三角形中位线(作课)

合集下载

三角形的中位线完整版课件

三角形的中位线完整版课件

已知:如图,在四边形ABCD中,E,G,分别是AB,CD,的中点.
A
E
P
D
B
G
C
若AD=BC,连结BD,P是 BD的中点,
连结EP,GP,若∠PEG=15°,则
∠PGE=
度.
分析 由已知可得EP与GP分别是△ABP与△BCD的中位线,
∴EP = ∥ 1 AD, PG= ∥ 1 AD.
2
2
又∵AD=BC
三角形中线,一个端点是边的中点,另一端点是三角形的顶点.
新知探究
4.5三3.角3垂 3形.4径圆的定心中理角位②②线
通过观察,测量等方法,你发现线段DE有哪些性质?
A
观察发现DE∥BC,度量发现 DE 1 BC . 2
三角形的中位线定理:
D
E
三角形的中位线平行于第三边,并且等于第三边的一半.
B
几何语言:
新知探究
4.5三角形的中位线
• 了解三角形中位线的概念 • 了解三角形中位线的性质 • 探索三角形中位线定理证明的方法 • 能由线段的中点联想到三角形中位线 • 探索三角形中位线性质的一些简单应用
4.5三角形的中位线
• 定义:连结三角形两边中点的线段 叫做三角形的中位线
• 任意画一个△ABC,分别取AB,AC的中点D,E,连结DE. A • 你还能画出几条三角形的中位线?
A
D
G
O
EM F
B
C
课堂小结
4.5三角3形.4圆的心中角位②线
三角形的中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
中位线定理经常用于: ① 证明平行关系; ② 线段大小的计算.
D
E

北师大版数学八年级下册6.3《三角形的中位线》说课稿

北师大版数学八年级下册6.3《三角形的中位线》说课稿

北师大版数学八年级下册6.3《三角形的中位线》说课稿一. 教材分析北师大版数学八年级下册6.3《三角形的中位线》这一节的内容,是在学生已经掌握了三角形的性质,以及三角形的中线、高线、角平分线等概念的基础上进行讲授的。

本节课的主要内容是让学生掌握三角形的中位线的性质,包括中位线的定义、中位线与三角形边长的关系、中位线与三角形内角的关系等。

同时,让学生能够运用中位线的性质解决一些简单的问题。

在教材的编写上,首先通过引导学生观察三角形的中位线,让学生发现中位线的一些性质,然后通过几何证明,引导学生证明这些性质。

在学生掌握了中位线的性质之后,教材通过一些练习题,让学生巩固所学的内容,并能够运用所学知识解决实际问题。

二. 学情分析在讲授这一节内容时,我班的学生已经掌握了三角形的基本性质,对于三角形的中线、高线、角平分线等概念也有了一定的了解。

但是,学生在几何证明方面的能力还有一定的欠缺,对于一些复杂几何证明题还感到比较困难。

因此,在教学过程中,我需要注重引导学生进行观察和思考,帮助他们建立起几何证明的思路。

三. 说教学目标1.知识与技能目标:让学生掌握三角形的中位线的性质,能够运用中位线的性质解决一些简单的问题。

2.过程与方法目标:通过观察、思考、证明等过程,培养学生的几何思维能力。

3.情感态度与价值观目标:让学生体验到数学的乐趣,培养学生的自信心和自尊心。

四. 说教学重难点1.教学重点:三角形的中位线的性质。

2.教学难点:三角形的中位线的证明,以及运用中位线的性质解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、练习法等教学方法。

同时,利用多媒体课件,帮助学生更直观地理解三角形的中位线的性质。

六. 说教学过程1.导入:通过引导学生观察三角形的中位线,让学生发现中位线的一些性质。

2.新课讲解:讲解三角形的中位线的性质,包括中位线的定义、中位线与三角形边长的关系、中位线与三角形内角的关系等。

专题05 三角形中位线(知识点串讲)(解析版)

专题05 三角形中位线(知识点串讲)(解析版)

专题05 三角形中位线重难突破三角形中位线1.三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.3.相关结论:顺次连接任意四边形中点所得到的四边形是平行四边形.(连接原四边形一条对角线,由中位线定理可证)4.拓展:①梯形的中位线等于上底加下底和的一半. (连接梯形一条对角线,由中位线定理可证)②过三角形一边的中点作另一边的平行线,与第三边交于一点,则这两点之间的线段为三角形的中位线. 如图,过△ABC的边AB的中点作平行于边BC的直线,交边AC于点E,则DE为△ABC的中位线.典例1.(2018春•定兴县期末)如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长()A.逐渐增大B.逐渐变小C.不变D.先增大,后变小【答案】C【解析】解:∵E、F分别是PA、PR的中点,∴EF AR,∴EF的长不变,故选:C.【点睛】根据三角形中位线定理得到EF AR,判断即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.典例2.(2018春•柳州期末)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN ⊥AE于N,若AC=6,BC=8,则MN=___.【答案】2【解析】解:延长CM交AB于G,延长CN交AB于H,∵∠ACB=90°,AC=6,BC=8,∴AB=10,在△BMC和△BMG中,,∴△BMC≌△BMG,∴BG=BC=8,CM=MG,∴AG=2,同理,AH=AC=6,CN=NH,∴GH=4,∴MN GH=2,故答案为:2.【点睛】延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可.典例3.(2018春•成都期末)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE =2,则AC的长等于______.【答案】见解析【解析】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=2,则DF=1,AF,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AE=EF=CF,∴AC AF.故答案为:.【点睛】过D点作DF∥BE,则DF BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC AF.典例4.(2018春•吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE的长.【答案】见解析【解析】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE CF4=2.【点睛】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE CF,然后求解即可.典例5.(2018春•濮阳期末)已知等边三角形ABC的边长为a分别以这个三角形的三边中点为顶点作一个三角形,记为△A1B1C1,再以△A1B1C1各边中点为顶点做三角形记为△A2B2C2,…依次做下去,求△A5B5C5的周长.【答案】见解析【解析】解:等边△ABC的边长为a,∴等边△ABC的周长为3a.∵A2、B2分别是边A1B1、B1C1的中点,∴A2B2是△A1B1C1的中位线,∴A2B2A1B1.同理,A2C2A1C1,C2B2C1B1.∴△A2B2C2的周长等边△A1B1C1的周长.同理,△A3B3C3的周长△A2B2C2的周长等边△A1B1C1的周长.…,∴△A n B n∁n的周长△A1B1C1的周长.∴△A5B5C5的周长.【点睛】据三角形中位线定理知,△A2B2C2的各边的边长是△A1B1C1的各边边长的,△A3B3C3是△A2B2C2的各边的边长的,找出规律即可得出结论.本题考查了等边三角形的性质、三角形中位线定理.三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.典例6.(2018春•南山区期末)如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG(∠ACB﹣∠ABC);③EF (AB﹣AC);④(AB﹣AC)<AE(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④【答案】A【解析】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中∴△AFG≌△AFC(ASA),∴GF=CF,∵AE为△ABC的中线,∴BE=CE,∴EF∥AB,故①正确;∵△AFG≌△AFC,∴∠AGC=∠ACB,∵∠AGC=∠B+∠BCG,∴∠ACG=∠B+∠BCG,∴∠BCG=∠ACB﹣∠ACG=∠ACB﹣(∠B+∠BCG),∴2∠BCG=∠ACB﹣∠B,∴∠BCG(∠ACB﹣∠B),故②正确;∵△AFG≌△AFC,∴AC=AG,∴BG=AB﹣AG=AB﹣AC,∵F、E分别是CG、BC的中点,∴EF BG,∴EF(AB﹣AC),故③正确;∵∠AFG=90°,∴∠EAF<90°,∵∠AFE=∠AFG+∠EFG>90°,∴∠AFE>∠EAF,∴AE>EF,∵EF(AB﹣AC),∴(AB﹣AC)<AE,延长AE到M,使AE=EM,连接BM,∵在△ACE和△MBE中∴△ACE≌△MBE(SAS),∴AC=BM,在△ABM中,AM<AB+AC,∵AE=EM,∴2AE<AB+AC,∴AE(AB+AC),即(AB﹣AC)<AE(AB+AC),故④正确;故选:A.【点睛】求出F为CG中点,根据三角形的中位线性质即可判断①,求出∠ACG=∠AGC=∠B+∠BCG,即可判断②;根据三角形中位线性质即可判断③,求出2AE<AB+BC和AE>EF,即可判断④.巩固练习1.(2018春•坪山区期末)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.12 B.11 C.10 D.9【答案】D【解析】解:∵点D,E分别AB、BC的中点,∴DE AC=3.5,同理,DF BC=3,EF AB=2.5,∴△DEF的周长=DE+EF+DF=9,故选:D.2.(2018春•抚顺期末)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100°B.120°C.130°D.150°【答案】C【解析】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,∴PE AD,PF BC,∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C.3.(2018春•颍东区期末)如图在△ABC中,M是BC中点,AP是∠A平分线,BP⊥AP于P,AB=12,AC=22,则MP长为()A.3 B.4 C.5 D.6【答案】C【解析】解:延长BP交AC于N.∵AP是∠BAC的角平分线,BP⊥AP于P,∴∠BAP=∠NAP,∠APB=∠APN=90°,∴△ABP≌△ANP(ASA),∴AN=AB=12,BP=PN,∴CN=AC﹣AN=22﹣12=10,∵BP=PN,BM=CM,∴PM是△BNC的中位线,∴PM CN=5.故选:C.4.(2018春•开江县期末)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形,……如此操作下去,那么第5个三角形直角顶点的坐标为()A.(,)B.()C.()D.()【答案】B【解析】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(,);第4个三角形的直角顶点坐标:(,);第5个三角形的直角顶点坐标:(,);故选:B.5.(2017秋•洪雅县期末)如图,在△ABC中,AB=5,AC=3,AD是角平分线,AE是中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则线段EF的长为___.【答案】1【解析】解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=5,AC=3,∴BG=2,∵AE是中线,∴BE=CE,∴EF为△CBG的中位线,∴EF BG=1 故答案为:1.。

初中数学初二数学下册《三角形的中位线》教案、教学设计

初中数学初二数学下册《三角形的中位线》教案、教学设计
-请小组讨论:如何利用三角形的中位线来证明一个四边形是平行四边形?
-请分析并解释:为什么三角形的中位线可以将三角形分成两个面积相等的小三角形?
4.拓展与创新题:提供一些难度较高的题目,供学有余力的学生挑战,激发他们的学习兴趣和创新能力。例如:
-如果一个三角形的两条中位线相等,那么这个三角形是什么类型的三角形?
-通过课堂问答、作业批改、小组评价等多种方式,全面了解学生的学习情况,为下一步教学提供依据。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生的生活经验和已有知识,创设一个与学生日常生活紧密相关的情境。例如,我会提出这样一个问题:“同学们,你们在体育课上是否玩过接力赛?在接力赛中,为什么运动员总是沿着一条直线跑,而不是曲线?”通过这个问题,引导学生思考直线的性质和作用。然后我会进一步提问:“如果我们在三角形中找到一些特殊的线段,这些线段是否也会具有一些特殊的性质呢?”这样的导入方式能够激发学生的好奇心,为接下来的新课学习做好铺垫。
-请尝试用不同的方法证明三角形中位线的性质。
5.反思与总结题:要求学生撰写学习反思,总结自己在学习三角形中位线过程中的收获和困惑,以及对未来学习的规划。
2.结合实际例题,通过直观演示和逐步引导,让学生体会中位线在实际问题中的应用。
-教师将选择与生活实际相关的问题,引导学生运用中位线进行解决。
-学生通过解决具体问题,领会数学知识在实际生活中的应用,培养学以致用的能力。
3.利用变式练习和拓展训练,提高学生解决问题的灵活性和创新性。
-教师将设计不同难度的练习题,以及具有挑战性的拓展题目,帮助学生巩固知识。
(三)学生小组讨论
在学生小组讨论的环节,我会将学生分成若干小组,每组学生需要共同探讨以下问题:1.如何使用尺规作图作出三角形的中位线?2.三角形的中位线有哪些性质?3.如何运用中位线的性质解决实际问题?我会鼓励学生在小组内积极发表自己的观点,倾听他人的意见,共同完成讨论任务。在这个过程中,我会巡回指导,关注每个小组的讨论进度,适时给予提示和建议。

三角形的中位线教学设计(教案)

三角形的中位线教学设计(教案)

教案:三角形的中位线教学设计一、教学目标1. 让学生理解三角形中位线的概念,掌握三角形中位线的性质。

2. 培养学生运用三角形中位线性质解决实际问题的能力。

3. 培养学生合作学习、积极探究的精神。

二、教学内容1. 三角形中位线的定义2. 三角形中位线的性质3. 三角形中位线在几何中的应用三、教学重点与难点1. 重点:三角形中位线的概念及性质。

2. 难点:三角形中位线性质的应用。

四、教学方法1. 采用问题驱动法,引导学生探究三角形中位线的性质。

2. 运用几何画板软件,直观展示三角形中位线的性质。

3. 组织小组讨论,培养学生合作学习的能力。

4. 结合实际例子,让学生运用三角形中位线性质解决问题。

五、教学过程1. 导入:通过复习三角形的相关知识,引入三角形中位线的话题。

2. 新课:讲解三角形中位线的定义,引导学生动手画出三角形的中位线。

3. 探究:让学生运用几何画板软件,观察三角形中位线的性质。

引导学生发现三角形中位线的平行且等于底边一半的性质。

4. 证明:讲解三角形中位线的性质证明过程,让学生理解并掌握证明方法。

5. 应用:结合实际例子,让学生运用三角形中位线性质解决问题,巩固所学知识。

6. 总结:对本节课的内容进行总结,强调三角形中位线的性质及应用。

7. 作业:布置相关练习题,让学生巩固三角形中位线的相关知识。

六、教学评价1. 通过课堂提问、作业批改等方式,了解学生对三角形中位线概念和性质的掌握情况。

2. 观察学生在小组讨论中的表现,评估学生的合作学习和探究能力。

3. 分析学生运用三角形中位线性质解决实际问题的能力,评价学生的学习效果。

七、教学反思1. 反思教学过程中的优点和不足,如教学方法、教学内容、教学组织等。

2. 根据学生的反馈,调整教学策略,提高教学效果。

3. 关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分的锻炼。

八、教学拓展1. 引导学生进一步研究三角形的中位线与其他几何元素的关系。

人教版数学八年级下册18.1.2第2课时《 三角形的中位线》教案

人教版数学八年级下册18.1.2第2课时《 三角形的中位线》教案

人教版数学八年级下册18.1.2第2课时《三角形的中位线》教案一. 教材分析《三角形的中位线》是人教版数学八年级下册第18章第一节的一部分,主要内容是让学生掌握三角形的中位线的性质,学会运用中位线解决一些几何问题。

本节课的内容是学生学习几何知识的重要环节,也是进一步学习复杂几何图形的基础。

二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质,对图形的对称性有一定的了解。

但部分学生对图形的直观感知能力较弱,对几何图形的性质理解不够深入。

因此,在教学过程中,需要注重培养学生的观察能力、思考能力和动手操作能力。

三. 教学目标1.让学生掌握三角形的中位线的性质,能熟练运用中位线解决一些几何问题。

2.培养学生的观察能力、思考能力和动手操作能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.三角形中位线的性质。

2.运用中位线解决几何问题。

五. 教学方法1.采用直观演示法,让学生通过观察实物,理解三角形中位线的性质。

2.运用归纳法,引导学生总结三角形中位线的性质。

3.采用练习法,让学生在实践中掌握中位线的运用。

4.小组合作学习,培养学生的团队合作精神。

六. 教学准备1.准备三角形模型、直尺、圆规等教具。

2.设计相关练习题。

七. 教学过程1.导入(5分钟)利用实物模型,引导学生观察三角形的中位线,提出问题:“三角形的中位线有什么性质?它与三角形有什么关系?”2.呈现(10分钟)通过PPT或黑板,展示三角形的中位线的性质,引导学生总结出:三角形的中位线平行于第三边,等于第三边的一半。

3.操练(10分钟)让学生利用直尺、圆规等工具,自己动手画出一个任意的三角形,然后找出它的中位线,并验证中位线的性质。

4.巩固(10分钟)设计一些有关三角形中位线的练习题,让学生独立完成,巩固所学知识。

5.拓展(10分钟)引导学生思考:如何利用三角形的中位线解决实际问题?例如,在建筑设计中,如何利用中位线保证建筑物的稳定性?6.小结(5分钟)让学生总结本节课所学的知识点,教师进行补充。

浙教版数学八年级下册《4.5 三角形的中位线》教案1

浙教版数学八年级下册《4.5 三角形的中位线》教案1

浙教版数学八年级下册《4.5 三角形的中位线》教案1一. 教材分析《三角形的中位线》是浙教版数学八年级下册第四章第五节的内容。

本节主要让学生掌握三角形的中位线的性质,学会运用中位线解决一些几何问题。

教材通过生活实例引入中位线的概念,然后引导学生探究中位线的性质,最后给出中位线的判定条件。

二. 学情分析学生在学习本节内容前,已经掌握了平行四边形的性质,对图形的变换有一定的了解。

但他们对三角形的中位线可能还比较陌生,因此需要通过实例和探究活动来帮助他们理解和掌握。

三. 教学目标1.了解三角形的中位线的定义,掌握三角形中位线的性质。

2.学会运用中位线解决一些简单的几何问题。

3.培养学生的观察、思考、动手能力,提高他们的几何素养。

四. 教学重难点1.三角形中位线的定义和性质。

2.运用中位线解决几何问题。

五. 教学方法1.实例引入:通过生活实例引入中位线的概念,让学生感受中位线在实际问题中的应用。

2.探究活动:引导学生通过小组合作、讨论、实验等方式,探究中位线的性质,培养学生的动手能力和思考能力。

3.讲解示范:教师在学生探究的基础上,进行讲解和示范,让学生进一步理解和掌握中位线的性质。

4.练习巩固:设计一些练习题,让学生运用中位线解决实际问题,巩固所学知识。

六. 教学准备1.教学PPT:制作包含三角形中位线定义、性质、应用等方面的PPT。

2.练习题:准备一些有关三角形中位线的练习题,包括填空、选择、解答等题型。

3.教具:准备一些三角形模型,以便在课堂上进行演示。

七. 教学过程1. 导入(5分钟)利用生活实例引入三角形的中位线概念,如在建筑设计中,如何利用中位线来确定建筑物的对称性。

让学生观察和思考,引发他们对中位线的兴趣。

2. 呈现(10分钟)呈现PPT,展示三角形的中位线性质。

通过动画演示和实物模型,让学生直观地了解中位线的性质。

同时,引导学生进行小组讨论,分享他们的观察和发现。

3. 操练(10分钟)让学生进行小组合作,利用教具进行实际操作,验证中位线的性质。

北师大版八年级下册数学《6.3 三角形的中位线》教案

北师大版八年级下册数学《6.3 三角形的中位线》教案

北师大版八年级下册数学《6.3 三角形的中位线》教案一. 教材分析北师大版八年级下册数学《6.3 三角形的中位线》这一节主要介绍了三角形的中位线的性质和运用。

通过学习,学生能够掌握三角形中位线的定义、性质,并能运用中位线解决一些几何问题。

本节内容是学生学习几何知识的重要组成部分,也为后续学习其他几何图形奠定了基础。

二. 学情分析学生在学习本节内容前,已经掌握了平行线、相交线的相关知识,对图形的性质有一定的了解。

但部分学生对几何图形的理解和运用能力较弱,需要通过实例和练习来提高。

此外,学生对数学语言的表述和逻辑推理能力也需加强。

三. 教学目标1.理解三角形中位线的定义和性质;2.能够运用中位线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑推理能力;4.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.三角形中位线的定义和性质;2.运用中位线解决几何问题。

五. 教学方法1.采用问题驱动法,引导学生探究三角形中位线的性质;2.利用几何画板和实物模型,直观展示中位线的特点;3.通过实例分析和练习,巩固所学知识;4.采用小组讨论和合作交流的方式,培养学生的团队合作能力。

六. 教学准备1.准备相关几何画板软件和实物模型;2.设计好教学问题和练习题;3.准备好黑板和粉笔。

七. 教学过程导入(5分钟)1.回顾上节课的内容,引导学生复习平行线和相交线的性质;2.提问:你们认为三角形有哪些特殊的线段?它们有什么性质?呈现(10分钟)1.引入三角形中位线的概念,让学生观察和描述三角形的中位线;2.利用几何画板展示三角形中位线的特点,引导学生发现中位线的性质;3.引导学生用数学语言表述中位线的性质。

操练(10分钟)1.让学生自主探究三角形中位线的性质,分组讨论;2.每组选取一名代表,向全班汇报讨论结果;3.教师点评并总结,强调中位线的性质。

巩固(10分钟)1.设计一些有关三角形中位线的练习题,让学生独立完成;2.教师挑选一些学生的作业,进行分析讲解;3.让学生互相交流解题心得,分享解决问题的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新乡市第十三中学 吕晖
预习反馈
重 1.三角形的中位线定义. 点 2.三角形的中位线定理.
难 3.三角形的中位线定理的证明. 点 4.三角形的中位线定理的应用.
三角形的中位线
定义: 连接三角形两边中点的线段 叫做三角形的中位线。
画出△ABC中所有的中位线
画出三角形的所有中线并说
出中位线和中线的区别.
A
D
F
B
C
E
中位线和中线的异同点
名称
中位线
中线
相同点 三角形的重要线段、和边的中点
有关、3条
端点:两边中点 端点:顶点、
不同点
这个顶点所对 边的中点
两两相交围成一 在三角形内交
个三角形
于一点
观察猜想
在△ABC中,中位线
A
DE和边BC什么关系?
命题:三角形的中位
D
E
线平行于第三边,并
且等于它的一半.
小结
重 1.三角形的中位线定义. 点 2.三角形的中位线定理.
3.线段的倍分要转化为相等问题来解 决.(转化思想)
4. 在三角形中给出一边的中点时,要转化
难 点
为中位线. (转化思想)
5.三角形的中位线定理的发现过程所用到 的数学方法(包括画图、实验、猜想、分 析、归纳等.)
作业:
课堂作业 : 拓展提高题用两种方法证明 家庭作业: 1、小节和反思 2.用另一种方法证明中位线定理. 3、理科:第37页至第38页
A
中点三角形的面积等于原三
角形的面积的四分之一
D
F
B
C
E
3.如图,点D、E、F分别是△ABC的边BC、 AB、 CA的中点,猜想线段AD和EF的关系。
三角形的一条中位线和第
三边上的中线互相平分
A
E
O
F
B
D
C
拓展提高
4.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、 CD、DA的中点。四边形EFGH是平行四边形吗?为什么?
∴CF∥BD,CF=BD
A
∴四边形DBCF是平行四边形
∴ DF∥BC,DF=BC
1
又∵ DE= 2 DF ∴DE∥BC且DE=
1
BC
2
D B
E F
C
三角形中位线定理:
三角形的中位线平行于第三边, 并且等于它的一半
用符号语言表示
∵DE是△ABC的中位线
1

DE∥BC,
DE=
2
BC.
D
(位置关系 数量关系)
A E
B
C
探索发现
1.三角形各边的长分别为6 cm、7cm 和 11cm ,求连接各边中点所成三角形的周长. 中点三角形周长和原三角形的周长有什么关 系?
A
中点三角形的周长等于原
三角形的周长的一半
D
F
B
C
E
2.如图,点D、E、F分别是△ABC的边AB、 BC、 CA的中点,以这些点为顶点,你能在图中画出多 少个平行四边形?分别是哪几个? △DEF 和 △ABC的面积有什么关系呢?
B
C
DE和边BC关系
位置关系:DE∥BC,
数量关系:DE=
1
2 BC.
已知:如图,点D、E分别是△ABC的边AB、 AC的中点,求证DE∥BC且DE= 1 BC
2
证明:延长DE到F,使EF=DE,连接FC、DC、AF
∵AE=EC
∴四边形ADCF是平行四边形 ∴ CF∥AD, CF=AD ∵AD =BD
所以四边形EFGH是平行四边形
实际应用 A
M
若MN=50m,则AB= 2MN=100 m
5.A 、B两点被池塘隔开,怎
样测出A、B两点的实际距离
?根据是什么?
C
N
B
1.在AB外选一点C,使C能直接到达A、B,
2.连结AC和BC,并分别找出AC和BC的中点M、N. 3.测出MN的长,就可知A、B两点的距离。 根据是三角形的中位线等于第三边的一半
解:四边形EFGH是平行四边形.

H
连接AC,在△ABC中,
D
因为E、F分别是AB、BC边的 E
中点,即EF是△ABC的中位线.
G
1
所以EF//AC,EF= AC
2 在△ADC中,同1 理可得
HG//AC,HG= AC
B
F
C
顺次连接四边形各边中点
2
所组成的四边形(中点四
所以EF//HG,EF=HG
边形)是平行四边形
相关文档
最新文档