12.几何综合一

合集下载

六年级奥数 几何;第4讲;几何综合_一_;学生版

六年级奥数 几何;第4讲;几何综合_一_;学生版

第四讲 几何综合(一)1. 熟练运用直线型面积的各种模型。

2.熟练掌握平面图形中的割补、旋转、平移、差不变等各种方法。

3. 针对勾股定理、弦图等特定方法熟练应用。

模块一:割补思想FEADCB例题44例题33例题22例题11【巩固】在图中,三角形ABC 和DEF 是两个完全相同的等腰直角三角形,其中DF长9厘米,CF 长3厘米,那么阴影部分的面积是多少平方厘米?C 1D 1E 1A 1EBC DA例题77例题66例题55【巩固】(2008年第六届“希望杯”五年级第二试)如图 (a ),ABCD 是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图(b ))拼成.那么,长方形ABCD 的面积是多少平方厘米?DC BA【巩固】如图,正方形硬纸片ABCD 的每边长20厘米,点E 、F 分别是AB 、BC 的中点,现沿图(a )中的虚线剪开,拼成图(b )所示的一座“小别墅”,则图(b )中阴影部分的面积是平方厘米. (b)(a)A⑤④③②①例题101例题99例题88【巩固】(2008年“迎春杯”初试六年级)一个等腰直角三角形和一个正方形如左下图摆放,①、②、③这三块的面积比依次为1:4:41.那么,④、⑤这两块的面积比是 .⑤④③②①CD150°B A板块二、旋转平移思想例题1例题121例题111【巩固】如图所示,外侧大正方形的边长是10cm ,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为226cm,最小的正方形的边长为多少厘米?例题161例题171例题151例题141PDCBA2例题212例题202例题191例题181FECB DAEDCBAGFEDCBA例题252例题242例题232ADDCEBAABCD30°A 例题2例题282例题272例题262FBAABCD练习44练习33练习22练习11。

几何综合(含答案)

几何综合(含答案)

几何综合(通用版)一、单选题(共12道,每道8分)1.如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE:EC=1:2,BE交AD于点P,则AP:PD的值为( )A. B.C. D.答案:A解题思路:如图,过点D作DF∥BE,交AC于点F,∵BD=CD,∴EF=CF.∵,∴AE=EF=CF,∴,∴.故选A.试题难度:三颗星知识点:平行线分线段成比例2.如图,已知AD为等腰三角形ABC底边上的高,且tan∠B=.AC上有一点E,满足AE:EC=2:3.则tan∠ADE是( )A. B.C. D.答案:C解题思路:如图,过点E作EF⊥AD于点F,∵△ABC为以BC为底边的等腰三角形,,∴.∵AD⊥BC,∴EF∥BC.设AD=4t,则DC=3t,AC=5t,∴,.∵,∴AE=2t,EC=3t,,∴,∴.故选C.试题难度:三颗星知识点:相似三角形的判定和性质3.已知△ABC中,∠C=90°,,D是AC上一点,∠CBD=∠A,则sin∠ABD=( )A. B.C. D.答案:A解题思路:如图,过点D作DE⊥AB于点E,在Rt△ABC中,,设BC=a,则AC=2a,∴.∵∠CBD=∠A,∴,∴,,∴在Rt△CBD中,.易得△ADE∽△ABC,∴,∴,∴.故选A.试题难度:三颗星知识点:相似三角形的判定和性质4.如图,在Rt△ABC中,∠C=90°,AD是角平分线,点E在AC上,AB=12,,AE=6,∠BAC=50°.则∠CDE的度数为( )A.25°B.40°C.50°D.65°答案:A解题思路:∵Rt△ABC中,∠C=90°,∠BAC=50°,∴∠B=40°.∵AD平分∠CAB,∴∠EAD=∠DAB=25°.∵AB=12,,AE=6,∴.∴△AED∽△ADB.∴∠EDA=∠B.∵∠CDE+∠EDA=∠B+∠DAB,∴∠CDE=∠DAB=25°.故选A.试题难度:三颗星知识点:三角形外角的性质5.如图,在四边形ABCD中,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为( )A.3B.4C.5D.6答案:C解题思路:如图,延长BA,CD交于点E,∵∠B=∠AMD=∠C,∴∠DMC=∠BAM,∴△ABM∽△MCD,∴.又MC=BM,AB=8,CD=9,∴MC=,∴BC=2MC=.∵∠B=∠C=45°,∴∠E=90°,BE=CE=12,∴AE=4,DE=3,∴AD=5.故选C.试题难度:三颗星知识点:相似三角形的判定与性质6.如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边三角形AOB,C为x轴正半轴上的一动点(),连接BC,以BC为边在第四象限内作等边三角形CBD,直线DA交y轴于点E.则点E的坐标为( )A. B.(0,2)C. D.(0,4)答案:A解题思路:∵△OAB与△BCD均为等边三角形,∴OB=AB,∠OBA=∠OAB=∠AOB=60°,BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS),∴∠BAD=∠BOC=60°,∴∠OAE=180°-∠OAB-∠BAD=60°.在Rt△AOE中,∠OAE=60°,OA=2,∴,∴点E的坐标为.故选A.试题难度:三颗星知识点:一次函数综合题7.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边中点,连接BO交AD于点F,OE⊥OB交BC边于点E.当时,的值为( )A. B.C. D.答案:C解题思路:如图,过点O作OG⊥AC交BC于点G,∴∠GOA=90°,即∠FOA+∠GOF=90°.∵OE⊥OB,∴∠EOG+∠GOF=90°,∴∠FOA=∠EOG.∵AD⊥BC,∴∠OAF+∠C=90°,∵∠OGE+∠C=90°,∴∠OGE=∠OAF,∴△OGE∽△OAF,∴.设AB=a,则AC=3a,OG=0.5a,OA=1.5a,∴,即.故选C.试题难度:三颗星知识点:相似三角形的判定与性质8.如图,在Rt△ABC中,∠A=90°,AB=AC=,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是( )A.16B.18C. D.答案:A解题思路:如图,过点F作FD⊥AC于点D,∴∠EDF=∠A=90°,∴∠ABE+∠AEB=90°.∵EF⊥BE,∴∠BEF=90°,∴∠FED+∠AEB=90°,∴∠ABE=∠FED,∴Rt△ABE∽Rt△DEF,∴.∵AB=AC=,点E为AC的中点,∴,.设DF=t,则DE=2t,在Rt△CDF中,∠C=45°,∴DC=DF=t,∴,解得.∴.故选A.试题难度:三颗星知识点:相似三角形的判定和性质9.如图,在中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为( )A.8B.9.5C.10D.11.5答案:A解题思路:∵四边形ABCD为平行四边形,AB=6,AD=9,∴AB∥CD,AD∥BC,BC=9,∴∠DAE=∠AEB.∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=6,∴EC=3.∵∠ABE=∠ECF,∠CEF=∠AEB,∴△ABE∽△FCE,∴.∵BG⊥AE,∴∠AGB=90°,AG=GE.在Rt△ABG中,AB=6,BG=,∴,∴,∴.故选A.试题难度:三颗星知识点:相似三角形的性质及判定10.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,连接BF,则△BFG的周长为( )A. B.C. D.4答案:B解题思路:由题意,易得四边形ABED为矩形,AD=BE=EC=,∴∠DEC=∠ADE=90°.在Rt△DEC中,∠C=60°,,∴DE=AB=3.∵△DEF为等边三角形,∴DE=DF=EF=3,∠FDE=60°,∴∠ADG=30°,∴在Rt△AGD中,AG=1,GD=2,∴GB=AB-AG=2,GF=DF-GD=3-2=1.∵∠AGD=∠FGB,∴△FGB≌△AGD,∴FB=AD=,∴.故选B.试题难度:三颗星知识点:解直角三角形11.如图,CB,CD分别是钝角三角形AEC和锐角三角形ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.其中一定正确的结论为( )A.①②③B.①②④C.②③④D.①③④答案:B解题思路:①由题意得,AE=2AB=2AC.故结论①正确.②由题意得,AE=2AB=2AC=4AD,∴.又∵∠EAC=∠CAD,∴△EAC∽△CAD,∴,∴CE=2CD.故结论②正确.③由②中△EAC∽△CAD得,∠ACD=∠E,若∠ACD=∠BCE,则∠E=∠BCE,可得BC=BE,进而得到AC=AB=BC,即△ABC为等边三角形.而由题干条件只能说明△ABC为等腰三角形,并不能得到△ABC为等边三角形.故结论③不一定正确.④由AC=AB得,∠ACB=∠ABC,∴∠ACD+∠DCB=∠E+∠BCE.∵∠ACD=∠E,∴∠DCB=∠BCE,∴CB平分∠DCE.故结论④正确.故选B.试题难度:三颗星知识点:三角形的中线12.如图,在边长为的正方形ABCD中,E是AB边上的一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=( )A. B.C. D.答案:B解题思路:如图,过点H作MN⊥AD,交AD于点N,交BC于点M,延长BC至点P,使CP=BE,连接HP,∵四边形ABCD是正方形,∴BC=CD,∠EBC=∠CDG=∠BCD=90°.∵BE=DG,∴Rt△CBE≌Rt△CDG,∴CE=CG,∠ECB=∠GCD,∠BEC=∠DGC,∴∠ECG=∠BCD=90°.∵CF⊥EG,∴CH=HE,∠CEH=∠HCG=45°.∵∠DGC=∠GCP,∴∠HEC+∠BEC=∠HCG+∠GCP,即∠HEB=∠HCP.∵BE=CP,∴△HEB≌△HCP(SAS),∴HB=HP,∠EHB=∠CHP.∵∠EHC=90°,∴∠BHP=90°,∴△BHP为等腰直角三角形.∵BH=8,MN⊥AD,∴.∵,∴.易得Rt△HNF∽Rt△HMC∽Rt△GNH,∴∴,∴.故选B.试题难度:三颗星知识点:旋转结构。

【中考冲刺】2020中考数学题型专项(十二)几何综合题

【中考冲刺】2020中考数学题型专项(十二)几何综合题

题型专项(十二)几何综合题几何综合题是近年来中考的热点题型,2019年云南中考(全省统考)第23题,2018年云南中考第23题,2018年昆明中考第23题,2017年云南中考(全省统考)第23题,都是几何综合题作为压轴题.几何综合题通常把三角形、四边形、圆、方程和函数等知识综合起来,辅以平移、旋转、轴对称等变换,或实践操作探究,或类比探究,对有关数学问题进行证明和计算,考查同学们应用所学数学知识解决综合问题的能力.题目往往综合性较强,计算量较大,很容易造成同学们丢分,复习时应予以重视.类型1 与“三点定圆”有关的几何综合题【例1】 (2019·云南T23·12分)如图,AB 是⊙C 的直径,M ,D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB ·DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED =45.(1)求证:△DEB ∽△DAE ;【思路点拨】 由∠D =∠D ,DE 2=DB ·DA ,根据“两边对应成比例且夹角相等,两三角形相似”,证得△DEB ∽△DAE.证明:∵DE 2=DB ·DA , ∴DE DA =DBDE.1分 又∵∠BDE =∠EDA , ∴△DEB ∽△DAE.3分 (2)求DA ,DE 的长;【思路点拨】 先利用圆周角定理的推论、线段垂直平分线的性质、三角函数的概念等,求出AB ,AE ,BE 的长,然后根据△DEB ∽△DAE 得出对应边成比例而列出关于DA ,DE 的方程组求解.解:∵AB 是⊙O 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF.又∵AE =BF ,BF =10,∴AB =BF =10. ∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8, ∴BE =AB 2-AE 2=6.5分 ∵△DEB ∽△DAE , ∴DE DA =DB DE =EB AE =68=34. ∵DB =DA -AB =DA -10,∴⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34,解得⎩⎪⎨⎪⎧DA =1607,DE =1207.经检验,⎩⎪⎨⎪⎧DA =1607,DE =1207是⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34的解.∴⎩⎪⎨⎪⎧DA =1607,DE =1207.8分【一题多解】 解法2:∵AB 是⊙C 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF. 又∵AE =EF ,BF =10, ∴AB =BF =10.∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED.∴cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8,BE =AB 2-AE 2=6.连接CE ,设ED 与BF 交于点G.∵∠DBF =∠A +∠AFB =2∠A ,∠DCE =2∠A , ∴∠DBF =∠DCE.∴BF ∥CE.∵∠CED =∠CEB +∠BED =∠CEB +∠A =∠CEB +∠AEC =90°,∴∠BGE =∠CED =90°. 在Rt △BEG 中,sin ∠BED =sin ∠EAD =BG BE =BE AB =610=35,∴BG =185.∵BF ∥CE ,∴△DBG ∽△DCE.∴BG CE =DB DC ,即1855=DB DB +5.解得DB =907. 经检验,DB =907是1855=DBDB +5的解.∴DA =907+10=1607.∴DE 2=907×1607.∴DE =1207.(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.【思路点拨】 由于点F 在B ,E ,M 三点确定的圆上,所以F ,B ,E ,M 四点共圆,而∠BEF =90°,所以可知B ,E ,F 三点在以BF 为直径的圆上,所以M 也在以BF 为直径的圆上.要求MD 的长,由于MD =AD -AM ,需先求AM ,这可通过解Rt △AMF 得出.解:连接FM.∵BE ⊥AF ,即∠BEF =90°,∴BF 是B ,E ,F 三点确定的圆的直径.∵点F 在B ,E ,M 三点确定的圆上,即四点F ,E ,B ,M 在同一个圆上. ∴点M 在以BF 为直径的圆上. ∴FM ⊥AB.10分在Rt △AMF 中,由cos ∠FAM =AMAF,得AM =AF ·cos ∠FAM =2AE ·cos ∠EAB =2×8×45=645.11分∴MD =DA -AM =1607-645=35235.∴MD =35235.12分(1)求线段长度的方法有:①将线段放到直角三角形中利用勾股定理和三角函数概念求解;②将线段放到相似三角形中求解;③通过设未知量构造方程(组)求解.(2)“三点定圆”问题:①不在同一直线上的三点确定一个圆,圆心为顺次连接三点所形成的三角形三边垂直平分线的交点.锐角三角形外接圆的圆心在三角形内部,直角三角形外接圆的圆心在斜边中点处,钝角三角形外接圆的圆心在三角形外部;②解决“三点定圆”问题,通常先根据已知三点确定圆的圆心和直径(或半径),再由第四点也在该圆上用圆周角定理及其推论,以及其他知识解决问题.1.(2018·云南)如图,在▱ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC ,▱ABCD 的面积为S ,由A ,E ,F 三点确定的圆的周长为l.(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.解:(1)S =60.(2)证明:延长AE 与BC 的延长线交于点H. ∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠ADE =∠HCE ,∠DAE =∠CHE. ∵点E 为CD 的中点,∴CE =ED. ∴△ADE ≌△HCE (AAS ).∴AD =HC ,AE =HE.∴AD +FC =HC +FC ,即AF =FH. ∴∠FAE =∠CHE. 又∵∠DAE =∠CHE ,∴∠DAE =∠FAE.∴AE 平分∠DAF. (3)连接EF. ∵AE =BE ,AE =HE , ∴AE =BE =HE.∴∠BAE =∠ABE ,∠HBE =∠BHE. ∵∠DAE =∠CHE ,∴∠BAE +∠DAE =∠ABE +∠HBE ,即∠DAB =∠CBA. ∵∠DAB +∠CBA =180°.∴∠CBA =90°.∴AB 2+BF 2=AF 2,即16+(5-FC )2=(FC +AD )2=(FC +5)2,解得FC =45.∴AF =FC +AD =45+5=295.∵AE =HE ,AF =FH ,∴FE ⊥AH. ∴AF 是△AEF 的外接圆的直径. ∴△AEF 的外接圆的周长l =29π5. 2.如图,在矩形ABCD 中,AB =4,BC =8,E ,F 分别为AD ,BC 边上的点,将矩形ABCD 沿EF 折叠,使点A 落在BC 边的点G 处,点B 落在点H 处,AG 与EF 交于点O.(1)如图1,求证:以A ,F ,G ,E 为顶点的四边形是菱形;(2)如图2,当△ABG 的外接圆与CD 相切于点P 时,求证:点P 是CD 的中点; (3)如图2,在(2)的条件下,求AGEF的值.解:(1)证明:连接AF.由折叠性质可知,OA =OG ,EA =EG ,FA =FG ,∠AOE =∠GOF =90°. ∵四边形ABCD 是矩形, ∴AD ∥BC.∴∠AEO =∠GFO. 在△AEO 和△GFO 中, ⎩⎪⎨⎪⎧∠AEO =GFO ,∠AOE =∠GOF =90°,OA =OG ,∴△AEO ≌△GFO (AAS ).∴EA =FG. ∴EA =EG =FA =FG.∴四边形AFGE 是菱形. (2)证明:连接OP.∵四边形ABCD 是矩形, ∴∠B =∠D =∠C =90°.∵OA =OG ,∴点O 是Rt △ABG 的外接圆圆心. ∵⊙O 与CD 相切于点P ,∴OP ⊥CD. ∴ED ∥OP ∥FC.∴OE OF =PD PC .∵△AEO ≌△GFO ,∴OE =OF. ∴PD =PC ,即点P 是CD 的中点.(3)延长PO 交AB 于点Q ,则AQ =QB =12AB =2,∠AQO =90°.设⊙O 的半径为x ,则OG =OA =OP =x ,OQ =8-x. 在Rt △AQO 中,AQ 2+OQ 2=OA 2, ∴22+(8-x )2=x 2.解得x =174.∴OA =OG =OP =174,AG =172,OQ =154.∵OP ∥FC ,∴∠AOQ =∠FGO.又∵∠AQO =∠FOG =90°,∴△AQO ∽△FOG.∴AQ OF =OQ OG .∴2OF =154174,解得OF =3415. ∴EF =6815.∴AG EF =158.3.【发现】如图1,∠ACB =∠ADB =90°,那么点D 在经过A ,B ,C 三点的圆上.【思考】如图2,如果∠ACB =∠ADB =α(α≠90°)(点C ,D 在AB 的同侧),那么点D 还在经过A ,B ,C 三点的⊙O 上吗?我们知道,如果点D 不在经过A ,B ,C 三点的圆上,那么点D 要么在⊙O 外,要么在⊙O 内,以下该同学的想法说明了点D 不在⊙O 外.请结合图4证明点D 也不在⊙O 内.【结论】综上可得结论,如果∠ACB =∠ADB =α(点C ,D 在AB 的同侧),那么点D 在经过A ,B ,C 三点的圆上,即A ,B ,C ,D 四点共圆.【应用】利用上述结论解决问题:如图5,已知△ABC 中,∠C =90°,将△ACB 绕点A 顺时针旋转α(α为锐角)得△ADE ,连接BE ,CD ,延长CD 交BE 于点F.(1)用含α的代数式表示∠ACD 的度数; (2)求证:点B ,C ,A ,F 四点共圆; (3)求证:点F 为BE 的中点.解:【思考】证明:如图,假设点D 在⊙O 内,延长AD 交⊙O 于点E ,连接BE ,则∠AEB =∠ACB ,∵∠ADB 是△BDE 的外角,∴∠ADB >∠AEB. ∴∠ADB >∠ACB ,这与条件∠ACB =∠ADB 矛盾.∴点D 也不在⊙O 内.∴点D 即不在⊙O 内,也不在⊙O 外,点D 在⊙O 上. 【应用】(1)由题意可知,AC =AD ,∠CAD =α, ∴∠ACD =90°-12α.(2)证明:∵AB =AE ,∠BAE =α, ∴∠ABE =90°-12α.∴∠ACD =∠ABE.∴B ,C ,A ,F 四点共圆.(3)证明:∵B ,C ,A ,F 四点共圆, ∴∠BFA +∠BCA =180°.又∵∠ACB =90°,∴∠BFA =90°.∴AF ⊥BE. ∵AB =AE ,∴BF =EF ,即点F 为BE 的中点.类型2 与图形变换有关的几何综合题【例2】 (2019·昆明模拟)在矩形ABCD 中,AB =8,P 是AB 边上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,CG 交AD 于点E ,且BE ∥PG ,BE 交PC 于点F.(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;【思路点拨】 由AB =DC ,∠A =∠D =90°,AE =DE ,即可证明△AEB ≌△DEC. 【自主解答】 证明:∵四边形ABCD 为矩形, ∴AB =DC ,∠A =∠D. 又∵E 为AD 的中点, ∴AE =DE.∴△AEB ≌△DEC (SAS ).(2)如图2,请判断△PBF 的形状,并说明理由;【思路点拨】 结论:△PBF 为等腰三角形,证明∠BPF =∠BFP. 【自主解答】 解:△PBF 为等腰三角形.理由如下: 在矩形ABCD 中,∠ABC =90°, ∵△BPC 沿PC 折叠得到△GPC , ∴∠BPF =∠GPF .∵BE ∥PG , ∴∠GPF =∠BFP. ∴∠BPF =∠BFP. ∴BP =BF.∴△PBF 为等腰三角形.(3)如图2,①当AD =20时,求BP 的长;②当BP =5时,求BE ·EF 的值.【思路点拨】 ①根据△ABE ∽△DEC 得出比例式,列方程求出AE ,DE 的长,继而求出CE ,BE 的长,再由△ECF ∽△GCP 得出比例式,列方程求出BP 的长.②连接FG ,证出△GEF ∽△EAB ,得出比例式EF GF =ABBE ,从而把求BE ·EF转化为求AB ·GF.【自主解答】 解:①∵BE ∥PG ,∴∠BEC =∠PGC =90°. ∴∠AEB +∠CED =90°.∵∠AEB +∠ABE =90°,∴∠CED =∠ABE. 又∵∠A =∠D =90°,∴△ABE ∽△DEC. ∴AB AE =DE DC. 设AE =x ,则DE =20-x.∴8x =20-x8.解得x 1=4,x 2=16.经检验,x 1=4和x 2=16是原方程的解. ∵P 在AB 上,当P 与A 重合时AE 最大为11.6. 当G 在AD 上时,G 与E 重合,AE 最小为20-421, ∴AE =4,DE =16. ∴CE =85,BE =4 5. 由折叠的性质得,BP =PG , ∴BP =BF =PG.∵BE ∥PG ,∴△ECF ∽△GCP. ∴EF PG =ECGC. 设BP =BF =PG =y ,∴45-y y =8520.∴y =205-40.∴BP =205-40. ②连接FG ,∵BF ∥PG ,BF =PG ,∴四边形BFGP 为平行四边形. ∴BP =GF ,BP ∥GF. ∴∠GFE =∠ABE.又∵∠GEF =∠BAE =90, ∴△GEF ∽△EAB.∴EF GF =ABBE.∴BE ·EF =AB ·GF =AB ·BP =8×5=40.与图形变换有关的几何综合题,常涉及特殊三角形和特殊四边形的判定,线段之间的数量关系和位置关系探究,图形之间的关系探究等,解决这类问题,首先应熟练掌握图形的平移、旋转及轴对称的性质,明确图形变换前后哪些是不变的量,哪些是变化的量,然后用全等、相似、解直角三角形、方程和函数等数学模型求解.1.(2018·昆明T23·12分)如图1,在矩形ABCD 中,P 为CD 边上一点(DP<CP ),∠APB =90°.将△ADP 沿AP 翻折得到△AD ′P ,PD ′的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N.(1)求证:AD 2=DP ·PC ;(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC ,分别交PM ,PB 于点E ,F.若DP AD =12,求EFAE的值.解:(1)证明:在矩形ABCD 中, ∵AD =BC ,∠C =∠D =90°, ∴∠DAP +∠APD =90°. ∵∠APB =90°, ∴∠CPB +∠APD =90°. ∴∠DAP =∠CPB.∴△ADP ∽△PCB.∴AD PC =DPCB .∴AD ·CB =DP ·PC. ∵AD =BC ,∴AD 2=DP ·PC.(2)四边形PMBN 为菱形,理由如下: 在矩形ABCD 中,CD ∥AB. ∵BN ∥PM ,∴四边形PMBN 为平行四边形. ∵△ADP 沿AP 翻折得到△AD ′P.∴∠APD =∠APM.∵CD ∥AB ,∴∠APD =∠PAM. ∴∠APM =∠PAM.∵∠APB =90°,∴∠PAM +∠PBA =90°, ∠APM +∠BPM =90°. ∴∠PBA =∠BPM. ∴PM =MB.∴四边形PMBN 为菱形. (3)解法一: ∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB. ∵四边形ABCD 为矩形, ∴CD ∥AB 且CD =AB. 设DP =a ,则AD =2DP =2a , 由AD 2=DP ·PC ,得PC =4a , ∴DC =AB =5a.∴MA =MB =5a2.∵CD ∥AB ,∴∠ABF =∠CPF ,∠BAF =∠PCF. ∴△BFA ∽△PFC. ∴AF CF =AB CP =5a 4a =54.∴AF AC =59. 同理△MEA ∽△PEC. ∴AE CE =AM CP =5a24a =58. ∴AE AC =513. ∴EF AC =AF AC -AE AC =59-513=20117. ∵EF AC ∶AE AC =EF AE , ∴EF AE =20117∶513=49. 解法二:图3如图3,过点F 作FG ∥PM 交MB 于点G.∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB.∵四边形ABCD 为矩形,∴CD ∥AB 且CD =AB.设DP =a ,则AD =2DP =2a ,由AD 2=DP ·PC ,得PC =4a ,∴DC =AB =5a.∴MA =MB =5a 2. ∵CD ∥AB ,∴∠CPF =∠ABF ,∠PCF =∠BAF.∴△PFC ∽△BFA.∴PF BF =CP AB =4a 5a =45. ∵FG ∥PM ,∴MG BG =PF BF =45. ∴MG MB =49. ∵AM =MB ,∴MG AM =49. ∵FG ∥PM ,∴EF AE =MG AM =49.2.(2019·曲靖麒麟区模拟)已知,正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点M ,N ,AH ⊥MN 于点H.(1)如图1,当∠MAN 绕点A 旋转到BM =DN 时,请你直接写出AH 与AB 的数量关系:AH =AB ;(2)如图2,当∠MAN 绕点A 旋转到BM ≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立,请写出理由,如果成立,请证明;(3)如图3,已知∠MAN =45°,AH ⊥MN 于点H ,且MH =2,NH =3,求AH 的长.(可利用(2)得到的结论)解:(2)数量关系成立.理由如下:延长CB 至E ,使BE =DN.∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABE =90°.在Rt △AEB 和Rt △AND 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADN ,BE =DN ,∴Rt △AEB ≌Rt △AND (SAS ).∴AE =AN ,∠EAB =∠NAD.∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =∠EAM =45°.∴∠EAM =∠NAM.在△AEM 和△ANM 中,⎩⎪⎨⎪⎧AE =AN ,∠EAM =∠NAM ,AM =AM ,∴△AEM ≌△ANM (SAS ).∴S △AEM =S △ANM ,EM =MN.∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH.(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴BM =2,DN =3,AB =AH =AD ,∠B =∠D =90°.∵∠BAM =∠MAH ,∠HAN =∠DAN ,∴∠BAD =2∠MAH +2∠HAN =2∠MAN =90°.分别延长BM 和DN 相交于点C ,可得正方形ABCD ,∴AH =AB =BC =CD =AD.设AH =x ,则MC =x -2,NC =x -3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴52=(x -2)2+(x -3)2.解得x 1=6,x 2=-1(不符合题意,舍去).∴AH =6.3.(2019·天津)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.(1)如图1,求点E 的坐标;(2)将矩形CODE 沿x 轴向右平移,得到矩形C ′O ′D ′E ′,点C ,O ,D ,E 的对应点分别为C ′,O ′,D ′,E ′.设OO ′=t ,矩形C ′O ′D ′E ′与△ABO 重叠部分的面积为S.①如图2,当矩形C ′O ′D ′E ′与△ABO 重叠部分为五边形时,C ′E ′,E ′D ′分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当3≤S ≤53时,求t 的取值范围(直接写出结果即可).解:(1)∵点A (6,0),∴OA =6.∵OD =2,∴AD =OA -OD =6-2=4.∵四边形CODE 是矩形,∴CE ∥OD ,CE =OD =2,DE ∥OC.∴∠AED =∠ABO =30°.在Rt △AED 中,AE =2AD =8,ED =AE 2-AD 2=82-42=4 3.∴点E 的坐标为(2,43).(2)①由平移的性质得O ′D ′=2,E ′D ′=43,ME ′=OO ′=t ,D ′E ′∥O ′C ′∥OB ,∴∠E ′FM =∠ABO =30°.∴在Rt △MFE ′中,MF =2ME ′=2t ,FE ′=MF 2-ME ′2=(2t )2-t 2=3t.∴S △MFE ′=12ME ′·FE ′=12×t ×3t =3t 22. ∵S 矩形C ′O ′D ′E ′=O ′D ′·E ′D ′=2×43=83,∴S =S 矩形C ′O ′D ′E ′-S △MFE ′=83-3t 22. ∴S =-32t 2+83,其中t 的取值范围是0<t <2. ②当2≤t<4时,如图3所示,O ′A =6-t ,D ′A =6-t -2=4-t.∴O ′G =3(6-t ),D ′F =3(4-t ).∴S =12[3(6-t )+3(4-t )]×2=-23t +10 3. ∵-23<0,∴S 随t 增大而减小,∴23<S ≤6 3.∴令S =53,即-23t +103=5 3.解得t =52. ∴当52≤t<4时,23<S ≤53;当4≤t<6时,如图4所示,O ′A =OA -OO ′=6-t.∵∠AO ′F =90°,∠AFO ′=∠ABO =30°,∴O ′F =3O ′A =3(6-t ).∴S =12(6-t )×3(6-t )=32(t -6)2(4≤t<6). 又∵当4≤t<6时,S 随t 增大而减小,∴0<S ≤2 3. ∴令S =3,即32(t -6)2= 3. 解得t 1=6-2,t 2=6+2(舍去).∴t =6- 2.∴当4≤t ≤6-2时,3≤S ≤2 3.综上所述,当3≤S ≤53时,t 的取值范围为52≤t ≤6- 2.拓展类型 其他问题1.(2019·眉山)如图,正方形ABCD 中,AE 平分∠CAB ,交BC 于点E ,过点C 作CF ⊥AE ,交AE 的延长线于点G ,交AB 的延长线于点F.(1)求证:BE =BF ;(2)如图2,连接BG ,BD ,求证:BG 平分∠DBF ;(3)如图3,连接DG 交AC 于点M ,求AE DM的值.解:(1)证明:在正方形ABCD 中,∠ABC =90°,AB =BC ,∴∠EAB +∠AEB =90°.∵AG ⊥CF ,∴∠BCF +∠CEG =90°.又∵∠AEB =∠CEG ,∴∠EAB =∠BCF.在△ABE 和△CBF 中,⎩⎪⎨⎪⎧∠EAB =∠BCF ,AB =CB ,∠ABE =∠CBF ,∴△ABE ≌△CBF (ASA ).∴BE =BF.(2)∵AE 平分∠CAB ,CF ⊥AE 于G ,∴∠CAG =∠FAG =22.5°,∠AGC =∠AGF.在△AGC 和△AGF 中,⎩⎪⎨⎪⎧∠CAG =∠FAG ,AG =AG ,∠AGC =∠AGF ,∴△AGC ≌△AGF (ASA ).∴CG =GF ,∠ACG =∠AFG.又∵∠CBF =90°,∴GB =GC =GF ,∠GBF =∠GFB =90°-∠GAF =90°-22.5°=67.5°.∴∠DBG =180°-67.5°-45°=67.5°,即∠GBF =∠DBG.∴BG平分∠DBF.(3)连接BG.∵∠DCG=90°+22.5°=112.5°,∠ABG=180°-67.5°=112.5°,∴∠DCG=∠ABG.又∵DC=AB,CG=BG,∴△DCG≌△ABG(SAS).∴∠CDG=∠GAB=22.5°.∴∠CDG=∠CAE.又∵∠DCM=∠ACE=45°,∴△DCM∽△ACE.∴AEDM=ACDC= 2.2.(2019·红河弥勒市二模)问题背景:折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B′E的位置,得到折痕MN,B′E与AB交于点P,则P即为AB的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)设正方形边长为1,求线段MC的长度;(3)利用线段MC的长度,证明P点是AB的三等分点(即证明AP∶PB=2∶1).发现感悟若改变E点在正方形纸片ABCD的边AD上的位置,重复“问题背景”中操作2的折纸过程,请你根据上面得到的结论,思考并解决如下问题:(不写过程,直接回答)(4)如图2.若DE∶AE=2∶1,则AP∶PB=4∶1;(5)如图3,若DE∶AE=3∶1,则AP∶PB=6∶1;解:(1)证明:由折叠可得,CM=EM,CQ=EQ,∠CMQ=∠EMQ,四边形CDEF是矩形,∴CD ∥EF.∴∠CMQ =∠EQM.∴∠EQM =∠EMQ.∴ME =EQ.∴CM =ME =EQ =CQ.∴四边形EQCM 是菱形.(2)设CM =x ,则EM =x ,DM =1-x ,在Rt △DEM 中,由勾股定理得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x )2.解得x =58.∴MC =58. (3)设正方形边长为1,由(2)得CM =58,则DM =38. ∵∠PEM =∠D =90°,∴∠AEP +∠DEM =90°,∠DEM +∠EMD =90°.∴∠AEP =∠DME.又∵∠A =∠D =90°,∴△AEP ∽△DME.∴AP AE =DE DM ,即AP 12=1238.解得AP =23. ∴PB =13.∴AP ∶PB =2∶1.3.(2019·昆明西山区二模)如图1,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,如果点P 由B 出发沿PA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4),解答下列问题:(1)当t 为何值时,PQ ∥BC?(2)设△APQ 面积为S (单位:cm 2),当t 为何值时,S 取得最大值?并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)如图2,把△AQP 沿AP 翻折,得到四边形AQPQ ′,那么是否存在某时刻t ,使四边形AQPQ ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.解:∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角.(1)BP =AQ =2t ,则AP =10-2t.∵PQ ∥BC ,∴AP AB =AQ AC ,即10-2t 10=2t 8,解得t =209. ∴当t =209s 时,PQ ∥BC.答图1(2)如答图1所示,过点P 作PD ⊥AC 于点D.∴PD ∥BC.∴AP AB =PD BC ,即10-2t 10=PD 6,解得PD =6-65t. S =12×AQ ·PD =12×2t ×(6-65t ) =-65t 2+6t =-65(t -52)2+152. ∴当t =52 s 时,S 取得最大值,最大值为152cm 2. (3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP =12S △ABC ,而S △ABC =12AC ·BC =24, ∴此时S △AQP =12.由(2)可知,S △AQP =-65t 2+6t , ∴-65t 2+6t =12,化简得t 2-5t +10=0. ∵Δ=(-5)2-4×1×10=-15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.答图2(4)方法1,假设存在时刻t ,使四边形AQPQ ′为菱形,则有AQ =PQ =BP =2t.如答图2所示,过P 点作PD ⊥AC 于点D ,则有PD ∥BC ,∴AP AB =PD BC =AD AC ,即10-2t 10=PD 6=AD 8. 解得PD =6-65t ,AD =8-85t.∴QD =AD -AQ =8-85t -2t =8-185t. 在Rt △PQD 中,由勾股定理得QD 2+PD 2=PQ 2,即(8-185t )2+(6-65t )2=(2t )2, 化简得13t 2-90t +125=0,解得t 1=5,t 2=2513. ∵t =5 s 时,AQ =10 cm>AC ,不符合题意,舍去,∴t =2513s. 由(2)可知,S AQP =-65t 2+6t , ∴S 菱形AQPQ ′=2S △AQP =2×(-65t 2+6t )=2×[-65×(2513)2+6×2513]=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2. (或连接QQ ′交AB 于N ,利用相似三角形的性质,求出QN ,菱形的面积等于△AQN 面积的4倍)答图3方法2,如答图3.过点Q 作QH ⊥AB 于H ,∵四边形AQPQ ′是菱形,∴AQ =PQ =2t.∴AH =12AP =12(10-2t )=5-t. ∵∠AHQ =∠ACB =90°,∠HAQ =∠CAB ,∴△AHQ ∽△ACB.∴AH AC =AQ AB =QH BC. ∴5-t 8=2t 10=QH 6. ∴t =2513,QH =3013. ∴S 菱形AQPQ ′=2S △AQP =2×12(10-2×2513)×3013=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2.。

一元二次方程和几何综合

一元二次方程和几何综合

1.在菱形ABCD中,∠B=60°,点E,F分别从B,D同时出发,以同样的速度沿边BC,DC向点C运动,到点C即停止。

给出下列三个结论:①AE=AF ②∠CEF=∠CFE ③当点E,F分别为BC,DC中点时,△AFE为等边三角形。

上述结论中正确的有
2.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N 分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)当t为何值时,四边形MNCD是平行四边形?
(2)当t为何值时,四边形MNCD是等腰梯形?
4. 如图,矩形ABCD中,AB=4cm,AD=3cm,点E从点A出发沿边AB以1cm/s的速度向终点B运动,同时点F从点B出发沿BC-CD以2cm/s的速度向点D运动,当一点停止运动时另一点也停止运动,设运动时间为t秒,连接DE、DF、EF,则在运动过程中,使△DEF成为等腰三角形的t值的个数为
(写出求解过程)。

第12题 多选题中的立体几何综合问题-2021年高考数学真题(新高考全国Ⅰ卷)(含答案解析)

第12题 多选题中的立体几何综合问题-2021年高考数学真题(新高考全国Ⅰ卷)(含答案解析)
第12题多选题中的立体几何综合问题
一、原题呈现
【原题】 正三棱柱 中, ,点 满足 ,其中 , ,则()
A.当 时, 的周长为定值
B.当 时,三棱锥 的体积为定值
C 当 时,有且仅有一个点 ,使得
D.当 时,有且仅有一个点 ,使得 平面
答案:BD
解析:解法一:对于A,当 时, ,所以 ,因为 ,
所以点P是线段 上的动点,所以 周长不是定值,故A错误;
对于D,当 时, ,取 , 中点为 . ,所以 点轨迹为线段 .设 ,因为 ,所以 , ,所以 ,此时 与 重合,故D正确.故选BD.
【就题论题】多选题中的立体几何试题,常把多个知识点交汇考查,如把几何体长度、角度、面积、体积的计算与线面位置关系结合在一起考查,也可与函数、不等式及空间向量结合在一起考查,此类问题对空间想象能力要求较高,难度也比较大.
,所以 平面 ,所以 BD,所以点P与点F重合,D正确,故选BD.
解法二:易知,点 在矩形 内部(含边界).
对于A,当 时, ,即此时 线段 , 周长不是定值,故A错误;
对于B,当 时, ,故此时 点轨迹为线段 ,而 , 平面 ,则有 到平面 的距离为定值,所以其体积为定值,故B正确.
对于C,当 时, ,取 , 中点分别为 , ,则 ,所以 点轨迹为线段 ,不妨建系解决,建立空间直角坐标系如图, , , ,则 , , ,所以 或 .故 均满足,故C错误;
二、考题揭秘
【命题意图】本题考查空间向量的应用、几何体中面积与体积的计算及线面位置关系的判断及应用,考查直观想象及逻辑推理的核心素养.难度:中等偏难
【考情分析】立体几何中对线面位置关系的综合考查常作为较难试题出现,求角度问题、截面位置不固定几何体的体积、最值问题,均是热点问题.

中考数学重难点专题12 一次函数与几何综合问题(学生版)

中考数学重难点专题12 一次函数与几何综合问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题12一次函数与几何综合问题【典型例题】1.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,点A,B分别在x轴,y轴正半轴上,AO=2BO,点C(3,0)(A点在C点的左侧),连接AB,过点A作AB的垂线,过点C作x轴的垂线,两条垂线交于点D,已知△ABO△△DAC,直线BD交x轴于点E.(1)求直线AD的解析式;(2)直线AD有一点F,设点F的横坐标为t,若△ACF与△ADE相似,求t的值;(3)如图2,在直线AD上找一点G,直线BD上找一点P,直线CD上找一点Q,使得四边形AQPG是菱形,求出G点的坐标.【专题训练】一、选择题1.(2022·山东龙口·七年级期末)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象与x轴的交点坐标为(13,0)2.(2022·江苏溧阳·八年级期末)如图,直线122y x=-+与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是()A.2B.4C.2或4D.2或63.(2022·陕西·辋川乡初级中学八年级期末)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(-1,-6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a-4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.1个B.2个C.3个D.4个4.(2022·江苏启东·八年级期末)如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)二、填空题5.(2022·江苏滨湖·八年级期末)如图,直线y=﹣43x+8与坐标轴分别交于A、B两点,P是AB的中点,则OP的长为_____.6.(2021·山东济阳·八年级期中)如图,一次函数y =x +2的图像与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且△OPC =45°,PC =PO ,则点P 的坐标为______.7.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC ::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.8.(2022·山东龙口·七年级期末)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置,点A 1,A 2,A 3,和点C 1,C 2,C 3,…,分别在直线y =kx +b (k >0)和x 轴上,已知点B 1,B 2,B 3,B 4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn 的坐标为_____三、解答题9.(2022·江苏海州·八年级期末)已知直线l 1经过点A (3,2)和点B (0,5),直线l 2:y =2x ﹣4经过点A 且与y 轴相交于点C .(1)求直线l 1的函数表达式;(2)已知点M 在直线l 1上,过点M 作MN //y 轴,交直线l 2于点N .若MN =6,请求出点M 的横坐标.10.(2022·广西·桂林市雁山中学九年级期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=mx在第一象限的图象交于点C,CD垂直于x轴,垂足为D.如果OA=OB=OD=1,求:(1)点A、B、C的坐标;(2)这个反比例函数的表达式;(3)这个一次函数的表达式.11.(2022·江苏溧阳·八年级期末)如图,在平面直角坐标系中长方形AOBC的顶点A、B坐标分别为(0,8)、(10,0),点D是BC上一点,将△ACD沿直线AD翻折,使得点C落在OB上的点E处,点F是直线AD 与x轴的交点,连接CF.(1)点C坐标为____________;(2)求直线AD的函数表达式_______________________;(3)点P是直线AD上的一点,当△CFP是直角三角形时,请你直接写出点P的坐标.。

12.几何综合题

12.几何综合题

AB=AC=4 P为 AB 上 一 点 , P 作 PE . 过 上 AB 分 别 交 BC、 于 E、 oA F ( ) AP一 1 求 f OEF 的 面 积 . 1设 , ( ) AP一口 ( < 口 2 , APF、 OEF 2设 O < )△ △ 的面积分别 记为 S 、z 。S .

方 法 作 出 的 四 边 形 BGM P 若 是 菱 形 , 求

图 1
2 已 知 , 图 2 △ ABC 是 等 腰 直 角 三 角 形 , . 如 ,
ABC一 9 。 AB 一 1 , 为 △ ABC 外 一 0, 0D
点 , 结 AD、 连 BD, D 作 DH 上 AB, 足 过 垂
等 对 边 四 边 形 的 图形 的名 称 ;
D C
( ) AB= 7, D= 3 求 线 段 EF 的长 . 2若 C ,
( ) 1 在 △ ABC 中 , D , 分 别 在 2如 , 点 E AB , AC上 , CD , 相 交 于 点 0 , A 设 BE 若

图8
② 若点
在 o 02外 , 长 02 交 o 延
上 任 取 一 点 E( E 与 点
于 点 M , 劣 弧 在
9 如 图 9 BC 是 o o 的 直 径 , A 在 圆 上 , . , 点 且
点 B不重 合 ) .EB 的延 长 线 交 优 弧 百
于 点 F , 图 1 — 3所 示 . 连 结 AE 、 如 1 AF ,
( ) FG ̄BF, 圆 。 的半 径 长 为 3 , 3若 且
求 BD 和 FG 的 长 度 .
图7
8 如 图 8 B一 9 。0 是 AB 上 的 一 点 , 0 . , 0, 以

2020年中考数学必考经典题讲练案-四边形的几何综合问题

2020年中考数学必考经典题讲练案-四边形的几何综合问题

2020年中考数学必考经典题讲练案【苏科版】专题12四边形的几何综合问题【方法指导】1.平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.2.菱形的性质与判定:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.菱形的四条边都相等,菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.3.矩形的性质与判定:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.4.正方形:①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.【题型剖析】【类型1】平行四边形的计算与证明【例1】(2019•宿豫区模拟)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交BC、AD于点E、F,G、H分别是OB、OD的中点.求证:(1)OE=OF;(2)四边形GEHF是平行四边形.【变式1-1】(2019•亭湖区二模)已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,求▱AECF的周长.【变式1-2】(2019•海门市一模)如图,▱ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC.求证:四边形DECF是平行四边形.【变式1-3】(2019•建邺区一模)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE 和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.【类型2】菱形的计算与证明【例2】(2019•海门市二模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.【变式2-1】(2019•兴化市二模)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【变式2-2】(2019•江都区二模)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=5,AC=12,求EF的长.【变式2-3】(2019•宿迁模拟)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AB.OE=2,求线段CE的长.【类型3】矩形的计算与证明【例3】(2019•丹阳市一模)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.【变式3-1】(2019•建湖县二模)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD 交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【变式3-2】(2019•延边州二模)如图,在平行四边形ABCD中,过点D做DE⊥AB于E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形ABCD的面积.【类型4】四边形综合问题【例4】.(2019•桓台县二模)已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【变式4-1】(2019•灌南县二模)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边BA的延长线于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?【达标检测】1.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m23.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.124.(2019•淮安)若一个多边形的内角和是540°,则该多边形的边数是.5.(2019•南通)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB PD 的最小值等于.6.(2019•徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.7.(2019•徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.8.(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=.9.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为.10.(2019•扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.11.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.12.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF.(1)求证:四边形AECF是菱形;(2)求线段EF的长.13.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.14.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.15.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.16.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG,请直接写出FH的长.17.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44A D C A B C A B C D C S S S B C∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28D E C A D C S S ∆∆==连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.F D E S ∆的面积也为x ,11.44A B D A B C S S ∆∆==12,4B D F A B D F E A F D E S S S S x ∆∆∆∆=--=-而3.8F DC FDE D E C S S S x ∆∆∆=+=+13:(2);()1:348B D F F D C S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567D E C F E A S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5. 同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152D P H S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5D PH EPH S S D P PE ∆∆==,所以551525.3322E P H D P H S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IF P E P H F B P IP IP S S S P HP H∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42D P G D F P A P D P G P G S S S F PF P∆∆∆===⨯=有925122015872.22A B C A IP D B E P F C G P H IF P D G P E H P S S S S S S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712.而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78.所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A 和B 是两个正方形重叠部分,C ,D ,E 是空出的部分,这些部分都是长方形,它们的面积比是A :B :C :D :E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】 以下用E 横表示E 部分横向的长度,E 坚竖表示E 部分竖向的长度,其他下标意义类似.有E 横:D 横=5:4,A 横:B 横=l :2.而E 横+A 横=D 横+B 横,所以有E 横:D 横:A 横:B 横=5:4:1:2. 而A 横+B 横+C 横=E 横+A 横对应为5+1=6,那么C 横对应为3. 而A 面积:B 面积:C 面积=1:2:3,所以A 坚=B 坚=C 坚. 有A 坚+C 坚竖对应为6,所以A 坚=C 坚对应为3. 那么长方形的竖边为6+C 坚对应为9,长方形横边为E 横+6+D 横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是 14,绿色的面积是lO .那么,正方形盒子的底面积是多少?【分析与解】 如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A ,B 作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB 的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB 的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?(π取3.14)【分析与解】有AO=OB ,所以△A OB 为等腰三角形,AO=OC ,所以△A OC 为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°.∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2A BC D D PC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,().AO P O PQ B 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABC D AO P D PC O PQ B S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-。

相关文档
最新文档