《切线性质与判定》练习题

合集下载

切线的性质和判定练习题

切线的性质和判定练习题

切线的性质和判定练习题切线的性质和判定练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(切线的性质和判定练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为切线的性质和判定练习题的全部内容。

1切线的性质与判定练习题班级姓名例1、已知:如图,同心圆O,大圆的弦AB=CD,且AB 是小圆的切线,切点为E.求证:CD是小圆的切线.例2、已知如图所示,AB为⊙O的直径,C、D是直径AB 同侧圆周上两点,且,过D作DE⊥AC于点E,求证:DE是⊙O的切线.例3、如图所示,△ABC内接于⊙O,如果过点A的直线AE和AC所成的角∠EAC=∠B,求证EA是⊙O的切线.例4、如图,已知AB是⊙O的直径,AC是弦,CD切⊙O 于点C,交AB的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.例5、如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,求证:AD∥OC.例6如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC 于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆。

2求证:(1)AC是⊙D的切线;(2)AB+EB=AC。

例7、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE是⊙O的切线.例8、已知:如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE.例9、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.练习题:1。

切线的判定和性质习题

切线的判定和性质习题

切线的性质和判定专题训练 一、选择题 1.下列命题正确的是( ) A. 经过半径外端的直线是圆的切线 B. 直线和圆有公共点,则直线和圆相交 C. 过圆上一点有且只有一条圆的切线 D. 圆的切线垂直于半径 2.如图,PA切⊙O于点A,若∠APO=30°,OP=2,则⊙O半径是( )

A. B. 1 C. 2 D. 4 3.如图,AB、AC分别与⊙O相切于B、C,∠A=50°,点P是圆上异于B,C的动点,则∠BPC的度数是( )

A. 65° B. 115° C. 65°和115° D. 130°和150° 4.如图,CD切⊙O于B,CO的延长线交⊙O于A,若∠C=36°,则∠ABD的度数是( )

A. 72° B. 63° C. 54° D. 36° 5.如图,AB是⊙O的弦,AC切⊙O于点A,且∠BAC=45°,AB=2,则⊙O的面积为_____。

6. 如图,已知AB是⊙O的直径,延长AB到D,使BD=OB,DC切⊙O于C,则∠D=____,∠C=_____,若⊙O的 半径为R,则AC=_____。

7. 已知半径为3的⊙O上一点P和圆外一点Q,如果OQ=5,PQ=4,则PQ和圆的位置关系是( ) 二.计算与证明: 1. 已知⊙O中,AB是直径,过B点作⊙O的切线,连结CO,若AD∥OC交⊙O于D,求证:CD是⊙O的切线。

2. 如图所示,△ABC为等腰三角形,O是底边BC的中点,⊙O与腰AB相切于点D。 求证:AC与⊙O相切。 3. 已知⊙O的半径OA⊥OB,点P在OB的延长线上,连结AP交⊙O于D,过D作⊙O的切线CE交OP于C,求证:PC=CD。

4、如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E. (1)判断直线DE与⊙O的位置关系,并说明理由; (2)若AE=8,⊙O的半径为5,求DE的长.

圆的切线的性质和判定-练习题-含答案.doc

圆的切线的性质和判定-练习题-含答案.doc

D.不能确定的切线的性质与判定副标题 题号 * 总分 得分一、选择题(本大题共2小题,共6.0分)1.己知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定【答案】C 【解析】解:半径r = 5,圆心到直线的距离d=3,v 5 > 3, BPr > d,二直线和圆相交,故选C.由直线和圆的位置关系:r>d,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系: 设。

的半径为厂,圆心。

到直线/的距离为丈 ①直线/和0。

相交②直线 /和。

相切od=r ;③直线/和。

0相离^d>r.2. 在中,zC= 90°, BC=3cm, AC=4cm,以点 C 为圆心,以2.5cm 为半径画圆,则。

C 与直线AB 的位置关系是() A,相交 B.相切 C.相离 【答案】A 【解析】解:过C 作CD LAB 于。

,如图所示: A ABC 中,L.C — 90, AC= 4, BC = 3, ・・・AB =、泌=5,7 A ABC^Jm=^-ACxBC=预8x CD, 2 2・•. 3 X 4 = 5 CD ,CD= 2.4<2.5, 即』< r, .••以2.5为半径的。

C 与直线AB 的关系是相交; 故选A.过C 作CD LAB 于C,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出 d<r,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此 题的关键是能正确作出辅助线,并进一步求出CO 的长,注意:直线和圆的位置关系有: 相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3, 如图,已知。

是MBC 的内切圆,切点为。

、E 、 尸,如果AE=2, CD= 1, BF= 3,则内切圆的半 径『= .BD【答案】1【解析】解:・.・。

人教版九年级上《24.2.3切线的判定和性质》同步练习(含答案)

人教版九年级上《24.2.3切线的判定和性质》同步练习(含答案)

2022-2023人教版数学九年级上册同步练习24.2.3 切线的判定和性质一.选择题(共15小题)1.如图,在以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切,切点为C,若大圆的半径是13,AB=24,则小圆的半径是()A.4B.5C.6D.72.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()A.1.5B.2C.2.5D.33.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是()A.25°B.65°C.50°D.75°4.如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为()A.1B.2C.D.25.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.16.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.37.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3B.2C.5D.9.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1B.3C.5D.1或511.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.12.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC 相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线13.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D 是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为()A.1个B.2个C.3个D.4个14.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60°,直线MN从如图位置向右平移,下列结论①l1和l2的距离为2 ②MN=③当直线MN与⊙O相切时,∠MON=90°④当AM+BN=时,直线MN与⊙O相切.正确的个数是()A.1B.2C.3D.415.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B 的方向移动,那么()秒钟后⊙P与直线CD相切.A.4B.8C.4或6D.4或8二.填空题(共6小题)16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x 轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为.17.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,若∠ABC=25°,则∠P的度数为.18.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=;(2)当OA=2时,AP=.19.如图所示,直线y=x﹣2与x轴、y轴分别交于M,N两点,⊙O的半径为1,将⊙O以每秒1个单位的速度向右作平移运动,当移动s时,直线MN 恰好与圆O相切.20.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为秒.21.已知,如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆于G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是(只需填序号)三.解答题(共9小题)22.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD ⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.23.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B (0,4),C(0,16),求该圆的直径.24.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.25.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.(1)求证:AE=CD;(2)求证:直线AB是⊙O的切线.26.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.27.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.(1)求证:CD是⊙O的切线.(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.28.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.29.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.30.如图,AB是半径为2的⊙O的直径,直线m与AB所在直线垂直,垂足为C,OC=3,点P是⊙O上异于A、B的动点,直线AP、BP分别交m于M、N两点.(1)当点C为MN中点时,连接OP,PC,判断直线PC与⊙O是否相切并说明理由.(2)点P是⊙O上异于A、B的动点,以MN为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵AB=24,OB=OA=13,∴BC=12;在Rt△OCB中,∴OC==5.故选:B.2.【解答】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=5﹣3=2.故选:B.3.【解答】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∠COD=2∠A=40°,∴∠C=90°﹣40°=50°,故选:C.4.【解答】解:∵直线AB与⊙O相切于点A,连接OA则∠OAB=90°.∵OA=1,∴OB=.故选:B.5.【解答】解:设直线AM与⊙O相切于点K,连接OK.∵AM是⊙O的切线,∴OK⊥AK,∴∠AKO=90°∵∠A=30°,∴AO=2OK=4,∵OD=2,∴AD=OA﹣OD=2,故选:C.6.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.7.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.8.【解答】解:如图所示:MK=,故选:B.9.【解答】解:∵PA是⊙O的切线,∴∠PAO=90°,∴∠AOP=90°﹣∠P=50°,∵OB=OC,∴∠AOP=2∠B,∴∠B=∠AOP=25°,故选:B.10.【解答】解:当圆P在y轴的左侧与y轴相切时,平移的距离为3﹣2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选:D.11.【解答】解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.12.【解答】解:A、如图1,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确;B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图2,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图2,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.13.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,∵AB是⊙O的直径,CD不是直径,∴AB≠CD,∴PO≠DC,故(3)错误;(4)由(2)证得四边形PCBD是菱形,∴∠ABC=∠ABD,∴弧AC=弧AD,故(4)正确;故选:C.14.【解答】解:如图1,∵⊙O与l1和l2分别相切于点A和点B,∴OA⊥l1,OB⊥l2,∵l1∥l2,∴点A、B、O共线,∴l1和l2的距离=AB=2,所以①正确;作NH⊥AM,如图1,则四边形ABNH为矩形,∴NH=AB=2,在Rt△MNH中,∵∠1=60°,∴MH=NH=,∴MN=2MH=,所以②正确;当直线MN与⊙O相切时,如图2,∠1=∠2,∠3=∠4,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴∠MON=90°,所以③正确;过点O作OC⊥MN于C,如图2,=S△OAM+S△OMN+S△OBN,∵S四边形ABNM∴•1•AM+•1•BN+MN•OC=(BN+AM)•2,即(AM+BN)+MN•OC=AM+BN,∵AM+BN=,MN=,∴OC=1,而OC⊥MN,∴直线MN与⊙O相切,所以④正确.故选:D.15.【解答】解:由题意CD与圆P1相切于点E,点P1只能在直线CD的左侧,∴P1E⊥CD又∵∠AOD=30°,r=1cm∴在△OEP1中OP1=2cm又∵OP=6cm∴P1P=4cm∴圆P到达圆P1需要时间为:4÷1=4(秒),或P1P=8cm∴圆P到达圆P1需要时间为:8÷1=8(秒),∴⊙P与直线CD相切时,时间为4或8秒.故选:D.二.填空题(共6小题)16.【解答】解:若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(﹣1,0)或(1,0),而﹣1﹣(﹣4)=3,1﹣(﹣4)=5,所以点P的运动距离为3或5.故答案为3或5.17.【解答】解:由圆周角定理得,∠AOP=2∠ABC=50°,∵PA是⊙O的切线,AB是过切点A的直径,∴∠PAO=90°,∴∠P=90°﹣∠AOP=40°,故答案为:40°.18.【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°﹣2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°﹣120°﹣90°﹣90°=60°,故答案为:60°.(2)如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP===2,故答案为:2.19.【解答】解:作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,如图所示.设直线EF的解析式为y=x+b,即x﹣y+b=0,∵EF与⊙O相切,且⊙O的半径为1,∴b2=×1×|b|,解得:b=或b=﹣,∴直线EF的解析式为y=x+或y=x﹣,∴点E的坐标为(,0)或(﹣,0).令y=x﹣2中y=0,则x=2,∴点M(2,0).∵根据运动的相对性,且⊙O以每秒1个单位的速度向右作平移运动,∴移动的时间为2﹣秒或2+秒.故答案为:2﹣或2+.20.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为2或1021.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故答案为:①②④.三.解答题(共9小题)22.【解答】(1)证明:连结OC,如图,∵CD为切线,∴OC⊥CD,∵BD⊥DF,∴OC∥BD,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴BC平分∠ABD;(2)解:连结AE交OC于G,如图,∵AB为直径,∴∠AEB=90°,∵OC∥BD,∴OC⊥CD,∴AG=EG,易得四边形CDEG为矩形,∴GE=CD=8,∴AE=2EG=16,在Rt△ABE中,AB==4,即圆的直径为4.23.【解答】解:过圆心O′作y轴的垂线,垂足为D,连接O′A,∵O′D⊥BC,∴D为BC中点,∴BC=16﹣4=12,OD=6+4=10,∵⊙O′与x轴相切,∴O′A⊥x轴,∴四边形OAO′D为矩形,半径O′A=OD=10,24.【解答】解:(1)BD=DC.理由如下:连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴,∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=75°,∴∠DEC=75°,∴∠EDC=180°﹣75°﹣75°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=,又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线;25.【解答】解:(1)∵四边形ABCD是平行四边形∴AB=CD,∠B=∠ADC∵四边形ADCE是⊙O内接四边形∴∠ADC+∠AEC=180°∵∠AEC+∠AEB=180°∴∠ADC=∠AEB∴∠B=∠AEB∴AE=CD(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.∵AF是直径∴∠AEF=90°∴∠AFE+∠EAF=90°∵∠BAE=∠ECA,∠AFE=∠ACE∴∠AFE=∠BAE∴∠BAE+∠EAF=90°∴∠BAF=90°且AO是半径∴直线AB是⊙O的切线26.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.27.【解答】(1)证明:如图1,连结OC,∵点O为直角三角形斜边AB的中点,∴OC=OA=OB.∴点C在⊙O上,∵BD=OB,∴AB=DO,∵CD=CA,∴∠A=∠D,∴△ACB≌△DCO,∴∠DCO=∠ACB=90°,∴CD是⊙O的切线;(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,∵∠ABC=90°﹣∠A=90°﹣30°=60°,∴BE=BCcos60°=8×=4.28.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,29.【解答】解:(1)如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.30.【解答】解:(1)直线PC与⊙O相切,理由是:如图1,∵AC⊥MN,∴∠ACM=90°,∴∠A+∠AMC=90°,∵AB是⊙O的直径,∴∠APB=∠NPM=90°,∴∠PNM+∠AMC=90°=∠A+∠ABP,∴∠ABP=∠AMC,∵OP=OB,∴∠ABP=∠OPB,Rt△PMN中,C为MN的中点,∴PC=CN,∴∠PNM=∠NPC,∴∠OPC=∠OPB+∠NPC=∠ABP+∠PNM=∠AMC+∠PNM=90°,即OP⊥PC,∴直线PC与⊙O相切;(2)如图2,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴,即DC2=MC•NC∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC•NC=AC•BC;即AC•BC=DC2,∵AC=AO+OC=2+3=5,BC=3﹣2=1,∴DC2=5,∴DC=,∵MN⊥DD',∴D'C=DC=,∴以MN为直径的一系列圆经过两个定点D和D',此定点在C的距离都是.。

与圆有关的位置关系-切线的判定与性质专题复习练习题

与圆有关的位置关系-切线的判定与性质专题复习练习题

与圆有关的位置关系-切线的判定与性质专题复习练习题1.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是( )A.AB=4,AT=3,BT=5 B.∠B=45°,AB=ATC.∠B=55°,∠TAC=55° D.∠ATC=∠B2. 如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C =40°,则∠ABO的度数是( )A.50° B.40° C.25° D.20°3. 如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连结OB交⊙O 于点C.若AB=12,OA=5,则BC的长为( )A.5 B.6 C.7 D.84. 如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为( )A.12B.22C.32D.335. 如图,⊙O 过正方形ABCD 的顶点A 、B ,且与CD 相切,若正方形ABCD 的边长为2,则⊙O 的半径为( )A .1 B.52 C.43 D.546. 如图所示,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于______时,AC 才能成为⊙O 的切线.7. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,∠DCB=30°,过点D 作⊙O 的切线交AB 的延长线于点E ,若AB =4,则DE 的长为_______.8. 如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连结OC.若∠BCD =50°,则∠AOC 的度数为_______9. 如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF∥AB,则EF 的长度为______.10. 如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是_______.11. 如图,△ABC 中,AB =AC ,O 是BC 的中点,⊙O 与AB 相切于点D ,求证:AC 是⊙O 的切线.12. 如图,AB 是⊙O 的直径,点C 在⊙O 上(异于A 、B 两点),AD⊥CD. (1)若BC =3,AB =5,求AC 的长;(2)若AC是∠DAB的平分线,求证:直线CD与⊙O相切.13. 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.答案:1---5 DCDAD6. 60°7. 2 38. 80°.9. 2 310. 2 211. 证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD.∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∴AC是⊙O的切线.12. 解:(1)∵AB是⊙O的直径,∴∠ACB=90°.∵BC=3,AB=5,∴AC=AB2-BC2=52-32=4.(2)证明:∵AC是∠DAB的平分线,∴∠DAC=∠BAC.∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴直线CD与⊙O相切.13. 解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4.∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴NB=AB2-AN2=43,∴B(43,2).(2)证明:连结MC,NC,∵AN是⊙M的直径,∴∠ACN=∠NCB=90°.在Rt△NCB中,D为NB的中点,∴CD=12NB=ND,∴∠CND=∠NCD. ∵MC=MN,∴∠MCN=∠MNC.∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.。

圆的切线的判定与性质练习题

圆的切线的判定与性质练习题

圆的切线的判定与性质一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例3 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.例3已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.练习题1.如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.3(2008黄冈市)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.4. 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.5.如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC 的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.6.如图,已知⊙O1与⊙O2交于A,B,⊙O1的半径为17,⊙O 2的半径为10,O 1O 2=21,求AB 的长.7.如图,已知⊙O 1与⊙O 2交于A ,B 两点,过A 的直线交两圆于C ,D 两点,•G•为CD 的中点,BG 及其延长线交⊙O 1,⊙O 2于E ,F ,连结DF ,CE ,求证:CE=DF .8.某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上,向内放入两个半径为5cm 的钢球,测得上面一个钢球顶部高DC=16cm(钢管的轴截面如图所示), 求钢管的内直径AD 的长9.如图,⊙O 1和⊙O 2交于A 、B ,⊙O 1弦交⊙O 2于E ,⊙O 2弦AD 交⊙O 1于F ,若∠CAB=∠DAB ,求证:CE=DF 。

切线的性质与判定习题课专题

切线的性质与判定习题课专题

《切线的性质与判定习题课》专题班级 姓名1.切线的性质:①切线和圆只有 公共点;②切线和圆心的距离等于 ;③圆的切线 过切点的半径。

2. 切线的判定定理: .3. 当已知一条直线是某圆的切线时,切点的位置是确定的,辅助线常常是连接 ,得到半径,那么切线 这条半径。

4. 证明切线的方法:①当直线与圆有明确公共点时, ,证明直线 半径;②当直线与圆有没有明确公共点时,过圆心作直线的 ,证明垂线段 半径;5. 如图1,AB 与⊙O 切于点A ,⊙O 半径为3,AB =4,则OB =______6. 如图2,已知PA 是⊙O 的切线,切点为A , ⊙O 半径为3,∠APO = 30°,那么AP = .7. 如图3,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为 cm 。

8. 如图4,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 与C ,若∠A=25°,则∠D = 。

9. 如图5,∠ACB=60°,半径为1cm 的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离是 cm 。

10. 如图6,直线AB 、CD 相交于点O ,∠AOC=30°,半径为1cm 的⊙P 的圆心在射线OA 上,且与点O 的距离为6cm ,如果⊙P 以1cm /s 的速度沿A 向B 的方向移动,则经过 秒后⊙P 与直线CD 相切。

B OA 图1O C B A 图3 BOCA图5图2 AOD B PCCB OD图411. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠A=40°, 求∠C 的度数。

12. 如图,AB 是⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,E 是BC 边上的中点,连接PE ,求证:PE 是⊙O 的切线13.如图,AB 是⊙O 的直径,BC ⊥AB 于点B ,连接OC 交⊙O 于点E ,弦AD ∥OC ,(1)求证:点E 是BD 的中点;(2)求证:CD 是⊙O 的切线。

切线的性质及判定练习题

切线的性质及判定练习题

切线的性质及判定练习题一、填空题1、⊙O是ΔABC的外接圆,∠BOC=120°,∠BAC=2、⊙O半径为5,点O (0,0),则点P(4,2)在⊙O (填外、内)3、ΔABC中,AB=6,BC=8,AC=12,⊙O与ΔABC三边AB,BC,CA分别切于D、E、,F,则AD= ,BE= ,CF=4、直角三角形两直角边为3、4,则内切圆半径为,外接圆半径为5、如图1,PA,PB切⊙O于A,B,点 C、E分别在PA、PB上,且CE切⊙O于D,若PA=5cm ,则ΔPCE周长为;若∠P=50°,∠COE=6、圆的外切梯形ABCD中,AD∥BC,周长为20,则中位线长为7、等腰梯形各边与圆都相切,腰长为9cm,圆的直径为6cm,则梯形面积为8、⊙O内切于ΔABC,BC切⊙O于D,BD=3,DC=2, ΔABC周长为18,则AB长为9、正三角形的内切圆半径为,则正三角形边长为10、如图2,⊙O切ΔABC三边于D、E、F,∠A=40°,则∠FDE=11、如图3,AB、AC切⊙O于B、C,∠A=50 °,点P是⊙O上异于B、C的一个动点,∠BPC=12.圆中最大弦长为12,如果直线与圆相交,设直线与圆心的距离为d,则d的取值范围是____________ 。

13.Rt△ABC的斜边AB长为4,直角边AC长为2,若AB与⊙C相切,则⊙C的半径为_________。

14.已知OA=3,∠OAB=30°,以O为圆心,以3长为半径的圆与直线AB的关系是_________。

15.如图7—55,PA、PB分别切⊙O于A、B,∠P=70°,则∠C=_________度。

16.如图7—56,AB 切⊙O 于C ,AO 交⊙O 于D ,AD 的延长线交⊙O 于E ,若∠A=40°,则⋂EmC 的度数是_________。

二、选择题1.⊙O 的半径为6cm ,弦AB 的长为cm 36,以O 为圆心,以3cm 为半径作圆能与弦AB 有( )公共点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=( ) A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为( ) A.20° B.30° C.35° D.40°

第1题图 第2题图 第3题图

3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( ) A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于( ) A.80° B.50°或130° C.100° D.40°

第4题图 第5题图 第6题图

5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是( ) A.(5,3) B.(3,5) C.(5,4) D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为( ) A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是( ) A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数( ) A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是( ) A.AB=4,AT=3,BT=5 B.∠B=45°,AB=AT C.∠B=55°,∠TAC=55° D.∠ATC=∠B

第7题图 第8题图 第9题图

11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是( )

①AD⊥BC; ②∠EDA=∠B; ③OA=AC; ④DE是⊙O的切线. A.1个 B.2个 C.3个 D.4个 12.如图,△ABC中,AB=AC,以AB为直径的⊙O交AC于E,交BC于D,DF⊥AC于F.给出以下五个结论:①BD=DC;②CF=EF;③弧AE=弧DE;④∠A=2∠FDC;⑤DF是⊙O的切线.其中正确的有( ) A.5个 B.4个 C.3个 D.2个

第10题图 第11题图 第12题图

12.如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( ) A.3个 B.2个 C.1个 D.0个 二.填空题(共6小题) 13.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为 . 14.如图,PA、PB是⊙O的切线,A、B为切点,C是劣弧AB上的一点,∠P=50°,∠C= .

第13题图 第14题图 第15题图

15.如图,PA、PB、DE分别切⊙O于点A、B、C,如果PA=10,那么△PDE的周长是 .若∠P=5O°,那么∠DOE= . 16.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为3,则AD的长为 . 17.已知:如图,在△ABC中,CB=3,AB=4,AC=5,以点B为圆心的圆与AC相切于点D,则⊙B的半径为 .

第16题图 第17题图 第18题图

18.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为 . 三.解答题 19..如图,AE是圆O的直径,点B在AE的延长线上,点D在圆O上,且AC⊥DC,AD平分∠EAC。求证:BC是圆O的切线. 20.如图,已知△ABC,以AB为直径的⊙O交AC于点F,交BC于点D,且BD=CD,DF⊥AC于点F.求证:DF是⊙O的切线;

21.如图,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线CE交PO于C点,求证:PC=CD.

22.如图,OA、OB是⊙O的半径,OA⊥OB,点C是OB延长线上一点,过点C作⊙O的切线,点D是切点,连接AD交OB于点E.求证:CD=CE. 23.如图,PA切⊙O于点P,AB交⊙O于C,B两点,求证:∠APC=∠B. 24.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过D作⊙O的切线交AC于E,求证:DE⊥AC.

25.如图,AB是⊙O的直径,半径OC⊥AB,P是AB延长线上一点,PD切⊙O于点D,CD交AB于点E,判断△PDE的形状,并说明理由.

26.已知:如图,AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E. 求证:DE是⊙O的切线; 27.如图,OC是∠AOB的平分线,P是OC上一点,⊙P与OA相切于D,求证:OB与⊙P相切. 28.如图,△OAB为等腰三角形,OA=OB=2,AB=2,以O为圆心的⊙O半径为1, 求证:AB与⊙O相切.

29.如图,以等腰△ABC的腰AB为⊙O的直径交底边BC于D,DE⊥AC于E. 求证:(1)DB=DC;(2)DE为⊙O的切线.

《切线的性质与判定》典型例题 1.如图,AB是⊙0的直径,AE是弦,EF是⊙0的切线,E是切点,AF⊥EF,垂足为F,求证:AE平分∠FAB 2.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,=.求证: (1)AD∥OC; (2)CD是⊙O的切线.

3、如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

3.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.求⊙O的直径BE和线段BC的长。 4.如图,⊙O与△ABC的三边分别相切于点D、E、F,连接OB、OC. 求证:∠BOC=90°﹣∠A.

2016年11月12日切线性质与判定学组卷 参考答案与试题解析 一.选择题(共13小题) 1.(2013•保定校级模拟)如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是( )

A.(5,3) B.(3,5) C.(5,4) D.(4,5) 【解答】解:作PH⊥MN于H,连结PQ,PM, ∵M(2,0),N(0,8), ∴OM=2,ON=8, ∴MN=6, ∵PH⊥MN,

∴HM=HN=MN=3, ∴OH=OM+MH=2+3=5, ∵⊙P与x轴相切于点Q, ∴PQ⊥x轴, ∴四边形OQPH为矩形, ∴PQ=OH=5, ∴PM=PQ=5, 在Rt△PMH中,PH==4,

∴P(4,5). 故选D. 2.(2012•合川区模拟)如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为( )

A.5 B.4 C.3 D.2 【解答】解:连接AC,BC,如图所示:

∵PC为圆O的切线, ∴∠ACP=∠B,又∠P=∠P, ∴△ACP∽△CBP,

∴=, 又∵PC=2,PA=1, ∴BP==4. 故选B 3.(2012•温州模拟)如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=( )

A.80° B.60° C.40° D.20° 【解答】解:∵PA为圆O的切线, ∴PA⊥AO, ∴∠PAO=90°,又∠PAB=40°, ∴∠BAO=90°﹣40°=50°, 又∵OA=OB, ∴∠BAO=∠B=50°, 则∠AOB=180°﹣50°﹣50°=80°. 故选A

4.(2011•集美区校级一模)如图,已知AB为⊙O的直径,PC切⊙O于C交AB的延长线于点P,∠CAP=35°,那么∠CPO的度数等于( ) A.15° B.20° C.25° D.30° 【解答】解:在△AOC中,OA=OC(⊙O的半径), ∴∠OAC=∠OCA(等边对等角); 又∠CAP=35°, ∴∠OCA=35°,∠POC=70°(同弧所对的圆周角是所对的圆心角的一半); 又∵PC切⊙O于C, ∴OC⊥BC, ∴∠PCO=90°; 在Rt△POC中,∠CPO=90°﹣∠POC(直角三角形的两个锐角互余), ∴∠CPO=20°; 故选B.

5.(2011•樊城区模拟)如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为( )

A.20° B.30° C.35° D.40° 【解答】解:连接OC, ∵CD是切线, ∴∠OCD=90°, ∵∠A=35°, ∴∠COD=2∠A=70°, ∴∠D=90°﹣70°=20°. 故选A.

6.(2002•呼和浩特)如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于( )

A.80° B.50°或130° C.100° D.40° 【解答】解:连接AB, 由切线长定理知AP=BP, ∠PAB=∠PBA=(180°﹣∠P)÷2=50°, 由弦切角定理知,∠C=∠PAB=50°, 若C点在劣弧AB上,则根据圆内接四边形的性质知,∠C=180°﹣50°=130°, 由选项,知只有B符合.

相关文档
最新文档