AB 上一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1,若50AOC ∠=°,则DOE ∠= .(2)如图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,试探究DOE ∠和AOC ∠度数之间的关系,写出你的结论,并说明理由.(3)将图1中的DOC ∠绕顶点O 逆时针旋转至图3的位置,其他条件不变,若AOC α∠=,则DOE ∠的度数是 (用含有α式子表示),不必说理由.【答案】(1)25° (2)12DOE AOC ∠=∠,理由见解析 (3)11802α°−【分析】(1)根据邻补角定义,由50AOC ∠=°得到18050130BOC ∠=°−°=°,再由OE 平分BOC ∠得到1652COE BOC ∠=∠=°,由COD ∠是直角得到9025DOE COE ∠=°−∠=°; (2)根据邻补角定义得到180BOC AOC ∠+∠=°,再由OE 平分BOC ∠得到12COE BOC ∠=∠,由COD ∠是直角得到()111909090180222DOE COE BOC AOC AOC ∠=°−∠=°−∠=°−°−∠=∠; (3)根据邻补角定义得到180BOC AOC∠+∠=°,即180BOC α∠+°,再由OE 平分BOC ∠得到12COE BOC ∠=∠,由COD ∠是直角得到()111909090180180222DOE COE BOC αα∠=°+∠=°+∠=°+°−=°−. 【详解】(1)解: O 是直线AB 上一点,50AOC ∠=°, ∴180********AOC BOC ∠=°−°=°=°−∠,OE 平分BOC ∠, ∴1652COE BOC ∠=∠=°, COD ∠是直角,∴9025DOE COE ∠=°−∠=°,故答案为:25°;(2)解: O 是直线AB 上一点,∴180BOC AOC ∠=°−∠,OE 平分BOC ∠, ∴12COE BOC ∠=∠, COD ∠是直角, ∴()111909090180222DOE COE BOC AOC AOC ∠=°−∠=°−∠=°−°−∠=∠; (3)解: O 是直线AB 上一点,∴180BOC AOC ∠=°−∠,AOC α∠=,∴180BOC α∠=°−,OE 平分BOC ∠, ∴12COE BOC ∠=∠, COD ∠是直角,第16页/共16页 ∴()111909090180180222DOE COE BOC αα∠=°+∠=°+∠=°+°−=°−, 故答案为:11802α°−.。
江西省九江市七年级下册数学期末练习卷(含答案)

江西省九江市七年级下册数学期末练习卷一、选择题(共8题;共24分)1.(3分)下面四幅作品分别代表二十四节气中的“大雪”“白露”“芒种”“立春”,其中是轴对称图形的是( )A.B.C.D.2.(3分)清代袁枚的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( )A.0.84×10−4B.8.4×10−6C.8.4×10−4D.8.4×10−53.(3分)下列运算中正确的是( ).A.2x+y=2xy B.−(3a2b)2=6a4b2C.(x+y)2=x2+y2D.(a2−ab)÷a=a−b4.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,不是红球的概率为( )A.47B.37C.57D.175.(3分)如图,下列推理中正确的是( )A.因为∠1=∠4,所以AD∥BCB.因为∠2=∠3,所以AB∥CDC.因为∠BAD+∠D=180°,所以AB∥CDD.因为∠D+∠3+∠4=180°,所以AB∥CD6.(3分)如图,直线m∥n,点A、C在直线m上,点B在直线n上,BC平分∠ABD,若∠BAC=122°,则∠ACB的度数为( )A.58°B.61°C.30°D.29°7.(3分)如图,下面是物理课上测量铁块A的体积实验,将铁块匀速向上提起,直至完全露出水面一定高度,下面能反映这一过程中,液面高度h与铁块被提起的时间t之间的大致图象是( )A.B.C.D.8.(3分)已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )A.M>N B.M≥N C.M≤N D.不能确定二、填空题(共8题;共24分)9.(3分)“任意打开七年级数学课本,正好是第35页”,这个事件是 事件.(填“随机”或“必然”)10.(3分)如图,若△ABC≌△DEF,AF=2,FD=8,则FC的长度是 .11.(3分)如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据图中的程序算法过程,可得y与x之间的关系式是 .12.(3分)若x m=4,x n=6,则x2m−n的值为 .13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=10,则△ABD的面积是 .14.(3分)若x−y=4,xy=−3,则(x+y)2= .15.(3分)如图,在△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则△ABC边BC上的高为 .16.(3分)如图,两条平行直线l1,l2被直线AB所截,点C位于两平行线之间,且在直线AB右侧,点E是l1上一点,位于点A右侧.小明进行了如下操作:连结AC,BC,在∠EAC平分线上取一点D,过点D作DF∥BC,交直线l2于点F.记∠ACB=α,∠CBF=β,∠ADF=γ,则γ= (用含α,β的代数式表示).三、解答题(共8题;共52分)17.(3分)计算:2×(−3)+4−(36−1)0.18.(3分)如图,在平面直角坐标系中,三角形ABC在坐标系中A(1,1),B(4,2),C(3,4).在图中画出三角形ABC关于x轴的对称图形A1B1C1,并分别写出对应点A1、B1、C1的坐标.19.(5分)如图所示,已知AD⊥BC于点D,EG⊥BC于点G,∠E=∠1,说明:AD平分∠BAC.下面是推理过程,请你将其补充完整,因为AD⊥BC于点D,EG⊥BC于点G(已知)所以∠ADC=∠EGC=90°所以AD//EG()所以∠1=∠2( ) =∠3(两直线平行,同位角相等)又因为∠E=∠1(已知),所以∠2=∠3( )所以AD平分∠BAC().20.(5分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)(2分)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)(3分)求选中乙、丙两位同学参加第一场比赛的概率.21.(5分)先化简,再求值:(2a−b)2+(a+b)(a−2b),其中a=−1,b=2.22.(5分)如图,在≤ABCD中,点E为边CD的中点,延长AE交BC的延长线于点F.(1)(2分)求证:△ADE≌△FCE.(2)(3分)若AD=5,求BF的长.23.(12分)王师傅非常喜欢自驾游,他为了了解新买轿车的耗油情况,将油箱加满后进行了耗油试验,得到下表中的数据:行驶的路程s(km)0100200300400…油箱剩余油量Q(L)5042342618…(1)(4分)在这个问题中,自变量是 ,因变量是 ;(2)(4分)该轿车油箱的容量为 L,行驶150km时,油箱中的剩余油量为 L;(3)(2分)请写出两个变量之间的关系式;(用s来表示Q);(4)(2分)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请求出A,B两地之间的距离.24.(14分)【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)(3分)【直接应用】若x+y=3,x2+y2=5,求xy的值;(2)(6分)【类比应用】①若(x−3)(x−4)=1,则(x−3)2+(x−4)2=;②若x满足(2023−x)2+(2020−x)2=2023,求(2023−x)(2020−x)的值.(3)(5分)【知识迁移】两块全等的特制直角三角板(∠AOB=∠COD=90°)如图2所示放置,其中A,O,D在一直线上,连接AC,BD.若AD=16,S△AOC+S△BOD=68,求一块直角三角板的面积.答案解析部分1.【答案】A 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】C 6.【答案】D 7.【答案】B 8.【答案】B 9.【答案】随机10.【答案】611.【答案】y =−3x +212.【答案】8313.【答案】1514.【答案】415.【答案】6131316.【答案】12α+12β或90°+12α−12β或180°−12α−12β17.【答案】−518.【答案】解:如图,△A 1B 1C 1即为所求;A 1,B 1,C 1的坐标分别为:(1,−1)、(4,−2)、(3,−4);19.【答案】同位角相等,两直线平行;两直线平行,内错角相等 ;∠E ;等量代换 ;角平分线定义20.【答案】(1)解:根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率12;(2)解:画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为26=13.21.【答案】解:(2a−b )2+(a +b )(a−2b )=4a 2−4ab +b 2+a 2+ab−2ab−2b 2.=5a 2−5ab−b 2当a =−1,b =2时,原式=5×(−1)2−5×(−1)×2−22=11.22.【答案】(1)证明:∵E 是边CD 的中点,∴DE =CE ,∵四边形ABCD 是平行四边形,∴AD ∥BF ,∴∠D =∠DCF ,在△ADE 和△FCE 中,{∠D =∠ECFED =CE ∠AED =∠CEF,,∴△ADE ≌△FCE (ASA )(2)解:∵四边形ABCD 是平行四边形,∴AD =BC =5,∵△ADE ≌△FCE ,∴AD =CF =5,∴BF =BC+CF =5+5=10.23.【答案】(1)行驶的路程;油箱剩余油量(2)50;38(3)解:因为开始油箱中的油为50L ,每行驶100km ,耗油8L ,所以Q 与s 的关系式为:Q =50−0.08s ,(4)解:由(3)得Q =50−0.08s ,当Q =22时,22=50−0.08s ,解得s =350,故A ,B 两地之间的距离为350km ,24.【答案】(1)解:∵x +y =3,x 2+y 2=5,而(x +y)2=x 2+2xy +y 2,∴32=5+2xy ,解得:xy =2;(2)解:①3②[(2023−x)−(2020−x)]2=(2023−x−2020+x)2=9,∵(2023−x)2+(2020−x)2=2023,∴(2023−x)(2020−x)=(2023−x)2+(2020−x)2−[(2023−x)−(2020−x)]22=2023−92=1007.故答案为:1007.(3)解:∵A ,O ,D 三点共线,且∠AOB =∠COD =90°,∴∠AOC =180°−∠COD =90°,∴∠AOC +∠AOB =180°,∴B ,O ,C 三点共线,∴∠BOD =∠AOC =90°,∵△AOB≌△COD ,∴OA =OC ,OB =OD ,∵AD =16,S △AOC +S △BOD =68,∴OA +OD =16,12A O 2+12O D 2=68,∴O A 2+O D 2=136,∴2OA ⋅OD =(OA +OD)2−(OA 2+OD 2)=162−136=120,∴OA ⋅OD =60,∴S △AOB =12OA ⋅OB =12OA ⋅OD =30,即一块直角三角板的面积为30.。
七年级数学下第3章单元测试卷(含答案)

七年级数学下第3章单元测试卷(含答案)七年级数学下第3章单元测试卷(湘教版含答案)现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量。
以下是店铺整理的七年级数学下第3章单元测试卷(湘教版含答案),希望能够帮助到大家。
一、选择题(每题3分,共30分)1、下列各式由左边到右边的变形中,是因式分解的是()A、y2—25=(y+5)(y—5)B、(x+2)(x+3)=x2+5x+6C、x2+3x+5=x(x+3)+5D、x2—x+ =x22、下列各式中,能用平方差公式分解因式的是()A、x2+4y2B、x2—2y+1C、—x2+4y2D、—x2—4y23、在多项式Ax2+Bx+C中,当A,B,C取下列哪组值时,此多项式不能分解因式()A、1,2,1B、2,—1,0C、1,0,4D、4,0,—14、下列用提公因式法分解因式正确的是()A、12abc—9a2b2=3abc(4—3ab)B、3x2y—3xy+6y=3y(x2—x+2y)C、—a2+ab—ac=—a(a—b+c)D、x2y+5xy—y=y(x2+5x)5、下列各组的两个多项式中,有公因式的是()①2x—y和2y+x;②4a2—b2和4a—b;③2(m+2n)和—2m—4n;④x2—6x+9和x—3。
A、①②B、②③C、③④D、①④6、把代数式3x3—12x2+12x因式分解,结果正确的`是()A、3x(x2—4x+4)B、3x(x—4)2C、3x(x+2)(x—2)D、3x(x—2)27、把a4—2a2b2+b4分解因式,结果是()A、a2(a2—2b2)+b4B、(a2—b2)2C、(a—b)4D、(a+b)2(a—b)28、若二次三项式x2+8x+k2是完全平方式,则k的值为()A、4B、—4C、±4D、89、已知a为任意整数,且(a+13)2—a2的值总可以被n(n为正整数,且n≠1)整除,则n的值为()A、13B、26C、13或26D、13的倍数10、若4a4—(b—c)2=p(2a2—b+c),则p是()A、2a2—b+cB、2a2—b—cC、2a2+b—cD、2a2+b+c二、填空题(每题3分,共24分)11、已知a+b=4,a—b=3,则a2—b2=__________。
【教育资料】2018-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(3)学

2019-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与实际问题同步练习(3)一、选择题1.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A. 20元B. 24元C. 30元D. 36元2.杨老师利用暑假带领团员们乘汽车到农村进行社会调查,每张汽车票原价是50元。
甲车主说:乘我的车,全部8折优惠;乙车主说;乘我的车,学生9折优惠,老师不要票.杨老师计算了一下,发现无论乘哪辆车花费都一样。
杨老师去农村带领的团员人数为()A. 6B. 7C. 8D. 93.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶的只数为( )A. 8B. 9C. 10D. 114.某市居民生活用电基本价格为每度0.4元,若每月用电量超过a度,超过部分按每度0.6元收费,若某户居民九月份用电84度,共交电费40.4元,则a为( )A. 50度B. 55度C. 60度D. 65度5.一个两位数,十位上的数字是个位数字的2倍,将个位数字与十位数字调换,得到一个新的两位数,这两个两位数的和是132,则原来的两位数为( )A. 48B. 84C. 36D. 636.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为()A. 6名B. 7名C. 8名D. 9名二、填空题7.某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12019元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为________.8.某校初一所有学生将在大礼堂内参加2019年“元旦联欢晚会”,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则初一年级共有多少名学生?设大礼堂内共有x排座位,可列方程为________9.全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有________个同学,计划租用________条船。
北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(3)

北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共7小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.43.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=()m.A.8B.10C.12D.无法确定4.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°5.下列选项中,不是依据三角形全等知识解决问题的是()A.利用尺规作图,作一个角等于已知角B.工人师傅用角尺平分任意角C.利用卡钳测量内槽的宽D.用放大镜观察蚂蚁的触角6.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13B.8C.6D.57.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A.1种B.2种C.3种D.4种二.填空题(共7小题)8.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE =CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为m.9.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是s.10.如图,小强利用全等三角形的知识测量池塘两段M、N的距离.如果△PQO≌△NMO,则只需测出其长度的线段是.11.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为厘米.12.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a,CE=b.则两条凳子的高度之和为.13.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.14.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD 垂足为D.已知AB=20米.根据上述信息,标语CD的长度为m.三.解答题(共2小题)15.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.16.如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过7分钟后,它们分别爬行到D、E处,设DC与BE的交点为点F.(1)求证:△ACD≌△CBE;(2)蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请证明你的结论.北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共7小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键.2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.4【分析】显然第2中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第2块.故选:B.【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题转化为数学问题解答是关键.3.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=()m.A.8B.10C.12D.无法确定【分析】利用“角边角”证明△ABE和△CDE全等,根据全等三角形对应边相等可得AB =CD.【解答】解:在△ABE和△CDE中,,∴△ABE≌△CDE(ASA),∴AB=CD=10m.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°【分析】先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.【解答】解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL),∴∠1=∠4,∵∠3+∠4=90°,∴∠ACB+∠DEF=90°.故选:C.【点评】本题考查的是直角三角形全等的判定及性质,直角三角形的性质,属基础题目.5.下列选项中,不是依据三角形全等知识解决问题的是()A.利用尺规作图,作一个角等于已知角B.工人师傅用角尺平分任意角C.利用卡钳测量内槽的宽D.用放大镜观察蚂蚁的触角【分析】分别利用作一个角等于已知角以及工人师傅用角尺平分任意角和卡钳测量内槽的宽都是利用全等三角形的知识解决问题,进而分析得出答案.【解答】解:A、利用尺规作图,作一个角等于已知角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;B、工人师傅用角尺平分任意角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;C、利用卡钳测量内槽的宽,是利用SAS得出,依据三角形全等知识解决问题,故此选项不合题意;D、用放大镜观察蚂蚁的触角,是利用相似,不是依据三角形全等知识解决问题,故此选项正确.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.6.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13B.8C.6D.5【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间.【解答】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中,,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.【点评】本题考查全等三角形的判定和性质,路程,速度时间的关系等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A.1种B.2种C.3种D.4种【分析】根据翻身后饼也能正好落在“锅”中,考虑把三角形分成两个等腰三角形即可.【解答】解:如图,第一个沿直角三角形作斜边上的中线切,第二个三角形在钝角处沿20°角的另一边切,第三个三角形在60°角处沿20°角的另一边切,第四个三角形无法分成两个等腰三角形,所以,她的选择最多有3种.故选:C.【点评】本题考查了全等三角形的应用,判断出翻折后正好能够重合是三角形是等腰三角形是解题的关键.二.填空题(共7小题)8.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE =CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为50m.【分析】利用“SAS”证明△ABC≌△EDC,然后根据全等三角形的性质得AB=DE=50m.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=50.答:锥形小山两端A、B的距离为50m.故答案是:50.【点评】本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.9.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是3s.【分析】根据题意证明∠C=∠DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,再利用时间=路程÷速度加上即可.【解答】解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠C=90°,∴∠C=∠DMB.在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(AAS),∴AC=BM=3m,∵该人的运动速度为1m/s,∴他到达点M时,运动时间为3÷1=3(s).故答案为3.【点评】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt△ACM≌Rt△BMD.10.如图,小强利用全等三角形的知识测量池塘两段M、N的距离.如果△PQO≌△NMO,则只需测出其长度的线段是PQ.【分析】根据全等三角形对应边相等可得PQ=MN.【解答】解:∵△PQO≌△NMO,∴PQ=MN,故答案为:PQ.【点评】此题主要考查了全等三角形的性质的应用,关键是掌握全等三角形的性质.11.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为8厘米.【分析】连接AB,CD,根据O为AD和CB的中点,且∠COD=∠AOB即可判定△COD ≌△OAB,即可求得CD的长度.【解答】解:连接AB,CD,O为AD和CB的中点,∴OC=OB,OA=OD,∵∠COD=∠AOB∴△OCD≌△OAB,即CD=AB,故CD=AB=8cm,故答案为8.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OCD≌△OAB是解题的关键.12.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a,CE=b.则两条凳子的高度之和为a+b.【分析】利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,则∠DAC=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),故DC=BE=a,AD=CE=b,则两条凳子的高度之和为:a+b.故答案为:a+b.【点评】此题主要考查了全等三角形的判定与性质,得出△ACD≌△CBE是解题关键.13.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是SSS.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.14.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD 垂足为D.已知AB=20米.根据上述信息,标语CD的长度为20m.【分析】根据两平行线间的距离相等得到OB=OD,再由一对直角相等,一对内错角相等,利用ASA得到三角形AOB与三角形COD全等,利用全等三角形对应边相等即可求出CD的长.【解答】解:∵AB∥OH∥CD,相邻两平行线间的距离相等,∴OB=OD,∵OB⊥AB,OD⊥DC,∴∠ABO=∠CDO=90°,在△ABO和△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20m,故答案为:20【点评】此题考查了全等三角形的应用,垂直定义,以及平行线间的距离,熟练掌握全等三角形的判定与性质是解本题的关键.三.解答题(共2小题)15.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.16.如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过7分钟后,它们分别爬行到D、E处,设DC与BE的交点为点F.(1)求证:△ACD≌△CBE;(2)蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请证明你的结论.【分析】(1)根据SAS即可判断出△ACD≌△CBE;(2)根据△ACD≌△CBE,可知∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD.【解答】(1)证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD;∠A=∠BCE=60°,在△ACD与△CBE中,,∴△ACD≌△CBE(SAS);(2)解:DC和BE所成的∠BFC的大小不变.理由如下:∵△ACD≌△CBE,∴∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD=120°.【点评】本题考查全等三角形的应用及等边三角形的性质,难度适中,求解第二问时找出∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD是关键.。
成都市实验外国语学校七年级数学下册第十单元《数据的收集整理与描述》经典练习卷(答案解析)

一、选择题1.下列调查中,适合采用全面调查的是()A.对中学生目前睡眠质量的调查B.开学初,对进入我校人员体温的测量C.对我市中学生每天阅读时间的调查D.对我市中学生在家学习网课情况的调查2.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策3.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量4.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生-的人数最少③这次调查阅读所用时间在2.53h-的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③5.下列调查中,适宜采用全面调查的是()A.调查全国初中学生视力情况B.了解某班同学“三级跳远”的成绩情况C.调查某品牌汽车的抗撞击情况D.调查2019年央视“主持人大赛”节目的收视率6.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~137.某学校对七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如右图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有()人.A.8 B.10 C.6 D.98.以下问题,不适合采用全面调查方式的是()A.调查全班同学对“郑万高铁”的了解程度B.了解我市中学生的近视率C.疫情期间对国外入境人员的健康状况检查D.旅客上飞机前的安检9.下列调查中,适宜采用全面调查方式的是()A.调查某河的水质情况B.了解一批手机电池的使用寿命C.调查某品牌食品的色素含量是否达标D.了解全班学生参加社会实践活动的情况10.将50个数据分成5组列出频数分布表,其中第二组的频数为15,则第二组的频率为()A.0.28 B.0.3 C.0.4 D.0.211.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:()A.0.5 B.0.6 C.5 D.612.下列调查方式,你认为最合适的是()A.要调查一批灯管的使用寿命,采用全面调查的方式B.扬泰机场对旅客进行登机前安检,采用抽样调查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.试航前对我国国产航母各系统的检查,采用抽样调查方式13.下列调查中,适合用普查方法的是()A.了解某班学生对“北京精神”的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率D.了解一批科学计算器的使用寿命14.有下列调查:其中不适合普查而适合抽样调查的是()①了解地里西瓜的成熟程度;②了解某班学生完成 20 道素质测评选择题的通过率;③了解一批导弹的杀伤范围;④了解迁西县中学生睡眠情况.A.①②③B.①②④C.①③④D..②③④15.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批袋装食品是否含有防腐剂B.对一批导弹的杀伤半径的调查C.了解某校学生的身高情况D.对重庆市居民生活垃圾分类情况的调查二、填空题16.为了了解中学生的身体发育情况,对第二中学同年龄的80名学生的身高进行了测量,经统计,身高在150.5~155.5厘米之间的频数为5,那么这一组的频率是____.17.某烟花爆竹厂从5000件同类产品中随机抽取了100件进行质检,发现其中有3件不合格,估计该厂这5000件产品中不合格品约为_______件.18.为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是_____.19.为了考察我区七年级学生数学知识与能力测试的成绩,从中抽取30本试卷,每本试卷30份,在这个问题中样本容量是_____________.20.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C出现的频率是__________.21.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示的统计图,则该班参加乒乓球和羽毛球项目的人数总和为__________.22.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.则图中“芒果味”所在扇形的圆心角为____.23.为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计,绘制了扇形统计图,根据图中提供的信息,回答下列问题:(1)阅读4小时对应扇形图中的a的值为__________;(2)在扇形统计图中,阅读3小时对应扇形图的圆心角的大小为__________(度).24.为最大程度减少因疫情延迟开学带来的影响,实现“离校不离教、停课不停学”,我市全面开展了形式多样的“线上教学”活动.为了解教学效果,某校对“线上教学”的满意度进行了抽样调查,将抽样调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息,计算表示“非常满意”和“满意”的总人数为_____.25.新冠肺炎疫情暴发后,一场同时间赛跑、与病魔较量的战役随即打响.在疫情防控一线,除了广大医务工作者义无反顾、日夜奋战之外,在另一条战线上,科研人员也在加班加点、紧急攻关.全国科技战线积极响应党中央号召,科技、卫健等12个部门组成科研攻关组,短短一个月的时间内就取得了积极进展.3月13日0﹣24时,31个省(自治区、直辖市)和新疆生产建设兵团新增确诊病例11例(数据不含港澳台),新增疑似病例17例(数据不含港澳台).如图是根据国家卫健委关于新型冠状病毒肺炎通报的数据(数据不含港澳台)绘制的统计图:根据以上信息,回答下列问题:(1)下列推断合理的是_______.①2月15日武汉新增确诊病例约为1500例;②从2月23日起到3月13日止,武汉每日新增确诊病例都在500例以下;③从2月23日起到3月13日止,全国每日新增疑似病例逐渐减少.④3月13日湖北新增疑似病例不超过17例.(2)结合本题的信息及当前防疫形势,说说你的感受.26.某校为了解九年级学生的体重情况,随机调查了100名学生,其中体重低于60kg的学生有72人,若该校九年级共有1000人,根据所学的统计知识可以估计该校体重低于60kg的学生大约有____________________人.三、解答题27.某校初二年段进行了中考体育项目长跑的模拟测试,从中抽取部分学生的成绩等级进行统计,根据成绩等级绘制成如图所示的两个统计图(不完整).请结合统计图完成下列各题:(1)此次共抽取了多少名学生的成绩?(2)请把条形统计图补充完整;(3)求在扇形统计图中,成绩“合格”类所对应的圆心角度数;28.某市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)请将条形统计图补充完整;(3)如果本市有8万名初中学生,那么在试卷评讲课中,“独立思考”与“讲解题目”的学生共有多少万人?29.为了解市民对全市创文工作的满意程度,岳阳某中学数学兴趣小组在岳阳市城区范围内进行了抽样调查,将调查结果分为非常满意,满意,一般,不满意四类,回收、整理好全部问卷后,绘制了两幅不完整的统计图1、图2,结合图中信息,回答:(1)此次共调查了多少名市民?(2)将两幅统计图中不完整的部分补充完整;(3)在扇形统计图中,一般所对的圆心角是多少度?(4)若我市城区共有480000人口,请估算我市对创文工作“非常满意和满意”的市民人数.30.某中学对全校2000名学生进行“校园安全知识”的教育活动,从2000名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了如图1、图2所示的两幅不完整的统计图.请结合图中所给信息解答下列问题:(1)求本次抽查的学生共有多少人?(2)将条形统计图和扇形统计图补充完整;(3)求扇形统计图中A等级所在扇形圆心角的度数.(4)估计全校D等级的学生有多少人?。
最新人教版七年级数学下册第十章数据的收集、整理与描述题单元检测试卷(含答案解析)

人教版七年级下册数学第十章数据的收集、整理与描述单元练习卷一、填空题(本大题共10小题,每小题3分,共30分)1.幸福村有188个家庭,对这188个家庭的教育支出情况进行抽样调查,调查的总体为________,个体为__________.2.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了__________调查方式.(选填“普查”或“抽样调查”)3.要让你的家长理解你在一学期中经过努力使自己某一学科的成绩逐步提高,最好将这一学期该科目几次测验的成绩用__________统计图表示出来.4.一组数据最大值与最小值的差为80,若组距为9,则分成的组数为__________.5.在一次关于旅游景点接待游客调查中,随机抽取了200名外地来北京旅游的游客进行调查,并绘制了扇形图,代表第一站去故宫的扇形圆心角是108°,则被调查游客中,第一站选择故宫的人数为_________.6.八年级(2)班检查了全班所有同学的身高、体重、血压、脉搏的情况,收集了有关数据,使用________来表示这些数据是最恰当的.7.一枚骰子,六个面上分别写着数字1,2,3,4,5,6,小明投掷6次,正面朝上的数字出现的结果是:3出现2次,4出现1次,5出现3次,那么5出现的频率是_______. 8.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有__________名学生是乘车上学的.9.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你根据所学的统计知识,找出其中错误的原因__________.10.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.下面调查统计中,适合做普查的是A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话12.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是A.这批电视机B.这批电视机的寿命C.抽取的100台电视机的寿命D.10013.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况14.为了了解某校学生的每日运动量,收集数据正确的是A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校一定数量的学生每日的运动量15.如图,所提供的信息正确的是A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多16.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成A.10组B.9组C.8组D.7组17.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有A.12 B.48 C.72 D.9618.在全班45人中进行了“你最喜爱的电视节目”的调查活动,喜爱电视剧的人数为18人,喜爱动画片的人数为15人,喜爱体育节目的人数为10人,则下列说法正确的是A.喜爱电视剧的人数的频率是1818+15+10B.喜爱电视剧的人数的频率是18 45C.喜爱动画片的人数的频率是18 18+10D.喜爱体育节目的人数的频率是1815 14545 --19.某同学按照某种规律写了下面一串数字:122,122,122,122,122,……,当写到第93个数字时,1出现的频数是A.33 B.32 C.31 D.3020.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.李娟同学为考察学校的用水情况,她在4月份一周内同一时刻连续记录了水表的示数,记录结果如下表:李娟估计学校4月份的用水量是多少吨?22.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:(1)这次共抽取__________名学生;(2)a=__________,b=__________.23.图①、图②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比较每个年级男女生的人数?(2)请按该校各年级学生人数在图③中画出扇形统计图.24.图为某校九年级100名中学生的中考数学成绩的频数分布直方图,回答下列问题(每组可含最低值,不含最高值,60分或60分以上为及格).(1)在这100名学生中,人数最多的一组频数是_________,该组的人数是_________.(2)全校考生数学成绩的及格率为_________.(3)全校有_________考生的成绩在80分以上.25.甲、乙两人在某公司做推销员,推销某品牌洗衣机,他们在1~8月份的销售情况如下表所示:(1)在右边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息.26.为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择且只选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整.27.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为__________;(2)若2019年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?28.为了解某县2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有__________名;(2)表中x,y和m所表示的数分别为:x=__________,y=__________,m=__________;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计2019年该县5400名初中毕业生实验考查成绩为D类的学生人数.参考答案1.【答案】幸福村内188个家庭的教育支出情况;幸福村内每个家庭的教育支出情况 2.【答案】抽样调查 3.【答案】折线 4.【答案】9 5.【答案】60名6.【答案】频数分布直方图 7.【答案】50% 8.【答案】3129.【答案】错误的原因可能是样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;只要答对其中一项即可. 10.【答案】2040 11.【答案】D 12.【答案】C 13.【答案】D 14.【答案】D 15.【答案】B 16.【答案】A 17.【答案】C 18.【答案】B 19.【答案】C 20.【答案】B 21.【答案】140吨22.【答案】(1)观察统计表知:145155x ≤<小组的频数20,频率0.2,所以学生总数为20÷0.2=100(名);故答案为:100. (2)a =100×0.45=45,b =30÷100=0.3,故答案为:100,45,0.3. 23.【答案】(1)图2能更好地反映学校每个年级学生的总人数.图1能更好地比较学校每个年级男女生的人数.(2)从2中得出七、八年级的总人数都为800人,九年级为300人 ∴总人数=800+800+300=1900,七年级占总人数的比例=800÷1900=42.1%表示七年级的扇形的圆心角=42.1%×360°=151.56°八年级占总人数的比例=800÷1900=42.1%表示八年级的扇形的圆心角=42.1%×360°=151.56°九年级占总人数的比例=300÷1900=15.8%表示九年级的扇形的圆心角=15.8%×360°=56.88°.24.【答案】(1)根据频数分布直方图可知:70~80分的这一组人数最多,该组频数是40,人数是40;(2)全校考生数学成绩的及格率为:10010100%90% 100-⨯=;(3)成绩在80分以上的人数为:25+5=30(人).25.【答案】(1)先描出甲的8个月销售量的各点,再将各点用线段连接起来就是甲的折线统计图,同理,可制的乙的折线统计图;如图所示:(2)根据(1)中的折线图,写出2条关于甲乙两人在这8个月中的销售状况的信息:①甲销量较稳定;②甲最多销售8台/月,乙最多9台/月.其他合理说法也可.26.【答案】(1)本次调查的学生总人数是70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1–(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60,手工编织的人数:10%×200=20.补全条形统计图如图所示.27.【答案】(1)根据题意得:360°×(1–40%–25%–20%)=54°;故答案为:54°;(2)根据题意得:30000×8001500=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.28.【答案】(1)60÷30%=200(名);(2)x=200×50%=1人教版七年级下册数学第十章数据的收集、整理与描述单元练习卷一、填空题(本大题共10小题,每小题3分,共30分)1.幸福村有188个家庭,对这188个家庭的教育支出情况进行抽样调查,调查的总体为________,个体为__________.2.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了__________调查方式.(选填“普查”或“抽样调查”)3.要让你的家长理解你在一学期中经过努力使自己某一学科的成绩逐步提高,最好将这一学期该科目几次测验的成绩用__________统计图表示出来.4.一组数据最大值与最小值的差为80,若组距为9,则分成的组数为__________.5.在一次关于旅游景点接待游客调查中,随机抽取了200名外地来北京旅游的游客进行调查,并绘制了扇形图,代表第一站去故宫的扇形圆心角是108°,则被调查游客中,第一站选择故宫的人数为_________.6.八年级(2)班检查了全班所有同学的身高、体重、血压、脉搏的情况,收集了有关数据,使用________来表示这些数据是最恰当的.7.一枚骰子,六个面上分别写着数字1,2,3,4,5,6,小明投掷6次,正面朝上的数字出现的结果是:3出现2次,4出现1次,5出现3次,那么5出现的频率是_______. 8.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有__________名学生是乘车上学的.9.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你根据所学的统计知识,找出其中错误的原因__________.10.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.下面调查统计中,适合做普查的是A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话12.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是A.这批电视机B.这批电视机的寿命C.抽取的100台电视机的寿命D.10013.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况14.为了了解某校学生的每日运动量,收集数据正确的是A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校一定数量的学生每日的运动量15.如图,所提供的信息正确的是A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多16.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成A.10组B.9组C.8组D.7组17.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有A.12 B.48 C.72 D.9618.在全班45人中进行了“你最喜爱的电视节目”的调查活动,喜爱电视剧的人数为18人,喜爱动画片的人数为15人,喜爱体育节目的人数为10人,则下列说法正确的是A.喜爱电视剧的人数的频率是1818+15+10B.喜爱电视剧的人数的频率是18 45C.喜爱动画片的人数的频率是18 18+10D.喜爱体育节目的人数的频率是1815 14545 --19.某同学按照某种规律写了下面一串数字:122,122,122,122,122,……,当写到第93个数字时,1出现的频数是A.33 B.32 C.31 D.3020.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.李娟同学为考察学校的用水情况,她在4月份一周内同一时刻连续记录了水表的示数,记录结果如下表:李娟估计学校4月份的用水量是多少吨?22.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:(1)这次共抽取__________名学生;(2)a=__________,b=__________.23.图①、图②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比较每个年级男女生的人数?(2)请按该校各年级学生人数在图③中画出扇形统计图.24.图为某校九年级100名中学生的中考数学成绩的频数分布直方图,回答下列问题(每组可含最低值,不含最高值,60分或60分以上为及格).(1)在这100名学生中,人数最多的一组频数是_________,该组的人数是_________.(2)全校考生数学成绩的及格率为_________.(3)全校有_________考生的成绩在80分以上.25.甲、乙两人在某公司做推销员,推销某品牌洗衣机,他们在1~8月份的销售情况如下表所示:(1)在右边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息.26.为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择且只选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整.27.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为__________;(2)若2019年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?28.为了解某县2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有__________名;(2)表中x,y和m所表示的数分别为:x=__________,y=__________,m=__________;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计2019年该县5400名初中毕业生实验考查成绩为D 类的学生人数.参考答案1.【答案】幸福村内188个家庭的教育支出情况;幸福村内每个家庭的教育支出情况2.【答案】抽样调查3.【答案】折线4.【答案】95.【答案】60名6.【答案】频数分布直方图7.【答案】50%8.【答案】3129.【答案】错误的原因可能是样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;只要答对其中一项即可.10.【答案】204011.【答案】D12.【答案】C13.【答案】D14.【答案】D15.【答案】B16.【答案】A17.【答案】C18.【答案】B19.【答案】C20.【答案】B21.【答案】140吨22.【答案】(1)观察统计表知:145155x ≤<小组的频数20,频率0.2,所以学生总数为20÷0.2=100(名);故答案为:100. (2)a =100×0.45=45,b =30÷100=0.3,故答案为:100,45,0.3. 23.【答案】(1)图2能更好地反映学校每个年级学生的总人数.图1能更好地比较学校每个年级男女生的人数.(2)从2中得出七、八年级的总人数都为800人,九年级为300人∴总人数=800+800+300=1900,七年级占总人数的比例=800÷1900=42.1% 表示七年级的扇形的圆心角=42.1%×360°=151.56° 八年级占总人数的比例=800÷1900=42.1% 表示八年级的扇形的圆心角=42.1%×360°=151.56° 九年级占总人数的比例=300÷1900=15.8% 表示九年级的扇形的圆心角=15.8%×360°=56.88°.24.【答案】(1)根据频数分布直方图可知:70~80分的这一组人数最多,该组频数是40,人数是40;(2)全校考生数学成绩的及格率为:10010100%90%100-⨯=; (3)成绩在80分以上的人数为:25+5=30(人).25.【答案】(1)先描出甲的8个月销售量的各点,再将各点用线段连接起来就是甲的折线统计图,同理,可制的乙的折线统计图;如图所示:(2)根据(1)中的折线图,写出2条关于甲乙两人在这8个月中的销售状况的信息:①甲销量较稳定;②甲最多销售8台/月,乙最多9台/月.其他合理说法也可.26.【答案】(1)本次调查的学生总人数是70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1–(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60,手工编织的人数:10%×200=20.补全条形统计图如图所示.27.【答案】(1)根据题意得:360°×(1–40%–25%–20%)=54°;故答案为:54°;(2)根据题意得:30000×8001500=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.28.【答案】(1)60÷30%=200(名);(2)x=200×50%=1七年级下册(人教版)数学单元检测卷:第十章数据的收集、整理与描述一、填空题1.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是________.(填序号,答案格式如:“①②③”)①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.2.下列调查类型,是全面调查的有______,是抽样调查的有________.(填写序号)(1)电视机厂估计出厂电视机优等率,随机打开产品5%的电视机进行检测.(2)我国在2003年防治“非典”期间每日公布的疫情,收集有关数据.(3)某火车站要了解春运期间的客流量,从中随机的抽取了4天的客流量.3.文娱委员随机调查班级里7天内,每天收听综艺或音乐节目的人数,制成折线统计图.如图,判断收听人数比较稳定的是________节目.4.为了了解七年级同学每天的睡眠时间,在七年级的10个班中,每班抽5名学生做调查,这一调查中,总体是指____________________,样本是指____________________.5.为了保证婴幼儿的饮食安全,质检部门准备对某品牌罐装牛奶进行质量检测,这种检测适合用的调查是________________.(抽样调查或全面调查)6.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题中的样本是________________.7.某市要了解该市八年级学生的身高情况,在全市八年级学生中抽取了1 000名学生进行测量,在这个问题中,个体是______________________,样本容量是________.8.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.二、选择题9.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④调查运动员兴奋剂的使用情况,其中适合采用抽样调查的是()A.①B.②C.③D.④10.为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒的心跳次数再乘以6,你认为哪位同学的方法更具有代表性()A.甲同学B.乙同学C.两种方法都具有代表性D.两种方法都不合理11.为了了解2016年我县九年级6 023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是()A.2016年我县九年级学生是总体B.每一名九年级学生是个体C.200名九年级学生是总体的一个样本D.样本容量是20012.我市属国家珍稀动物“大鲵”保护地,科考人员某日在其中一个保护区捕捞6只大鲵,并在它们身上都做了标记后放回,几天后,在该保护区又捕捞18只大鲵,其中2只身上有标记,据此估计该保护区约有大鲵多少只()A.54B.24C.32D.10813.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思C.你给我回答到底喜不喜欢猫呢D.请问你家有哪些使用电池的电器14.为了从甲、乙两名学生中选拔一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩(单位:分)如下:若测验分数在85分(含85分)以上的为优秀,则甲、乙的优秀率分别为()A.60%,40%B.50%,50%C.50%,40%D.60%,50%15.下列调查中,最适合采用全面调查方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查16.下列调查中,适合全面调查的是()A.一批手机电池的使用寿命B.你所在学校的男、女同学的人数C.中国公民保护环境的意识D.端午节期间泰兴市场上粽子的质量三、解答题17.在下列调查中,哪些适合做全面调查?哪些适合做抽样调查?(1)了解你所在班级的每个学生穿几号鞋;(2)了解节能灯的使用寿命;(3)了解我市八年级学生的视力情况;(4)了解实验田里水稻的穗长.18.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?19.由于天气逐渐转凉,同学们都订了厚厚校服冬装,学校为保证厂家生产的冬装质量冬装是否合格,在发放前对冬装进行了抽样调查.已知运来的冬装一共有10包,每包有10打,每打有12套.要求样本容量为100.(1)请你帮学校设计一个调查方案,并指出总体、个体、样本;(2)通过调查,冬装质量是合格的,但发放后未了解学生的满意程度,请你再设计一个方案,调查学生的满意程度.20.某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:。
【3套打包】哈尔滨市七年级数学下册第十章数据的收集、整理与描述题单元测试卷(含答案)

人教版七年级下册数学第十章数据的收集、整理与描述单元练习卷一、填空题(本大题共10小题,每小题3分,共30分)1.幸福村有188个家庭,对这188个家庭的教育支出情况进行抽样调查,调查的总体为________,个体为__________.2.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了__________调查方式.(选填“普查”或“抽样调查”)3.要让你的家长理解你在一学期中经过努力使自己某一学科的成绩逐步提高,最好将这一学期该科目几次测验的成绩用__________统计图表示出来.4.一组数据最大值与最小值的差为80,若组距为9,则分成的组数为__________.5.在一次关于旅游景点接待游客调查中,随机抽取了200名外地来北京旅游的游客进行调查,并绘制了扇形图,代表第一站去故宫的扇形圆心角是108°,则被调查游客中,第一站选择故宫的人数为_________.6.八年级(2)班检查了全班所有同学的身高、体重、血压、脉搏的情况,收集了有关数据,使用________来表示这些数据是最恰当的.7.一枚骰子,六个面上分别写着数字1,2,3,4,5,6,小明投掷6次,正面朝上的数字出现的结果是:3出现2次,4出现1次,5出现3次,那么5出现的频率是_______. 8.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有__________名学生是乘车上学的.9.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你根据所学的统计知识,找出其中错误的原因__________.10.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.下面调查统计中,适合做普查的是A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话12.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是A.这批电视机B.这批电视机的寿命C.抽取的100台电视机的寿命D.10013.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况14.为了了解某校学生的每日运动量,收集数据正确的是A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校一定数量的学生每日的运动量15.如图,所提供的信息正确的是A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多16.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成A.10组B.9组C.8组D.7组17.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有A.12 B.48 C.72 D.9618.在全班45人中进行了“你最喜爱的电视节目”的调查活动,喜爱电视剧的人数为18人,喜爱动画片的人数为15人,喜爱体育节目的人数为10人,则下列说法正确的是A.喜爱电视剧的人数的频率是1818+15+10B.喜爱电视剧的人数的频率是18 45C.喜爱动画片的人数的频率是18 18+10D.喜爱体育节目的人数的频率是1815 14545 --19.某同学按照某种规律写了下面一串数字:122,122,122,122,122,……,当写到第93个数字时,1出现的频数是A.33 B.32 C.31 D.3020.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.李娟同学为考察学校的用水情况,她在4月份一周内同一时刻连续记录了水表的示数,记录结果如下表:李娟估计学校4月份的用水量是多少吨?22.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:(1)这次共抽取__________名学生;(2)a=__________,b=__________.23.图①、图②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比较每个年级男女生的人数?(2)请按该校各年级学生人数在图③中画出扇形统计图.24.图为某校九年级100名中学生的中考数学成绩的频数分布直方图,回答下列问题(每组可含最低值,不含最高值,60分或60分以上为及格).(1)在这100名学生中,人数最多的一组频数是_________,该组的人数是_________.(2)全校考生数学成绩的及格率为_________.(3)全校有_________考生的成绩在80分以上.25.甲、乙两人在某公司做推销员,推销某品牌洗衣机,他们在1~8月份的销售情况如下表所示:(1)在右边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息.26.为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择且只选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整.27.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为__________;(2)若2019年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?28.为了解某县2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有__________名;(2)表中x,y和m所表示的数分别为:x=__________,y=__________,m=__________;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计2019年该县5400名初中毕业生实验考查成绩为D类的学生人数.参考答案1.【答案】幸福村内188个家庭的教育支出情况;幸福村内每个家庭的教育支出情况 2.【答案】抽样调查 3.【答案】折线 4.【答案】9 5.【答案】60名6.【答案】频数分布直方图 7.【答案】50% 8.【答案】3129.【答案】错误的原因可能是样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;只要答对其中一项即可. 10.【答案】2040 11.【答案】D 12.【答案】C 13.【答案】D 14.【答案】D 15.【答案】B 16.【答案】A 17.【答案】C 18.【答案】B 19.【答案】C 20.【答案】B 21.【答案】140吨22.【答案】(1)观察统计表知:145155x ≤<小组的频数20,频率0.2,所以学生总数为20÷0.2=100(名);故答案为:100. (2)a =100×0.45=45,b =30÷100=0.3,故答案为:100,45,0.3. 23.【答案】(1)图2能更好地反映学校每个年级学生的总人数.图1能更好地比较学校每个年级男女生的人数.(2)从2中得出七、八年级的总人数都为800人,九年级为300人 ∴总人数=800+800+300=1900,七年级占总人数的比例=800÷1900=42.1%表示七年级的扇形的圆心角=42.1%×360°=151.56°八年级占总人数的比例=800÷1900=42.1%表示八年级的扇形的圆心角=42.1%×360°=151.56°九年级占总人数的比例=300÷1900=15.8%表示九年级的扇形的圆心角=15.8%×360°=56.88°.24.【答案】(1)根据频数分布直方图可知:70~80分的这一组人数最多,该组频数是40,人数是40;(2)全校考生数学成绩的及格率为:10010100%90% 100-⨯=;(3)成绩在80分以上的人数为:25+5=30(人).25.【答案】(1)先描出甲的8个月销售量的各点,再将各点用线段连接起来就是甲的折线统计图,同理,可制的乙的折线统计图;如图所示:(2)根据(1)中的折线图,写出2条关于甲乙两人在这8个月中的销售状况的信息:①甲销量较稳定;②甲最多销售8台/月,乙最多9台/月.其他合理说法也可.26.【答案】(1)本次调查的学生总人数是70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1–(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60,手工编织的人数:10%×200=20.补全条形统计图如图所示.27.【答案】(1)根据题意得:360°×(1–40%–25%–20%)=54°;故答案为:54°;(2)根据题意得:30000×8001500=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.28.【答案】(1)60÷30%=200(名);(2)x=200×50%=1人教版数学七年级下册单元检测:第十章数据的收集、整理与描述人教版七年级数学下册第十章数据的收集、整理与描述单元测试题一、填空题1.某校为了了解700名八年级学生是视力情况,从中抽取了100名学生进行测试,其中总体为______________,样本为______________,样本容量______.2.青海湖自然保护区的工作人员为了估计区内白天鹅的只数,先捕捉了30只白天鹅,并在每只白天鹅的脚上套了铁环做记号后放回,一个月后,又捕捉了100只天鹅,发现其中有脚环的白天鹅5只,据此可估算该保护区内大约有白天鹅________只.3.为了了解全班同学对新闻、体育、动画、娱乐和戏曲五类电视节目喜爱情况,文艺委员做了统计调查,调查结果如图所示,那么,喜爱戏曲节目的同学仅占全班总人数的________(用百分数表示)4.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是________.(填序号,答案格式如:“①②③”)①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.5.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.二、选择题(每小题只有一个正确答案)6.为了检查一批皮鞋的质量,从中抽取了50双作质量检查,在此问题中数目50是( )A.样本 B.样本容量 C.总体 D.个体7.某学校将为初一学生开设A、B、C、D、E、F共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整).根据图表提供的信息,下列结论错误的是( )A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少8.某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A 踢毽子,B 篮球,C 跳绳,D 乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )A. 240 B. 120 C. 80 D. 409.为了清楚地反映部分占总体的百分比是多少,我们常选用的统计图是( )A.扇形图 B.折线图 C.条形图 D.直方图10.为了了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是( )A. 1月 B. 4月 C. 5月 D. 6月11.我市属国家珍稀动物“大鲵”保护地,科考人员某日在其中一个保护区捕捞6只大鲵,并在它们身上都做了标记后放回,几天后,在该保护区又捕捞18只大鲵,其中2只身上有标记,据此估计该保护区约有大鲵多少只( )A. 54 B. 24 C. 32 D. 10812.用下面的方式获取的数据可信度比较低的是( )A.社会上的传闻 B.从《中国青年报》上摘录的C.看电视新闻得到的 D.小组实地考察或测量得到的13.为开展阳光体育活动,某校组织了八年级五个班的足球赛,为更清楚地表示出首轮比赛中各班的总进球数,我们最好选择( )A.折线统计图 B.条形统计图 C.扇形统计图 D.以上三种都可以14.为了解某中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出如图所示的频数分布直方图(每组数据包含最大值,不包含最小值),估计该校这300名男生的身高满足:164.5 cm<身高≤174.5 cm的人数约有( )A. 12 B. 16 C. 28 D. 16815.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A.计算机行业好于其它行业 B.贸易行业好于化工行业C.机械行业好于营销行业 D.建筑行业好于物流行业16.下列调查中,适合做抽样调查的有( )①了解一批炮弹的命中精度;②调查全国中学生的上网情况;③审查某文章中的错别字;④考查某种农作物的长势.A. 1个 B. 2个 C. 3个 D. 4个17.某校对九年级(1)班、(2)班同学各50人参加体育活动的情况进行了调查,结果如图所示,下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多 B.喜欢羽毛球的人数(2)班比(1)班多C.喜欢足球的人数(1)班比(2)班多 D.喜欢篮球的人数(1)班比(2)班多三、解答题18.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?19.某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市次项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取200名居民;B.从一个城镇的不同住宅楼中随机选取200名居民;C.从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是________(选择).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图(每个范围内含最小值,不含最大值),在这个调查中,这200名居民每天锻炼2小时以上(包括2小时)的人数是多少.(3)若该市有100万人,请你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.20.为确保学生上学安全,某校打算采购一批校车.为此,学校在全校300名走读学生中对购买校车的态度进行了一次抽样调查,并根据抽样调查情况绘制了如下统计图.被调查的学生对购买校车有四种态度:A.非常希望,决定以后就坐校车上学B.希望,以后也可能坐校车上学C.随便,反正不会坐校车上学D.反对,因家离学校近不会坐校车上学(1)由图①知A所占的百分比为________,本次抽样调查共调查了________名走读学生,并完成图②;(2)请你估计该校走读学生中至少会有多少名学生非常希望乘坐校车上学(即A态度的学生人数).21.小龙的妈妈让小龙去买一盒火柴,并叮嘱小龙,一定要试试火柴是否好用.小龙回家后,高兴地告诉妈妈:“火柴好用,我每根都试过了.”(1)小龙采取的方法是哪种调查?(2)你认为小龙采取的方法是否合适?为什么?22.近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书教育活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:最喜爱的一种活动统计表(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度?(2)如果这所中学共有学生3 800名,那么请你估计最喜爱征文活动的学生人数.答案解析1. 700名八年级学生的视力情况从中抽取100名学生的视力情况1002. 6003. 6%4. ③5. 276. B7. D8. D9. A10. B11. A12. A13. B14. D15. D16. C17. D18. 解:(1)坐姿不良所占的百分比为1-30%-35%-15%=20%,被抽查的学生总人数为100÷20%=500(名),站姿不良的学生人数500×30%=150(名),三姿良好的学生人数500×15%=75(名),补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5×(20%+30%)=2.5(万人),答:全市初中生中,坐姿和站姿不良的学生有2.5万人.19. 解:(1)A、B两种调查方式具有片面性,故C比较合理,故答案为C.(2)由条形图可得,200名居民每天锻炼2小时以上(包括2小时)的人数是52+38+16=106(人);(3)这个调查有不合理的地方.在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.(只要说法正确即可)20. 解:(1)由题意可得,图①知A所占的百分比为1-30%-20%-10%=40%,本次抽样调查的学生有20÷40%=50(人),B态度的学生有50×30%=15(人),故答案为40%,50,补全的图②如图所示;(2)由题意可得,300×40%=120(人),即估计该校走读学生中至少会有120名学生非常希望乘坐校车上学.21. (1)小龙采取的是全面调查;(2)小龙采取的方法不合适,因为具有破坏性,所以应用抽样调查.22. 解:(1)根据题意得39÷13%=300(名),则“讲故事”所占的比例为30÷300×100%=10%,所以扇形统计图中“讲故事”部分的圆心角是10%×360°=36°,则在这次抽样调查中,一共调查了300名学生,扇形统计图中“讲故事”部分的圆心角是36°.(2)根据题意得3 800×20%=760(名),则最喜爱征文活动的学生人数为760名.人教版七年级数学下册第十章数据的收集、整理与描述综合提升卷人教版七年级数学下册第十章数据的收集、整理与描述单元测试题第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.动物园中有熊猫、孔雀、大象、梅花鹿四种可爱的动物,为了解本班同学喜欢哪种动物的人最多,需要进行调查,则调查的对象是()A.本班的每一名同学B.熊猫、孔雀、大象、梅花鹿C.同学们的选票D.记录下来的数据2.下列调查中,最适合采用全面调查的是()A.调查一批汽车的使用寿命B.调查春节联欢晚会的收视率C.调查某航班的旅客是否携带违禁物品D.调查全国七年级学生的视力情况3.某地区有38所中学,其中七年级学生共6858名.为了了解该地区七年级学生每天体育锻炼的时间,请你运用所学的统计知识,将解决上述问题所要经历的以下几个主要步骤进行排序:①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.其中正确的是()A.①②③④⑤B.②①③④⑤C.②①④③⑤D.②①④⑤③4.有40个数据,其中最大值为35,最小值为14,若取组距为4,则组数是()A.4 B.5 C.6 D.75.某中学为了了解2018年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中随机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A.1200名学生B.200名学生C.1200名学生的期末数学成绩D.200名学生的期末数学成绩6.下列调查中,选取的样本具有代表性的是()A.为了解某地区居民的防火意识,对该地区的初中生进行调查B.为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C.为了解某商场的平均日营业额,选在周六进行调查D.为了解全校学生课外小组的活动情况,对该校的男生进行调查7.某校七(1)班的全体同学最喜欢的球类运动用如图10-T-1所示的统计图来表示,下列说法正确的是()A.从图中可以直接看出最喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来最喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系图10-T-1 8.为了筹备班级毕业联欢会,班长对全班50名同学喜欢吃哪几种水果作了民意调查,小明将班长的统计结果绘制成如图10-T-2所示的统计图,并得出以下四个结论:①一个人可以喜欢吃几种水果;②喜欢吃葡萄的人最多;③喜欢吃苹果的人数是喜欢吃梨的人数的3倍;④喜欢吃香蕉的人数占全班总人数的20%.其中正确的有()图10-T-2A.1个B.2个C.3个D.4个9.某班有48名学生,在一次数学测验中,统计他们的成绩,分数为正整数,绘制出如图10-T-3所示的频数分布直方图(横轴表示分数,纵轴表示频数),从左到右的小长方形的高度之比是1∶3∶6∶4∶2,则由图可知,其中分数在70.5~80.5之间的人数是()图10-T-3A.9 B.18 C.12 D.610.七年级(1)班班长统计去年1~8月份“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图10-T-4所示的折线统计图,与上月相比较,阅读数量变化率最大的月份是()图10-T-4A.2月B.5月C.6月D.7月二、填空题(每小题3分,共18分)11.为了了解某地区3500名初中毕业生的数学成绩,从中抽出20本试卷,每本30份,其中个体是______________________.12.已知一个样本中的50个数据分别落在五个小组内,第一、三、四、五组数据的个数分别为2,8,10,20,则第二小组的频数为__________.13.有下列说法:①审查书稿有哪些科学性错误适合全面调查;②了解全国足球迷的健康状况适合抽样调查;③为了调查一个省的环境污染情况,调查了该省省会城市的环境污染情况,利用此调查结果来反映该省的环境污染情况;④某环保网站正在对“支持商店使用环保购物袋”进行在线调查,此种调查结果不具有普遍代表性.其中正确的有____________.(只填序号)14.某实验中学七年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计图如图10-T-5所示,其中评价为“A”等级所在扇形的圆心角的度数是________°.图10-T-515.某校七、八、九三个年级的同学参加了今年的植树活动,如图10-T-6描述的是这三个年级的植树情况,这三个年级今年共植树________棵.图10-T-616.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制成如图10-T-7所示的部分频数分布直方图(从左到右依次为第一、二、三、四、五、六小组,每小组含最小值,不含最大值)和扇形统计图.若“一分钟跳绳”不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校“一分钟跳绳”成绩为优秀的学生有________名.图10-T-7三、解答题(共52分)17.(5分)在数学、外语、语文及其他学科中,某校七年级开展了“同学们最喜欢哪门学科”的调查(该校七年级共有200人,每人只能选一项).(1)调查的问题是什么?调查的对象是谁?(2)在被调查的200名学生中,有40人最喜欢语文,60人最喜欢数学,80人最喜欢外语,其余的人选择其他.请把七年级的学生最喜欢某学科的人数及其占学生总数的百分比填入下表:18.(5分小华、小娜和小阳三位同学在同一所学校上学,该学校共有3个年级,每个年级有4个班,每个班的人数在20~30之间.为了了解该校学生家庭的教育消费情况,他们各自设计了如下的调查方案:小华:我准备给全校每个班都发一份问卷,由班长填写完成.小娜:我准备把问卷发送到随机抽取的某个班的家长微信群里,通过网络提交完成.小阳:我准备给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.根据以上材料回答问题:小华、小娜和小阳三人中,哪一位同学的调查方案能较好地获得该校学生家庭的教育消费情况,并简要说明其他两位同学调查方案的不足之处.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学练习卷(十)
班级______ 姓名_______ 座号____
(整式的加减单元试题)
一、填空题:(每题 2 分,共 24 分)
1、单项式:-的系数是____,次数是____。
2、多项式:2x2-1+3x 是____次____项式。
3、化简:(x+1)-2 (x-1)=____。
4、单项式 5x2y、3x2y、-4x2y 的和为____。
5、多项式 3a2b-a3-1-ab2 按字母 a 的升幂排列是_____________。
6、若 x+y=3,则 4-2x-2y=____。
7、用代数式表示:“x、y两数的平方差”____。
8、填上适当的多项式:ab+b2+____=2ab-3b2
9、5an-1b2 与 -3a3bm 是同类项,则 m=____,n=____。
10、写出多项式 x+xy+y+1 中最高次项的一个同类项:____。
11、a、b 互为倒数,x、y 互为相反数,则 (x+y)·-ab
=____。
12、食堂有煤 x 千克,原计划每天用煤 b 千克,实际每天节约用煤 c 千克,实际用了___天,比计划多用了_____
__天。
二、选择题:(每题 3 分,共 18 分)
1、下列属于代数式的是( )
A、4+6=10 B、2a-6b>0 C、0 D、v
=
2、下列说法正确的是( )
A、-xy2是单项式 B、ab没有系数 C、-是一次一项式 D、3
不是单项式
3、下列各组式子是同类项的是( )
A、3x2y与3xy2 B、abc与ac C、-2xy与-3ab D、xy与-xy
4、下列计算正确的是( )
A、2x+3y=5xy B、-2ba2+a2b=-a2b C、2a2+2a3=2a5 D、4a2-3a2=1
5、减去 -3x 得 x2-3x+4 的式子为( )
A、x3+4 B、x2+3x+4 C、x2-6x+4 D、x2-6x
6、一个长方形的周长为 6a+8b,其中一边长为 2a+3b,则另一边长为( )
A、4a+5b B、a+b C、a+2b D、a+7b
三、化简:(每题 5 分,共 30 分)
1、mn-2mn+3 2、(x-2y)-(y-
3x)
3、2 (2a-3b)+3 (2b-3a) 4、(x2-y2)-3 (2x2-
3y2)
5、3x2-[7x-(4x-3)-2x2] 6、2[x-(-)]-
x
四、先化简,再求值:(每题 5 分,共 10 分)
1、4x2-(2x2+x-1)+(2-x2-3x),其中 x=-
2、5 (3a2b-ab2)-(ab2+3a2b),其中 a=,b=-
1
五、(6分)已知 (x+1)2+=0,求 2(xy-5xy2)-(3xy2-xy) 的值。
六、(6分)已知:A=x3+2x2y+2y3-1,B=3+y3+2x2y+2x3,若A+B+C=0,求 C。
七、(6分)邮购一种图书,每本定价 m 元,不足 100 本时,另加书价的 5% 作为邮资。
(1)要邮购 x(x<100 的正整数)本,总计金额是多少元?
(2)当一次邮购超过 100 本时,书店除免付邮资外,还给予 10% 的优惠,计算当 m=3.2 元,邮购 120 本时的总
计金额是多少元?
(十)
一、1、- 三次 2、二,三 3、3-x 4、4x2y 5、-1-ab2+3a2b-a3 6、-2 7、x2-y2 8、
ab-4b2 9、2 4 10、3xy 11、-1 12、,(-)
二、1、C 2、A 3、D 4、B 5、C 6、
B
三、1、解:原式=mn+3 2、解:原式=4x-3y 3、解:原式=4a-6b+6b-9a =
5a
4、解:原式=x2-y2-6x2+9y2=-5x2+8y2 5、解:原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2
-3x-3 6、解:原式=2[x+]-x=x+1-x=x+
1
四、1、解:原式=2x2-x+1+2-x2-3x=x2-4x+3
当x=-时,上式=+2+3=
5
2、解:原式=15a2b-5ab2-ab2-3a2b=12a2b-6ab2 当 a=,b=-1时,上式=-3-3 =-6www.xkb1.com
五、解:x=-1,y=1 2 (xy-5xy2)-(3xy2-xy)=3xy-13xy2=-3+13=
10
六、解:C=-(A+B)=-A-B=-x3-2x2y-y3+1-3-y3-2x2y-2x3=-3x3-4x2y-3y3-
2
七、解:① (1+5%) mx ② (1-10%) mx=(1-10%)·3.2×120=345.6(元
)
xkb1.com