中考数学复习“1+1+3”专项训练(7) 苏科版

合集下载

苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。

2023年中考苏科版数学一轮复习专题练习-代数式和幂的运算

2023年中考苏科版数学一轮复习专题练习-代数式和幂的运算

2023年中考数学一轮复习专题练习七(上)第三章 代数式 七(下)第八章幂的运算一、选择题1.下列表述中,不能表示代数式“4a”意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘 2.对于非零实数m ,下列式子运算正确的是( )A .923)(m m = B .623m m m =⋅ C .532m m m =+ D .426m m m =÷3.下列计算正确的是 ( )A .623a a a =⋅B .4442b b b =⋅C .1055x x x =+ D .87y y y =⋅4.当a =-1时,代数式(a +1)2+a (a -2)的值等于 ( ) A .-4 B .4 C .-3 D .35.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.某企业今年3月份的产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a -10%)(a +15%)万元B .a (1-10%)(1+15%)万元C .(a -10%+15%)万元D .a (1-10%+15%)万元 7.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A .669B .670C .671D .6728.m 的值是( )A .38B .52C .66D .749.若3×9m ×27m =321,则m 的值是( )A .3B .4C .5D .6 10.若2a m b 2m+3n与a 2n -3b 8的和仍是一个单项式,则m 与n 的值分别是( )A .1,2B .2,1C .1,1D .1,3 11.如果x 2+x -1=0,那么代数式x 3+2x 2-7的值为 ( )A .6B .8C .-6D .-8 二、填空题0 284 2 4 622 46 8 4412.单项式-72x 3y 2的次数是______. 13.若3223mnx y x y -与 是同类项,则m +n =____________. 14.已知2a -3b 2=5,则10-2a +3b 2的值是_____15.若代数式2x 2+3x +5的值是7,则代数式6x 2+9x -5的值是_____ 16.按照以下运算程序操作:若输入-2,输出_____.17.如图,是一个数表,现用一个矩形在数表中任意框出4个数dc ba ,则: (1)a.c 的关系是:_______.(2)当a +b +c +d =32时,a =______.18.对于两个非0实数x, y ,定义一种新的运算:ybx a y x +=*.若2)1(1=-*,则2)2(*-的值是______. 19.若61=-a a ,则221aa +的值为________. 20.若(x ﹣1)0=1,则x 需要满足的条件 .21.如果43(a )÷25(a )=64,且a<0,那么a= .22.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.23.我国古代数学家杨辉发现了如图所示的三角形数阵,我们称之为“杨辉三角”. 从图中取一列数:1,3,6,10,…,记10,6,3,14321====a a a a ,…,那么10210114+-+a a a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425262728…的值是________.三、解答题24.用简便方法计算下面各题:(1)4()52012×(一1.25)2013; (2)(318)12×(825)11×(一2)325.解方程:(1)15822=•x ; (2)5)7(7-=x .26.先化简,再求值:(一2a )3·(一b 3)2+(一32ab 2)3,其中a =一12,b =2.27.(1)已知235,310mn ==,求29m n -.(2)的值。

2023年中考苏科版数学一轮复习专题提优练习-反比例函数

2023年中考苏科版数学一轮复习专题提优练习-反比例函数

DBAyxOC 2023年中考数学一轮复习专题练习反比例函数的应用一、选择题1. 已知矩形的面积为10,则它的长y 与宽x 之间的关系用图像大致可表示为( )A B C D 2. 在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .1-B .0C .1D .2 3. 如图,已知双曲线(0)ky k x =<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( )A .12B .9C .6D .44. 如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=(x >0)及y 2=(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2的值为( )A .2B .3C .4D .﹣45. 若点A (﹣5,y 1),B (﹣3,y 2),C (2,y 3)在反比例函数y=的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 1<y 3D .y 3<y 2<y 16. 在同一平面直角坐标系中,函数y =mx +m 与y =xm(m ≠0)的图象可能是( )A B C D二、填空题7. 如图,在反比例函数xy 2=(x >0))的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=______.第7题 第8题8. 如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x (cm ),观察弹簧秤的示数y (N )的变化情况.实验数据记录如下:x (cm )...10 15 20 25 30... y (N ) (30)201512 10…猜测y 与x 之间的函数关系,并求出函数关系式为 .9. 某高科技开发公司从2008年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是年 度2008 2009 2010 2011 投入技术改进资金x (万元) 2.5 3 4 4.5 产品成本y (万元∕件)7.264.5410. 根据图1的程序,得到了y 与x 的函数图象,如图2,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ ,则下列结论:①x <0时,y=;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ=2PM ;⑤∠POQ 可以等于90°.其中正确的序号有____________.11. 以矩形OABC 的顶点O 为坐标原点建立平面直角坐标系,使点A . C 分别在x . y 轴的正y2y x =xOP 1 P 2 P 3 P 4 1234第11题第12题半轴上,双曲线y =(x >0)的图象经过BC 的中点D ,且与AB 交于点E ,过OC 边上一点F ,把△BCF 沿直线BF 翻折,使点C 落在矩形内部的一点C ′处,且C ′E ∥BC ,若点C ′的坐标为(2,4),则tan ∠CBF 的值为 .12. 如图,P 1是反比例函数y =(k >0)在第一象限图象上的一点,点A 1的坐标为(2,0).若△P 1OA 1与△P 2A 1A 2均为等边三角形,则A 2点的坐标为 . 三、解答题13. 写出函数解析式表示下列关系,并指出它们各是什么函数:(1)体积是常数V 时,圆柱的底面积S 与高h 的关系;(2)柳树乡共有耕地面积S (单位:hm 2),该乡人均耕地面积y (单位:hm 2/人)与全乡总人口x 的关系.14. 某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m 3时,气压是多少?(3)当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m 3)15. 如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,sin ∠AOB=54,反比例函数y=xk(k >0)在第一象限内的图象经过点A ,与BC 交于点F . (1)若OA=10,求反比例函数解析式;(2)若点F 为BC 的中点,且△AOF 的面积S=12,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P. O. A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.16. 如图,在平面直角坐标系中,过原点的直线与反比例函数y=交于点A,B,点A的坐标为(6,3),以AB为一边作△ABC,∠ACB=90°,AC=BC,AC交y轴于点D,BC交x 轴于点E,点P从A出发,沿A﹣C﹣B的路线运动.(1)求点C的坐标及AC对应的函数表达式;(2)点P运动过程中,当以点O,D,P为顶点的三角形与△ADO相似时(全等除外),求点P坐标;(3)如图③,连接OP,OC,M是OC中点,连接BM,过点C作CQ⊥OP于点Q,连接BQ,在点P的整个运动过程中,的最小值是.。

中考数学复习“1+1+3”专项训练(8) 苏科版

中考数学复习“1+1+3”专项训练(8) 苏科版

中考数学复习“1+1+3”专项训练(8) 苏科版时间:60分钟 总分 :40分 姓名得分1.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =, 点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60 得到线段OD .要使点D 恰好落在BC 上,则AP 的长为。

2.如图是一个由正方形ABCD 和半圆O 组成的封闭图形,点O 是圆心.点P 从点A 出发,沿线段AB 、弧BC 和线段CD 匀速运动,到达终点D .运动过程中OP 扫过的面积(s )随时间(t )变化的图象大致是( )3.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:周数x 1 2 3 4 价格y (元/千克)22.22.42.6(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x 的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y (元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =- 1 20x 2+bx +c .,请求出5月份y 与x 的函数关系式 (3)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 14x +1.2,5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =51-x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?C O D4.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.5.如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在,请说明理由.第5题图1.62.C3、(1)通过观察可见四月份周数y 与x 的符合一次函数关系式:y =0.2x +1.8;(2)将(1,2.8)(2,2.4)代入y =- 1 20 x 2+bx +c .可得:12.82012.425b c b c ⎧=-++⎪⎪⎨⎪=-++⎪⎩解之:143.1b c ⎧=-⎪⎨⎪=⎩即y =120-x 214-x +3.(1)4月份此种蔬菜利润可表示为: W 1=y -m =(0.2x +1.8)-(14x +1.2),即: W 1=-0.05x +0.65月份此种蔬菜利润可表示为: W 2=y -m =(120-x 214-x +3.1)-( 1 5 x +2.),即: W 2=120-x 2920-x +1.1由函数解析式可知,四月份的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W =-0.05×1+0.6=0.55(元/千克)由函数解析式可知,五月份的利润随周数变化符合二次函数且对称轴为:x =922b a -=-,即在第1至4周的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W =120-920-+1.1=0.6(元/千克)4.(1)证明: ∵∠BAC =90° AB =AC =6,D 为BC 中点 ∴∠BAD =∠DAC =∠B =∠C =45° ····· 1分 ∴AD =BD =DC ············ 2分. ∵AE =CF ∴△AED ≌△CFD ······· 3分 (2)依题意有:FC =AE =x ········· 4分 ∵△AED ≌△CFD∴ADF CFD ADF AED AEDF S S S S S ∆∆∆∆+=+=四边形=S △ADC =9∴9321)6(2192+-=--=-=∆∆x x x x S S S AEF AEDF EDF 四边形∴93212+-=x x y (3) 依题意有:AF =BE =x -6,AD =DB ,∠ABD =∠DAC =45° ∴∠DAF =∠DBE =135° ········· 8分 ∴△ADF ≌△BDE 9分∴ADF BDE S S ∆∆= ············· 10分第26题图1∴EDF EAF ADB S S S ∆∆∆=+ ·········· 11分211(6)93922x x x x =-+=-+ ∴93212+-=x x y5 答:(1)设抛物线的解析式为c bx ax y ++=2,由题意知点A (0,-12),所以12-=c , 又18a+c=0,32=a , ∵AB ∥CD,且AB=6, ∴抛物线的对称轴是32=-=abx . ∴4-=b .所以抛物线的解析式为124322--=x x y . (2)①9)3(6)6(22122+--=+-=-⋅⋅=t t t t t S ,()60≤≤t . ②当3=t 时,S 取最大值为9。

中考数学复习“1 1 3”专项训练(9) 苏科版【教案】

中考数学复习“1 1 3”专项训练(9) 苏科版【教案】

2013年九年级数学中考复习讲义系列-----每周一练(9)时间:60分钟总分:40分姓名得分1.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A2m B.3m C.6m D.9m2.平面直角坐标系中,⊙M的圆心坐标为(0,2),半径为1,点N在x轴的正半轴上,如果以点N为圆心,半径为4的⊙N与⊙M相切,则圆心N的坐标为.3.用长度一定的不锈钢材料设计成外观为矩形的框架(如图○1○2○3中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图○1中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(4分)(2)在图○2中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?(4分)(3)在图○3中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?4.如图,在Rt△ABC中,∠B=90°,BC,∠C=30°.点D从点C出发沿CA方向以每秒)- 1 -- 2 - 2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明现由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.5.如图:直角梯形AOBC 在平面直角坐标系中,AO=4,AC=5,OB=8,D 在OB 上,且OD=2,连CD 。

中考数学复习“1 1 3”专项训练(8) 苏科版【教案】

中考数学复习“1 1 3”专项训练(8) 苏科版【教案】

2013年九年级数学中考复习讲义系列-----每周一练(8)时间:60分钟 总分 :40分 姓名 得分1.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =, 点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60 得到线段OD .要使点D 恰好落在BC 上,则AP 的长为 。

2.如图是一个由正方形ABCD 和半圆O 组成的封闭图形,点O 是圆心.点P 从点A 出发,沿线段AB 、弧BC 和线段CD 匀速运动,到达终点D .运动过程中OP 扫过的面积(s )随时间(t )变化的图象大致是( )3.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:数(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x 的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y (元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x的变化情况满足二次函数y =- 120x 2+bx +c . ,请求出5月份y 与x 的函数关系式 (3)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 14x +1.2,5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =51-x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?4.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.5.如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在,请说明理由.第5题图1.62.C3、(1)通过观察可见四月份周数y 与x 的符合一次函数关系式:y =0.2x +1.8;(2)将(1,2.8)(2,2.4)代入y =- 1 20 x 2+bx +c .可得:12.82012.425b c b c ⎧=-++⎪⎪⎨⎪=-++⎪⎩解之:143.1b c ⎧=-⎪⎨⎪=⎩即y =120-x 2 14-x +3.(1)4月份此种蔬菜利润可表示为: W 1=y -m =(0.2x +1.8)-( 14 x +1.2),即: W 1=-0.05x +0.6 5月份此种蔬菜利润可表示为: W 2=y -m=(120-x 2 14-x +3.1)-( 1 5 x +2.),即: W 2=120-x 2 920-x +1.1由函数解析式可知,四月份的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W =-0.05×1+0.6=0.55(元/千克)由函数解析式可知,五月份的利润随周数变化符合二次函数且对称轴为:x =922b a -=-,即在第1至4周的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W =120-920-+1.1=0.6(元/千克)4.(1)证明: ∵∠BAC =90° AB =AC =6,D 为BC 中点 ∴∠BAD =∠DAC =∠B =∠C =45° ····· 1分 ∴AD =BD =DC ············ 2分. ∵AE =CF ∴△AED ≌△CFD ······· 3分 (2)依题意有:FC =AE =x ········· 4分 ∵△AED ≌△CFD∴ADF CFD ADF AED AEDF S S S S S ∆∆∆∆+=+=四边形 =S △ADC =9∴9321)6(2192+-=--=-=∆∆x x x x S S S AEF AEDF EDF 四边形 ∴93212+-=x x y (3) 依题意有:AF =BE =x -6,AD =DB ,∠ABD =∠DAC =45° ∴∠DAF =∠DBE =135° ········· 8分 ∴△ADF ≌△BDE ············ 9分 ∴ADF BDES S ∆∆=··········· 10分第26题图1∴EDF EAF ADBS S S ∆∆∆=+········ 11分 211(6)93922x x x x =-+=-+ ∴93212+-=x x y5 答:(1)设抛物线的解析式为c bx ax y ++=2,由题意知点A (0,-12),所以12-=c , 又18a+c=0,32=a , ∵AB ∥CD,且AB=6, ∴抛物线的对称轴是32=-=abx . ∴4-=b .所以抛物线的解析式为124322--=x x y . (2)①9)3(6)6(22122+--=+-=-⋅⋅=t t t t t S ,()60≤≤t . ②当3=t 时,S 取最大值为9。

2014届苏科版中考数学复习方案(7)一元二次方程(20页)

2014届苏科版中考数学复习方案(7)一元二次方程(20页)
考点聚焦 归类探究 回归教材
解 析
第7课时┃归类探究
方法点析
(1)判别一元二次方程有无实数根,就是计算
判别式Δ=b2-4ac的值,看它是否大于0.因此,在计算前
应先将方程ቤተ መጻሕፍቲ ባይዱ为一般式. (2)注意二次项系数不为零这个隐含条件.
考点聚焦
归类探究
回归教材
第7课时┃归类探究
探究四、一元二次方程的应用
命题角度: 1.用一元二次方程解决增长率问题.
考点聚焦
归类探究
回归教材
第7课时┃回归教材
回 归 教 材
根的判别式作用大 教材母题
k取什么值时,方程x2-kx+4=0有两个相等的实数根?求这 时方程的根.
考点聚焦
归类探究
回归教材
第7课时┃回归教材


∵方程有两个相等的实数根,
∴(-k)2-4×1×4=0,即k2=16.
解得k1=4,k2=-4.
的含未知数的因式时,不能直接约去这个因式,因为如果 约去则是默认这个因式不为零,那么如果此因式可以为零, 则方程会失一个根,出现漏根错误,所以应通过移项,提 取公因式的方法求解.
考点聚焦 归类探究 回归教材
第7课时┃归类探究
探究三、一元二次方程根的判别式
命题角度: 1.判别一元二次方程根的情况; 2.求一元二次方程字母系数的取值范围. 例3.[2013•北京] 已知关于x的一元二次方程x2+2x+2k-4=0 有两个不相等的实数根. (1)求k的取值范围; (2)若k为正整数,且该方程的根都是整数,求k的值.
考点聚焦
归类探究
回归教材
第7课时┃归类探究
解 析
-b± x= 通过对方程的观察发现此题直接应用公式法 b2-4ac 解比较方便. 2a

苏科版数学中考复习专题练习—方程及其应用(含答案)

苏科版数学中考复习专题练习—方程及其应用(含答案)

方程及其应用一、学习目标1.能够识别一次方程(组)、分式方程、一元二次方程,并熟练掌握各类方程(组)的解法;2.理解方程(组)的解的意义,探究含字母参数的方程的解的问题;3.会列方程(组)求解实际问题、数学问题.二、典型例题题型一、方程(组)有关的概念及解法例题1.关于x 的方程(m +1)x |m |+1+(m -3)x -1=0.(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.例题2.解方程:x x -1=4 x 2-1 +1借题发挥:1.用加减消元法解二元一次方程组 ⎩⎨⎧ x +3y =4 ①, 2x -y =1 ②,时,下列方法中无法消元....的是( ) A . ①×2-② B .②×(-3) -① C . ①×(-2)+② D .①-②×32.用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A .(x - 3 4 )2= 17 16B .(x - 3 4 )2= 1 2C .(x - 3 2 )2= 13 4D .(x - 3 2 )2= 11 4题型二、方程的解的意义例题3.已知关于x 、y 的方程组⎩⎨⎧ a x +23y =-103 x +y =4与⎩⎨⎧ x -y =2 x +b y =15 的解相同.求a 、b 的值.例题4.已知关x 的一元一次方程 1 2021 x +3=2x +m 的解为x =2, 那么关于y 的一元一次方程 1 2021(y +1)+3=2 (y +1)+m 的解为 . 借题发挥:1.学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种2.甲、乙二人同时解方程组⎩⎨⎧ a x +y =3 2x -b y =1 ,甲看错了a ,解得⎩⎨⎧ x =1 y =-1 ;乙看错了b ,解得⎩⎨⎧ x =-1 y =3.求a 、b 的值.题型三、含字母参数的方程的解的问题例题5.若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <-10 B .m ≤-10C .m ≥-10且m ≠-6D .m >-10且m ≠-6例题6.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2-4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .7借题发挥:关于x 的方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤1题型四、用方程思想解决问题例题7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
2013九年级数学中考复习讲义系列-----每周一练(7)
时间:60分钟 总分:40分 姓名 得分
1.Rt △ABC 中,AB=AC,点D 为BC 中点.∠MDN=90°,∠MDN 绕点D 旋转,
DM 、DN 分别与边AB 、AC 交于E 、F 两点.下列结论 ①(BE+CF )=
2
2
BC ② S △AEF ≤14 S △ABC ③ S 四边形AEDF =AD ·EF 2
④ AD ≥EF ⑤ AD 与EF 可能互相平分,其中正确结论的
个数是 ( C ) A.1个 B.2个 C.3个 D.4个 2.水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部
包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度
α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其
中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为4,则α的余弦值为 .
3.在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;
(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.
4.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点
P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为
.
P
B
O
C
A
D
F
E
N
M
B
- 2 - ⑴当 时,求弦PA 、PB 的长度;
⑵当x 为何值时,的值最大?最大值是多少?
5. 如图,在平面直角坐标系中,二次函数c bx x y ++=2
的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /
C , 那么是否存在点P ,使四边形POP /
C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形
ABPC 的最大面积.
1.C
2.
π
41
- 3 -
3.解:(1)由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,
∴∠CC 1B=∠C 1CB=45°, ∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°. (2)∵△ABC≌△A 1BC 1, ∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1, ∴
,∠AB C+∠ABC 1=∠A 1BC 1+∠ABC 1, ∴∠ABA 1=∠CBC 1,
∴△ABA 1∽△CBC 1. ∴,
∵S △ABA1=4, ∴S △CBC1=;
(3)过点B 作BD⊥AC,D 为垂足,
∵△A BC 为锐角三角形, ∴点D 在线段AC 上, 在Rt△BCD 中,BD=BC×sin45°=
,①如图1,当P 在AC 上运动至垂足点D ,△ABC 绕点
B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小,最小值为:EP 1=BP 1﹣BE=BD ﹣BE=﹣
2;…(9分)
②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,最大值为:EP 1=BC+AE=2+5=7.…(10分)
4.解:⑴∵⊙O 与直线l 相切于点A ,AB 为⊙O 的直径,∴AB ⊥l . 又∵PC ⊥l ,∴AB ∥PC . ∴∠CPA =∠PAB .
∵AB 为⊙O 的直径,∴∠APB =90°.∴∠PCA =∠APB .∴△PCA ∽△APB . ∴
. ∵PC =,AB =4,∴
.
∴在Rt △APB 中,由勾股定理得:
.
- 4 - ⑵过O 作OE ⊥PD ,垂足为E .
∵PD 是⊙O 的弦,OF ⊥PD ,∴PF =FD . 在矩形OECA 中,CE =OA =2,∴PE =ED =x -2. ∴.
∴.
∵,∴当
时,
有最大值,最大值是2.
5.答案: 解:(1)将B 、C 两点的坐标代入得 ⎩⎨
⎧-==+303c c b
解得:⎩
⎨⎧-=-=32c b
所以二次函数的表达式为:322--=x x y (2)存在点P ,使四边形POP /
C 为菱形.
设P 点坐标为(x ,322--x x ),PP /
交CO 于E 若四边形POP /
C 是菱形, 则有PC =PO . 连结PP /
则PE ⊥CO 于E , ∴OE =EC =
23
∴y =2
3-. ∴322--x x =2
3
- 解得1x =
2102+,2x =2
10
2-(不合题意,舍去) ∴P 点的坐标为 (
2
102+,23-)
(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F , 设P (x ,322--x x ), 易得,直线BC 的解析式为3-=x y 则Q 点的坐标为(x ,x -3)
.
- 5 -
FB QP OF QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆2
1
2121四边形 3)3(2
1
34212⨯+-+⨯⨯=
x x =8
75
23232
+⎪⎭⎫ ⎝⎛--x
当2
3
=
x 时,四边形ABPC 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-
415,23,四边形ABPC 的面积8
75
的最大值为。

相关文档
最新文档