建立地方独立坐标系的一般方法
建立地方独立坐标系的一般方法

217科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON 学 术 论 坛随着社会经济的迅速发展,城乡建设的日新月异。
城乡的基础测绘的更新已变得尤为关键。
测绘事业为城乡的发展和规划提供了最为详尽的基础信息。
随着我国的1954北京坐标系、1980西安坐标系、2000国家大地坐标系的相继使用之后其范围已经覆盖到了我国的所有区域。
成为我国最为基础的测绘基本坐标系。
我们在城乡或工程建设布置控制网、大比例测图、工程放样时,国家基础坐标系是无法满足这些要求的。
这是因为国家基础坐标系每个投影带都是按一定的间隔(60或30)划分,由西向东有规律地分布,其中央子午线不大可能刚好落在每个城乡和工程建设地区的中央。
再者国家坐标系的高程归化面是参考椭球面,各地区的地面位置与参考椭球面都有一定的高差,这将产生高斯投影变形和高程归化变形,经过这两项变形后的长度不可能与实测的长度相等。
因此我们有必要通过采用自选的中央子午线,自选的计算基准面来建立地方独立平面坐标。
1 建立地方坐标系的影响因素当我们在一个椭球面上布设一个测边、测角的控制网,并将其投影到高斯平面上时,我们还需完成的工作包括方向改正、距离改正和大地方位角化算为坐标方位角等三项内容。
因为方向改正、方位角化算其值都是非常小,在这里就不做叙述了。
众所周知,地面测量的长度归算至高斯投影平面上长度应该加的改正数ΔS表示如下:S R H R Y S S S m m m m22122 (1)其中S为地面上的观测长度;ΔS 1为椭球面上距离改化到高斯平面的改正数;ΔS 2为地面观测距离归算到参考椭球面上的改正数;Y m 为距离边长在高斯平面上离中央子午线垂距的平均值;R m 为该地区平均曲率半径;H m 为观测边的平均大地高。
其中在高斯投影变形改正ΔS 1式我们可以得出:S R Y S mm.2121→ 2121m m R Y S S (2)依(2)我们可以分别计算每公里长度投影变形值以及相对投影变形值(假设R m =6375.9km)。
如何建立地方独立坐标系

如何建立地方独立坐标系要建立地方独立坐标系,需要以下步骤:1.了解现有的坐标系统:在开始建立地方独立坐标系之前,我们需要先了解目前使用的常见坐标系统,主要包括国际标准坐标系统、地理坐标系统和工程坐标系统。
这些坐标系统通常由国际或国家标准机构规定,用于描述和测量地球表面上的位置。
2.选择适当的基准面和投影方式:基准面是建立坐标系的基础,它定义了度量位置的参考点。
基准面的选择应考虑到所建立坐标系的使用目的,如地图制图、测量数据分析等。
同时,还需要选择适当的投影方式,以将三维地球表面的点映射到二维地图上。
3.收集地理控制点数据:地理控制点是已知位置的点,用于确定地方独立坐标系中的起源和比例因子。
收集足够数量和广泛分布的地理控制点是至关重要的,这些点应包括土地边界、地物特征和地形等。
4.进行大地测量和数据处理:大地测量是测量地球表面位置和高程的科学,包括天文测量、地形测量和地理测量等。
通过使用收集的地理控制点数据,进行大地测量和数据处理,可以计算出具体的坐标值和高程信息。
5.确定地方坐标参考系:根据收集的地理控制点数据和测量结果,确定地方独立坐标系的原点、坐标轴方向和比例因子。
这些参数是建立坐标系的关键要素,用于将地方坐标系统与全球标准坐标系统进行转换。
6.创建坐标系转换工具和数据模型:为了使地方独立坐标系能够与其他坐标系统进行转换和集成,需要创建坐标系转换工具和数据模型。
这些工具和模型可以用于在不同坐标系统之间进行地理位置和数据转换。
7.验证和调整坐标系:对建立的地方独立坐标系进行验证和调整是必要的。
验证可包括与已知位置的地理实体进行对比,确保坐标系的准确性和一致性。
调整可包括重新测量地理控制点,以提高坐标系的精度和稳定性。
8.文档化和发布坐标系:最后一步是文档化和发布建立的地方独立坐标系,以便其他使用者能够理解和应用该坐标系。
文档应包括坐标系参数、转换公式、转换工具和数据模型等信息。
总之,建立地方独立坐标系需要全面的数据收集和处理,以及准确的测量和调整。
GPS网建立地方独立坐标系的方法研究

其 中, s为参考椭球 面上 的边 长 ; 为 归算边 两端点 的平均 Y 值 ; 为测取参考椭球面 的平均曲率半径 。 由变 形 公 式 可 知 , 当高 斯 投 影 选 择 在 测 取 的 中央 , 影 时 带 投
G0 1 2 5 O 8 l 5 3 2 2 5 0 2 1 . 0 3 1 5 3 5 0 4 0 8 2 23 93 8 l .7 3 5 8 6 7 4 3 1 5 2 0 8 7 o O 0 0 l 3 . 0 l . 0
可作 为 该 测 区 的平 面 首级 控 制 网。 在 wG 一 8 差 坐 标 经 高 斯 投 影 得 到 平 面 坐 标 的 过 程 中 , 分 说 明观 测 数 据质 量 良好 , s 4平
( 1 28 2 3 5 59 l 5. 9 9 7 1 7 8 3 1 0 1 . 2 5l 5 49 8 4 . . 2 05 6 1 3 2 3 7 39 6. 5 4 65 8 2 5 3 5 4 .1 3 a) 28 2 2 7 7 5 6 I 5. 9l 7 6 65 1 0 7 3 1 9 9 . 4 5l 1 9. 4 o8 . 2 7 0 l 3 8 6 7. 7 3 41 4 6 5 8 4 9 8 4 .勰 G0 28 2 0 91 7l 1 5. 8 04 67 1 . 6 o9 . 2 0 5 1 3 4 3 l 7 8 o 3 1 6 5 51 4 0 4 9 7 39 3 5. 3l 4 2 2. 7 .1 0 ( 1 28 21 3 5 l 5. 8 9 72 1 71 0 . 38329 1 3 3 43 6 7. 4 3 1 7. 0 51 7. 0 8 9 0 38 41 9 3 4 0o 68 . 8
工程独立坐标系的建立方法研究

工程独立坐标系的建立方法研究建立工程独立坐标系的方法有以下几个步骤:1.选择坐标原点:首先需要选择一个合适的坐标原点,以方便后续的坐标计算和转换。
一般情况下,可以选择一个具有明确地理特征的点作为坐标原点,比如地球上的一些显著建筑物或地物。
2.确定坐标轴方向:在确定坐标原点之后,需要确定坐标轴的方向。
一般情况下,可以选择水平面上的南北方向作为Y轴正方向,东西方向作为X轴正方向,垂直于水平面的垂直方向作为Z轴正方向。
3.建立坐标网格:根据工程实际需要,可以建立不同精度的坐标网格。
在建立坐标网格之前,需要确定网格的划分方式以及划分的精度。
常用的划分方式有等距离和等面积两种,根据实际需求选择合适的方式。
4.坐标转换:在进行工程测量和计算时,常常需要将测量结果转换到工程独立坐标系中。
这就需要进行坐标转换。
坐标转换的方法有很多,比如正算和反算、七参数和四参数等。
根据不同的测量需求,选择合适的坐标转换方法进行计算。
5.坐标系统的实现和维护:在建立工程独立坐标系之后,需要进行实现和维护工作。
这涉及到监测和修正测量数据,以及处理和分析测量结果的过程。
同时还需要进行坐标系统的更新和调整,以适应地壳运动和地壳形变等因素的影响。
总的来说,建立工程独立坐标系的方法主要包括选择坐标原点、确定坐标轴方向、建立坐标网格、进行坐标转换以及实现和维护等步骤。
这些步骤需要根据具体的工程需求和条件进行调整和改进。
通过合理的建立和使用工程独立坐标系,可以为工程实践提供更加准确和可靠的坐标计算和转换方法。
RTK测量中如何建立独立坐标系的

RTK测量中独立坐标系的建立向垂规(xx水利水电勘察设计研究院)摘要:介绍GPS-RTK测量xxWGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理xx坐标转换的方法,同时结合工程实例予以验证。
关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换1 引言在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以xx、全站仪测量为代表的常规测量常常效率低下。
随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。
对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及xx变形、高程异常等影响而采用独立坐标系,这就需要将RTK测量采集的数据在两坐标系中进行转换。
2 国家坐标系及独立坐标系的建立2.1 国家坐标系的建立在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954xx坐标系、1980xx 坐标系、2000国家坐标系和WGS-84坐标系。
前两个是参心坐标系,后两个是固心坐标系。
由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。
国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。
2.2 独立坐标系的建立在工程应用中,由于起算数据收集困难、测区远离中央xx及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。
规范要求投影xx变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。
如果采用国家坐标系统在许多情况下(如高海拔地区、离中央xx较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。
UTM投影地区工程独立坐标系的建立方法

第29卷第4期测㊀绘㊀工㊀程V o l 29,N o 42020年7月E n g i n e e r i n g o f S u r v e y i n g a n d M a p p i n gJ u l .,2020引用著录:吴迪军.U TM 投影地区工程独立坐标系的建立方法[J ].测绘工程,2020,29(4):7G10,14.D O I :10 19349/jc n k i i s s n 1006G7949 2020 04 002U TM 投影地区工程独立坐标系的建立方法吴迪军(中铁大桥勘测设计院集团有限公司,湖北武汉430050)摘㊀要:分析U TM 投影及其变形特点,并与高斯投影进行比较,提出3种U TM 投影地区工程独立坐标系建立方法,即 一点一方向 独立坐标系或任意假定坐标系方法㊁基于U TM 投影的独立坐标系方法和基于高斯投影的独立坐标系方法.对于公路㊁铁路等线性工程而言,高斯投影的工程独立坐标系具有理论严密㊁解算方式易被接受㊁坐标系数目少等优点.通过某高速公路工程独立坐标系的计算分析,验证此方法有效性和可行性.关键词:U TM 投影;工程独立坐标系;高斯投影;投影长度变形;公路工程中图分类号:P 228㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1006G7949(2020)04G0007G04E s t a b l i s h m e n t o f e n g i n e e r i n g i n d e p e n d e n t c o o r d i n a t e s ys t e mi n c o u n t r i e s a n d r e g i o n s u s i n g U T M p r o je c t i o n WU D i ju n (C h i n aR a i l w a y M a j o rB r i d g eR e c o n n a i s s a n c e&D e s i gn I n s t i t u t eC o .L t d .,W u h a n430050,C h i n a )A b s t r a c t :T h e c h a r a c t e r i s t i c s o fU T M p r o j e c t i o nd e f o r m a t i o n a r e a n a l y z e d a n d c o m pa r e dw i t h t h a t o fG a u s s p r o j e c t i o n .T h e nt h r e ek i n d so f m e t h o d so fe s t ab l i s h i n g e n g i n e e r i n g i n d e p e n d e n tc o o rd i n a t es ys t e mi n c o u n t r i e sa n dr e g i o n s w h i c h u s e U T M p r o j e c t i o na r e p r e s e n t e d ,i n c l u d i n g t h eo n e Gp o i n t Go n e Gd i r e c t i o n m e t h o do r a s s u m e d c o o r d i n a t e s y s t e m m e t h o d ,t h e i n d e p e n d e n t c o o r d i n a t e s ys t e m m e t h o db a s e do nU TM p r o j e c t i o na n d t h e i n d e p e n d e n t c o o r d i n a t es y s t e m m e t h o db a s e do nG a u s s p r o j e c t i o n .F o r l o n g a n d l a r g e l i n e a r e n g i n e e r i n gp r o j e c t ss u c ha sh i g h w a y a n dr a i l w a y e n g i n e e r i n g ,t h e i n d e p e n d e n tc o o r d i n a t es y s t e m b a s e do nG a u s s p r o j e c t i o nh a s t h e a d v a n t a g e s o f s t r i c t t h e o r y ,w h i c h i s e a s y t ob e u n d e r s t o o d a n d a c c e p t e d b y C h i n e s ee n g i n e e r sa n dt e c h n i c i a n s ,a n dc a n g r e a t l y r e d u c et h en u m b e ro fc o o r d i n a t es ys t e m s .T h e f e a s i b i l i t y a n d e f f e c t i v e n e s s o f t h e i n d e p e n d e n t c o o r d i n a t e s y s t e mb a s e do nG a u s s p r o j e c t i o n i sv e r i f i e db y t h e c a l c u l a t i o na n d a n a l y s i s o f i n d e p e n d e n t c o o r d i n a t e s y s t e mo f a ne x p r e s s w a yp r o je c t i nZ a m b i a .K e y wo r d s :U T M p r o j e c t i o n ;e n g i n e e r i n g i n d e p e n d e n tc o o r d i n a t es y s t e m ;G a u s s p r o j e c t i o n ;p r o j e c t i o n l e n g t hd e f o r m a t i o n ;h i g h w a y e n g i n e e r i n g 收稿日期:2019G03G21作者简介:吴迪军(1964-),男,教授级高级工程师,博士.㊀㊀横轴墨卡托投影(U n i v e r s a l T r a n s v e r s eM e r c a Gt o rP r o j e c t i o n ,U T M )被世界上100多个国家或地区作为大地测量和地形图的投影基础[1].近年来,我国企业在海外工程建设中,经常遇到U T M 投影坐标系下投影长度变形远远超出测量规范变形限值的问题,解决这个问题的主要方法便是建立投影长度变形满足工程建设需求的独立坐标系,于是我国工程测量技术人员及学者开展了相关研究和应用实践.高春林㊁陆永红和袁小勇等以工厂建设为例研究小区域工程独立坐标系的建立方法[2G4];喻守刚等研究U T M 投影下抵偿高程面的确定方法[5],杨帆等通过移动中央子午线的方法建立电厂独立坐标系[6];徐辉等利用T B C 软件的坐标基准功能和强大的数据处理功能对U T M 投影变形进行处理[7];文献[8]指出:当工程区域东西宽度过大时,使用抵偿高程面不能解决测区边缘U TM 投影变形超限的问题;文献[9]~[13]研究U T M 投影地区的公路㊁铁路工程独立坐标系的建立方法.本文在借鉴上述研究和应用成果的基础上,系统研究U T M 投影地区的工程独立坐标系的建立方法,并以某高速公路工程为例进行应用分析,验证方法的可行性.1㊀U T M 投影及其变形特点U T M 投影属于等角横轴割椭圆柱投影,椭圆柱割地球于南纬80ʎ㊁北纬84ʎ两条等高圈,中央经线投影长度比是0 9996,投影后两条割线上没有变形.该投影由美国军事测绘局1938年提出,1945年启用.与高斯投影相比,U T M 投影显著减小投影带边缘的长度变形值,总体变形值减小,投影带内各处的投影变形更加均匀,在低纬地区这种效果更为明显.因此,U T M 投影也被认为是对高斯投影的一种改进.1 1㊀U T M 投影长度比投影长度比是投影长度变化的相对量,即投影后平面长度与投影前椭球面长度的比值.U T M 投影长度比的精确计算式[14]:m =0 9996[1+12c o s 2B ((1+η2)l 2+16c o s 4B (2-t 2)l 4-18c o s 4B l 4+ ].(1)式中:m 为投影面上一段无限小的微分线段d s 与椭球面上相应的微分线段d S 之比,m =d s /d S ;B 是椭球面上某点的大地纬度,l 为该点的大地经度L与中央子午线经度L 0之差,l =L -L 0;t =t a n B ,η=e 2c o s 2B ,e 为地球椭球的第一偏心率.经简化得[1]:m =0 9996[1+12c o s 2B (1+η2)l 2+124(5-4t a n 2B )c o s 4B l 4].(2)约去l 4项,并改写成由平面坐标表达的计算式:m =0 9996+y 2m1 9992R 2m.(3)式中:y m 取大地线投影后始末两点横坐标平均值,即y m =y 1+y 22;R m 为按大地线始末两端点平均纬度计算椭球的平均曲率半径.1 2㊀U T M 投影长度变形计算投影长度变形是投影长度变化的绝对量.与高斯投影类似,U T M 投影长度变形包括两部分.一部分是地面水平距离投影到参考椭球面(或工程平均高程平面)产生的长度变形,另一部分是椭球面上距离投影到墨卡托投影平面上产生的长度变形.1)地面水平距离(s 0)投影到椭球面(s )的长度变形:Δs 1=-H m -h mR ms 0.(4)式中:H m 为地面边长两端的平均高程,h m 为测区大地水准面高出参考椭球面的距离.2)地面水平距离(s 0)投影到任意高程平面(s )的长度变形:Δs 1=-H m -H 0R ms .(5)式中:H 0为任意高程平面的高程.3)椭球面距离投影到墨卡托投影平面的长度变形:由式(3)求得椭球上大地线长度S 经过U TM 投影后的长度变形的计算式:Δs 2=S -0 000㊀4+y 2m 1 9992R 2m æèçöø÷.(6)1 3㊀U T M 投影长度变形分析[1]按式(6)绘制U T M 投影长度变形绘制成曲线图,如图1所示.图1㊀高斯投影及U T M 投影长度变形曲线由式(4)㊁式(6)及图1分析可得U T M 投影变形的主要特性:1)地面水平距离投影到椭球面的长度变形与地面高程大小成正比,且恒为负值.2)地面水平距离投影到任意高程平面的长度变形与高程投影面到地面的垂直距离大小成正比.当高程投影面位于观测边长平面以下时,长度变形值为负;当高程投影面位于观测边长平面以上时,长度变形值为正.3)椭球面距离投影到墨卡托投影平面的长度变形具有下列特性:①距离中央子午线东㊁西各180k m 左右(经差约1ʎ45ᶄ),存在2条对称于中央子午线的零变形曲线.在该2条曲线上,U T M 投影长度变形为零.②以零变形曲线为中心线㊁宽度为4 5k m 左8 测㊀绘㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第29卷右的带形区域内,U T M投影长度变形值不大于10m m/k m.③以零变形曲线为中心线㊁宽度为11 3k m左右的带形区域内,U T M投影长度变形小于25m m/k m.1 4㊀U T M投影与高斯投影比较高斯投影与U T M投影同属等角横轴圆柱投影,都是由墨卡托投影演变而来.高斯投影是等角横轴切圆柱投影,其长度变形均为正值,且离中央子午线越远变形越大.椭球面距离经过高斯投影后的长度变形按下式计算:Δs=S y2m2R2m.(7)高斯投影变形曲线图如图1所示.由式(7)和图1分析可得:高斯投影变形量不超过10m m/k m㊁25m m/k m的带宽分别约为57k m㊁90k m,远远超过U TM对应的带宽值4 5k m㊁11 3k m,前者带宽约为后者带宽的10倍.显然,基于高斯投影的工程独立坐标系适用于更大区域的工程项目,如公路㊁铁路等大型线性工程项目.2㊀U T M投影地区工程独立坐标系的建立方法㊀㊀在海外工程测量中,当U T M投影长度变形满足相关规范要求时,可直接使用工程所在国家或地区标准的U T M投影坐标系作为工程独立坐标系.然而,由于满足U T M投影变形要求的带宽较小,同时,特定工程也不一定刚好位于U T M投影变形小于一定限值的区域内,绝大多数情况下,U T M投影长度变形都超出了变形限值的规定,因此,必须建立投影变形满足工程需要的工程独立坐标系.2 1㊀ 一点一方向 独立坐标系或任意假定坐标系这种方法有两种做法:一是以工程测区内一个已知控制点的当地U T M投影坐标㊁该已知点到另一个已知点的U T M投影坐标方位角作为起算基准数据,使用C o s a G P S等软件的 一点一方向 平差功能,对G N S S控制网进行平差,计算得到工程区域内各G N S S控制点的工程独立坐标,由此建立的坐标系为 一点一方向 独立坐标系.第二种做法则更加简单:任意假定一个控制点坐标和一条控制边的方位角,建立任意假定的平面直角坐标系.这种工程坐标系的尺度基准可利用G N S S观测边长或全站仪精密测量边长,通过投影归算至工程平均高程平面上,因此,其投影长度变形值已得到最大限度的削弱或消除.该方法适用于测区范围较小且独立性较强的工程建设.2 2㊀基于U T M投影的工程独立坐标系当U T M投影长度变形不满足规范要求时,可移动中央子午线及高程投影面,控制投影长度变形符合规范要求,建立基于U T M投影的工程独立坐标系.这种工程坐标系的优点是便于与当地U TM 投影坐标系联测并建立转换关系,其缺点是由于U T M投影长度变形符合规范要求的带宽小,因此用这种方法建立的工程坐标系仅适用于小范围的工程项目,当工程范围较大时则需建立多个坐标系,造成相邻坐标系间的连接和转换问题.2 3㊀基于高斯投影的工程独立坐标系独立坐标系的建立方法均局限于小范围的工程应用,不适用于大区域的工程项目.如公路㊁铁路等长大型线性工程项目,路线总长少则几十千米㊁上百千米,多则几百千米,甚至千余千米,这时,为了减少独立坐标系的数目,可采用基于高斯投影的工程独立坐标系.基于高斯投影的工程独立坐标系的建立可按国内习惯做法进行,具体流程如下:1)选定高程投影面㊁中央子午线,建立任意带抵偿高程面的独立坐标系,使投影长度变形值在规定限值以内.通常选择工程测区中心处的子午线作为中央子午线,取测区平均高程平面或工程平均高程平面作为坐标投影平面,经过反复验算后确定最终的中央子午线和高程投影面.2)将当地已知点的U T M投影坐标转换到基于高斯投影的工程独立坐标系中.值得注意的是,所涉及的两种坐标系采用不同的参考椭球和不同的坐标投影方式,因此,两个坐标系之间的转换属于不同基准之间的坐标转换问题,比同一个基准下的坐标转换要复杂,必须采取必要的方法对坐标转换结果进行验证,如通过U T M坐标与工程独立坐标之间双向转换计算㊁U T M坐标系与工程独立坐标系下已知点兼容性检验结果的对比分析等方法进行验证.另外,独立坐标系的建立与坐标转换必然涉及到参考椭球的变换问题,常用的椭球变换方法有椭球膨胀法㊁椭球平移法和椭球变形法等[15],采用不同的椭球变换方法转换得到的已知点独立坐标值各不相同,但已知点之间的相对关系不变,因此,同一个工程项目的坐标转换必须采用同一款软件进行.实际工作中也可以采用不同软件进行坐标转换,以便通过边长及水平角的比较对转换结果的正确性进行验证.3)在工程独立坐标系下,固定若干已知点的工9第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀吴迪军:U TM投影地区工程独立坐标系的建立方法程独立坐标,对G N S S工程控制网进行约束平差,得到各工程控制点的独立坐标.4)建立工程独立坐标系与当地U TM投影坐标系之间的坐标转换模型,实现两套坐标系之间的精确转换,满足工程应用的实际需要.与基于U T M投影的工程独立坐标系相比,基于高斯投影的独立坐标系具有以下明显有优点:坐标系增大,可减少坐标系的数目,被我国工程技术人员所接受和使用等.3㊀实例分析某高速公路工程路线总体呈南北走向,主线总长约306k m,支线总长约45k m.工程测区东西向最大坐标差约70k m,南北向最大坐标差约260k m.路面设计高程最高约1322m,最低约1102m,平均高程约1212m.公路全部采用路基结构,路面与原始地面高差不大.采用U T M投影网格坐标系统(U T M27, C l a r k e1880椭球,A R C1950基准面).本项目测区最东㊁最西控制点距离U T M27中央子午线的距离分别为183k m㊁113k m,2点的地面高程分别约1269m和1176m.根据以上数据,按式(6)计算出测区最东点㊁最西点的U T M投影长度变形分别为:-0 2417m m/k m和0 0121m m/k m,按式(4)计算出地面边长投影到椭球面的边长变形分别为:-0 1844m m/k m和-0 1990m m/k m,由此可得2点的U T M综合投影变形分别为:-0 4261m m/k m和-0 1869m m/k m.结合图1及路线地面高程变化平缓的实际情况分析可知:该项目U T M27坐标系下的投影长度变形在-0 4261~-0 1869m m/k m区间内变化,显然投影长度变形值远远超过我国«公路勘测规范»规定的25m m/k m的限值标准[16],必须建立投影变形满足工程建设需要的工程独立坐标系.文中提出的3种独立坐标系统中,第一种一般只用于小区域工程项目,本项目测区范围东西向70k m㊁南北向260k m,不宜采用 一点一方向 法或任意假定坐标系法建立工程独立坐标系.若采用第二种方法,即基于U T M投影的独立坐标系,则总共需要建立6个分区坐标系,每个坐标系的控制带宽约11k m,涉及相邻坐标系之间的搭接处理及坐标转换问题.而若采用基于高斯投影的独立坐标系,则因项目测区东㊁西跨度(70k m)处于高斯投影25m m/k m带宽(90k m)以内,故只需建立1个独立坐标系即可限制项目测区内投影长度变形小于25m m/k m.㊀按本文方法经过分析计算后确定工程独立坐标系的参数:采用C l a r k e1880(A R C1950)的参考椭球参数,选取测区中部经线作为中央子午线,取线路平均高程平面为投影基准面,采用高斯正形投影方式.工程独立坐标系下本项目主线和支线的投影长度变形曲线图分见图2和图3.由图可知:主线范围内投影长度变形最大值为18m m/k m,支线范围内投影长度变形最大值为8m m/k m,全部小于规范规定的变形限值(25m m/k m),满足本项目工程建设的精度要求.图2㊀工程独立坐标系下主线工程投影长度变形曲线图3㊀工程独立坐标系下支线工程投影长度变形曲线4㊀结束语U T M投影和高斯投影同属于等角横轴圆柱投影,投影前后角度不变,但长度和面积有变形. U T M投影的长度变形总体上比高斯投影小,投影变形均匀,尤其在投影带边缘处的长度变形明显小于高斯投影,因此,U T M投影被世界上很多国家㊁地区和集团所采用.但在较高精度的工程测量中, U T M投影长度变形往往容易超出规范允许的范围,需要建立长度变形满足工程建设需求的工程独立坐标系.本文提出在使用U T M投影的国家和地区建立工程独立坐标系的三种方法.第一种方法为 一点一方向 法或任意假定坐标系法,该方法思路简单㊁容易理解,但仅适用于局部小范围的工程测量.第二种方法采用基于U T M投影的工程独立坐标系,由于U T M投影长度变形小于规定限值的㊀㊀㊀㊀㊀(下转第14页)影像的侧视角度,方便于工程应用,具有一定的合理性.对于幅宽较大,侧视角计算精度要求较高的卫星影像,可以分块分区计算其侧视角,获取其侧视角变化范围.另外,本文算法对数据信息要求少,原理简单,计算量小,易于实现,后期应加强其在工程实践中的应用方法研究.参考文献:[1]㊀韩文立.卫星侧视角对纠正精度影响的定量分析[J].北京测绘,2010(4):20G22.[2]㊀何红艳,乌崇德,王小勇.侧摆对卫星及C C D相机系统参数的影响和分析[J].航天返回与遥感,2003(4):14G18.[3]㊀战鹰,史良树,王金强.卫星侧视成像引起的像点位移误差计算方法[J].河南理工大学学报(自然科学版),2015,34(3):370G373.[4]㊀袁修孝,曹金山,姚娜.顾及扫描侧视角变化的高分辨率卫星遥感影像严格几何模型[J].测绘科学技术学报,2009,38(2):120G124.[5]㊀宁津生,陈俊勇,李德仁,等.测绘学概论[M].武汉:武汉大学出版社,2008.[6]㊀祝江汉,李曦,毛赤龙.多卫星区域观测任务的侧摆方案优化方法研究[J].武汉大学学报(信息科学版),2006,31(10):868G870.[7]㊀巩丹超,张永生.有理函数模型的解算与应用[J].测绘学院学报,2003,20(1):39G42.[8]㊀仝广军,曹彬才,曹芳.基于严格成像模型的遥感影像R P C参数求解[J].测绘技术装备,2016(3):33G36.[9]㊀李庆鹏,王志刚,陈琦.基于严格仿射变换模型的遥感影像R P C参数求解[J].测绘信息与工程,2011,36(3):1G4.[10]吴佳奇,孙华生.一种倾斜影像几何纠正的有效方法[J].遥感技术与应用,2015,30(5):1006G1011.[11]杨亮,贾益,江万寿,等.基于观测角信息的H JG1A/B 卫星光学影像几何精纠正[J].国土资源遥感,2018,30(2):60G66.[责任编辑:李铭娜](上接第10页)带宽较小,如变形小于2 5c m/k m的单侧带宽仅为11k m,只有高斯投影带宽(90k m)的大约1/9,因此,对于公路㊁铁路等长大线形工程而言,通常需要建立较多数量的独立坐标系,导致坐标系之间的搭接和转换工作量大,也不便于工程应用.第三种方法则是基于高斯投影的工程独立坐标系,这种方法理论严谨㊁容易被国内工程技术人员所理解和接受,而且比第二种方法显著减少了坐标系的数目,有利于工程应用,适用于长大线性工程测量.最后,通过某高速公路工程独立坐标系的计算分析,验证本文方法的可行性和有效性.参考文献:[1]㊀李国义,姚楚光.U TM投影及其变形分析[J].地理空间信息,2013,11(6):80G83.[2]㊀高春林,孙浩玉.U TM投影坐标系下厂站工程坐标系统设计[J].电力勘测设计,2017(2):7G10.[3]㊀陆永红,李保杰,刘其军.几内亚558工程中U TM投影坐标系的建立[J].地矿测绘,2011,27(2):18G20.[4]㊀袁小勇,陈功,易祎.国际工程中U TM投影变形的应对策略 以苏丹某电厂为例[J].工程勘察,2010,38(5):74G77.[5]㊀喻守刚,李志鹏,余青容,等.国外工程中抵偿高程面确定方法的研究[J].城市勘测,2018(6):101G104.[6]㊀杨帆,嵇建扣,丁盼.U TM投影变形分析及解决方案[J].江西测绘,2018(1):16G18.[7]㊀徐辉,袁子喨.发电工程测量中U TM投影变形的处理与实践[J].工程勘察,2017,45(3):53G58.[8]㊀赵国强.几内亚B O F F A铝土矿开发U TM投影坐标系的建立[J].资源信息与工程,2018,33(6):136G137.[9]㊀王敏,王英团.埃塞俄比亚I C P公路控制测量方案研究[J].中外公路,2015,35(增1):74G76.[10]梁旺.基于尼日利亚测绘系统现状的铁路测量控制系统设计[J].中国高新技术企业,2013(11):12G13.[11]张天航,孙永利,张建民.某段缅甸铁路独立坐标系投影方式的选择[J].铁道勘察,2011,37(1):12G13,17.[12]金立新,王连俊,杨松林.尼日利亚铁路坐标系统的选择与研究[J].北京交通大学学报,2009,33(1):127G130.㊀[13]高振军,张卫东,赵少红.乌干达机场路项目坐标系统的选择[J].中外公路,2015,35(增1):98G101.[14]孔祥元,郭际明,刘宗泉.大地测量学基础[M].2版.武汉:武汉大学出版社,2010.[15]丁士俊,畅开蛳,高锁义.独立网椭球变换与坐标转换的研究[J].测绘通报,2008(8):4G6,35.[16]中华人民共和国交通部.公路勘测规范:J T G C10G2007[S].北京:人民交通出版社,2009.[责任编辑:李铭娜]。
独立坐标系建立的原则和方法

独立坐标系建立的原则和方法
建立独立坐标系的原则和方法如下:
1. 原则:建立独立坐标系的原则是选择合适的坐标轴,使其相互垂直且互不依赖,且能够简化问题的描述和分析。
2. 方法:
a. 选择坐标轴:首先需要确定问题的几何特征和方向性,然后选择合适的坐标轴。
通常情况下,选择笛卡尔坐标系是最常见的方法,即选择一个直角坐标系,其中x轴和y轴相互垂直。
b. 建立坐标原点:确定一个原点作为坐标轴的起点,通常选择一个物理参考点或问题的几何中心作为原点。
c. 刻度尺度:确定每个坐标轴的刻度尺度,即确定单位长度,并进行标尺刻度。
d. 坐标方向:确定坐标轴的方向,通常选择正方向作为正号方向。
e. 记录坐标值:根据问题的几何特征和方向性,将问题中的物体或点的位置用坐标值记录下来。
建立独立坐标系的原则和方法可以使问题的描述和分析更加简
单和直观,从而更好地解决问题。
城镇地籍测量中独立坐标系的建立

城镇地籍测量中独立坐标系的建立作者:郭卫华来源:《城市建设理论研究》2013年第18期摘要:在城镇地籍测量中,如果选用国家坐标系,因测区远离中央子午线,且高程较大,可能测量精度会不满足要求。
为减小地籍测量中的长度变形,保证测量精度满足要求,本文通过对国家坐标系与独立坐标系的对比、分析和计算,阐述了城镇地籍测量建立独立坐标系的原因和方法。
关键词:城镇地籍测量,独立坐标系,建立中图分类号:P27 文献标识码:A 文章编号:绪论:在我国的许多城市测量中,常因工程需要建立适合本地区的独立坐标系,在工程测量中,若测区远离中央子午线或测区平均高程较大,则导致长度变形较大,难以满足工程实践的精度要求;特别是在某些大型工程测量中,其控制成果不仅要满足测量的需要,还要满足工程放样的需要,施工放样时要求由坐标反算的长度与实测的长度尽可能相符,这就需要建立地方独立坐标系,使投影变形控制在一个微小的范围内,并使计算出来的长度在实际应用时不需要做任何的改算。
另外,在某些工程测量中,因采用国家坐标系很不方便,所以,基于方便实用、科学合理,也常常需要建立地方独立坐标系。
城镇地籍测量平面坐标系统的建立应以投影长度变形值不大于2.5cm/km为原则,并根据城市地理位置和平均高程而定。
当投影长度变形值不大于2.5cm/km时,应采用高斯正形投影统一30带的平面直角坐标系统;当投影长度变形值大于2.5cm/km时,应建立独立坐标系统,以减小长度投影变形过大的问题。
本文主要从平移中央子午线和投影于抵偿高程面的方法讲述了地籍测量中独立坐标系的建立原因和方法。
一、国家坐标系与独立坐标系1、国家坐标系在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。
前两个是参心坐标系,后两个是固心坐标系。
由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建立地方独立坐标系的一般方法
摘要:本文介绍了建立一个地方独立坐标系的一些基本方法。
关键词:地方独立坐标系椭球高斯投影中央子午线变形随着社会经济的迅速发展,城乡建设的日新月异。
城乡的基础测绘的更新已变得尤为关键。
测绘事业为城乡的发展和规划提供了最为详尽的基础信息。
随着我国的1954北京坐标系、1980西安坐标系、2000国家大地坐标系的相继使用之后其范围已经覆盖到了我国的所有区域。
成为我国最为基础的测绘基本坐标系。
我们在城乡或工程建设布置控制网、大比例测图、工程放样时,国家基础坐标系是无法满足这些要求的。
这是因为国家基础坐标系每个投影带都是按一定的间隔(60或30)划分,由西向东有规律地分布,其中央子午线不大可能刚好落在每个城乡和工程建设地区的中央。
再者国家坐标系的高程归化面是参考椭球面,各地区的地面位置与参考椭球面都有一定的高差,这将产生高斯投影变形和高程归化变形,经过这两项变形后的长度不可能与实测的长度相等。
因此我们有必要通过采用自选的中央子午线,自选的计算基准面来建立地方独立平面坐标。
1 建立地方坐标系的影响因素
当我们在一个椭球面上布设一个测边、测角的控制网,并将其投影到高斯平面上时,我们还需完成的工作包括方向改正、距离改正和大地方位角化算为坐标方位角等三项内容。
因为方向改正、方位角化
算其值都是非常小,在这里就不做叙述了。
众所周知,地面测量的长度归算至高斯投影平面上长度应该加的改正数ΔS表示如下: 依(3)我们可以分别计算出每公里长度的投影值在不同高程面上的相对变形(假设Rm=6370.0km)。
很显然,无论从测图、用图或施工放样,都希望ΔS改正数尽量的小,以满足一定的精度要求。
如一般的施工放样的方格网和建筑轴线的测量精度为1/0.5万~1/2万。
因此,由投影归算引起的控制网长度变形应小于施工放样允许误差的1/2所以ΔS/S的限差应小于1/1万~1/4万,即每公里的改正数不大于10cm-2.5cm。
2 建立地方独立坐标系的方法
由以上公式可见当测区的平均大地高Hm在100m以下,离中央子午线在40km以下,ΔS1和ΔS2都小于2.5cm,能满足大比例尺测图和工程放样的要求,从公式中我们可以看出ΔS1和ΔS2两项改正数的符号相反,所以根据这一点我们就可以加于利用,利用他们的正负关系来相互抵消其变形的改正值,来根据具体的情况来设计地方独立坐标系。
再则,在一个具体的测区里往往难于使ΔS/S或ΔS满足实际工作要求,为此,可以通过建立一个相对独立平面坐标系来解决这些问题,具体方法如下。
(1)通过改变Hm值,即选择某一计算基准面替代参考椭球面,当测区的东西两边缘的跨度大于90km时,ΔS1就大于2.5cm。
我们可以改
变Hm值,重新选择一个基准面也就是改变ΔS2用以抵消高斯投影的长度变形ΔS1。
(2)通过改变Ym值,即对中央子午线作适当的变动,当测区的平均大地高Hm在150m以上时,ΔS2就大于2.5cm。
我们可以改变Ym值,把中央子午线调离测区中央的位置就改变了Ym值,从而带动了ΔS1的改变,ΔS1用以低偿由大地高带来的归算至参考椭球面的改正ΔS2。
(3)通过既改变Hm值又改变Ym值,既选择计算基准面又变动中央子午线以两项改正值相互低偿改正ΔS。
在工程测量中,无论采用以上哪一种方法中建立起来的坐标系,可综合称其为相对独立平面坐标系。
3 计算坐标系间的转换参数
中央子午线和抵偿面确定之后就可以将测区范围内属于国家大地坐标系的起算点成果转换到新建地方独立坐标系中。
3.1 不同一椭球下的直角坐标系的转换
我们知道1980年国家大地坐标系、1954年北京坐标系属于参心坐标系,它们所对应的空间直角坐标系是不同的,它们之间转换属于不同的三维空间直角坐标系的转换。
两个空间直角坐标系分别为O-XYZ和O/-X/Y/Z/,他们的坐标系的原点不一致,即存在三个平移参数Δx、Δy、Δz,它们分别表示原点O 相对于原点O在坐标O-XYZ上三轴的平移分量。
两个坐标系之间三轴是不平行的,因此它们之间存在一个角度旋转的参数ax、ay、az。
又因为这两个坐标系的尺度不一致,所以这两个坐标系之间还存在一个尺度差的问题(K)。
综上所述,可得布尔莎七参数公式;如(4)。
现在大部分的商业软件对七参数的求解已经是非常成熟了。
我们的做法是先对起算点做椭球变换,再进行换带计算。
3.2 同一椭球下的直角坐标系的转换
它们在同一椭球上所以它们的坐标系的原点一致,X、Y、Z三轴不变。
只是所选的中央子午线不同,在此我们只需要对起算点进行换带计算就行。
至此根据上述得出的起算点成果后再利用GPS加密控制网就可以得到一套完整的地方独立坐标系。
4 结语
从本文我们可以看出,面对各测区的具体情况我们都可以设计出一套覆盖完整、精度可靠的地方独立坐标系。
参考文献
[1] 孔祥元,梅是义.控制测量(下)[M].武汉:武汉大学出版社,1996.
[2]李世安,刘经南,施闯.应用GPS建立区域独立坐标系中椭球变换的研究[M].武汉:武汉大学出版社,2005.。