(最新)八年级下册期中考试数学试题有答案

合集下载

人教版数学八年级下册《期中考试题》及答案解析

人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题(解析版)

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题(解析版)

2023−2024学年第二学期期中考试初三数学试题一、选择题(每小题3分,共30分)1.是二次根式,则的值可以是( )A. B. C. 3 D. 【答案】C【解析】【分析】根据二次根式的被开方数为非负数可得出答案.则a 的值不能是负数,故C 符合题意;故选:C .【点睛】本题考查二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.2. 如图,在中,,D 为中点,若,则的长是( )A. 6B. 5C. 4D. 3【答案】C【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得,进而可得答案.【详解】解:∵,D 为边的中点,∴,∵,∴,故选C .【点睛】本题主要考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.a 1-6-7-ABC 90ABC ∠=︒AC 2BD =AC 2AC BD =90ABC ∠=︒AC 2AC BD =2BD =224AC =⨯=3. 下列式子中,属于最简二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式,进行判断即可得.【详解】解:A不是最简二次根式,选项说法错误,不符合题意;B是最简二次根式,选项说法正确,符合题意;CD不是最简二次根式,选项说法错误,不符合题意;故选:B .【点睛】本题考查了最简二次根式.解题的关键是掌握最简二次根式必须满足两个条件.4. 如图,在菱形中,,,则( )A. B. C. D. 【答案】D【解析】【分析】本题考查了菱形的性质,三角形内角和定理,等腰三角形的性质,邻补角的性质,由菱形的性质得到,再根据三角形内角和定理及等腰三角形的性质得到,即可求出,掌握菱形的性质是解题的关键.3==ABCD 80ABC ∠= BA BE =AED =∠95o105 100 1101402ABD ABC ∠=∠=︒70BEA BAE ∠=∠=︒AED ∠【详解】解:∵四边形是菱形,∴平分,∴,∵,∴,∴,故选:.5. 下列计算正确的是( )A.B. =﹣2C.=﹣3 D. 【答案】B【解析】【分析】根据算术平方根的定义可判断A、D 两项、根据立方根的定义可判断B 项、根据平方根的定义可判断D 项,进而可得答案.【详解】解:A,所以本选项计算错误,不符合题意;B﹣2,所以本选项计算正确,符合题意;C=3≠﹣3,所以本选项计算错误,不符合题意;D 、,所以本选项计算错误,不符合题意.故选:B .【点睛】本题考查了平方根、算术平方根和立方根的定义,属于基础知识题型,熟练掌握三者的概念是解题的关键.6.用配方法解方程时,配方后正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查配方法,根据配方法的步骤进行求解即可.【详解】解:,ABCD BD ABC ∠11804022ABD ABC ∠=∠=⨯︒=︒BA BE =18040702BEA BAE ︒-︒∠=∠==︒18070110AED ∠=︒-︒=︒D 5==55=±≠2230x x --=()222x -=-()214x -=()212x -=-()224x +=2230x x --=∴,∴,∴;故选:B .7. 已知实数在数轴上的对应点位置如图所示,则化简的结果是( )A. B. C. 1 D. 【答案】D【解析】【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.【详解】解:由图知:1<a <2,∴a−1>0,a−2<0,原式=a−1-=a−1+(a−2)=2a−3.故选D .【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.8. 若是方程的根,则的值为( )A. B. C. D. 【答案】A【解析】【分析】本题考查一元二次方程的解(使方程左右两边相等的未知数的值),根据题意可得,从而可得,然后代入式子中进行计算即可.掌握方程解的定义是解题的关键.也考查了求代数式的值.【详解】解:∵是方程的根,∴,∴,∴.故选:A .223x x -=2214x x -+=()214x -=a |1|a -32a-1-23a -2a -x m =240x x +-=22024m m ++2028202620242020240m m +-=24m m +=x m =240x x +-=240m m +-=24m m +=22024420242028m m ++=+=9. 如图,在矩形中,对角线交于点O ,过点O 作交于点E ,交于点F .已知,的面积为5,则的长为( )A. 2B. C. D. 3【答案】D【解析】【分析】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理以及三角形的面积问题.连接,由题意可得为对角线的垂直平分线,可得,,由三角形的面积则可求得的长,然后由勾股定理求得答案.【详解】解:连接,如图所示:由题意可得,为对角线的垂直平分线,,,.,,,,在中,由勾股定理得,故选:D .10. 如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF ⊥DE ,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中:①DE =EF ;②△DAE ≌△DCG ;③AC ⊥CG ;④CE =CF.其中正确的是( )ABCD AC BD ,EFAC ⊥AD BC 4AB =AOE △DECE OE AC AE CE =5AOE COE S S == AE CE OE AC AE CE ∴=5COE AOE S S == 210ACE AOE S S \== 1102AE CD \×=4AB CD == 5AE ∴=5CE ∴=Rt CDE△3DE ===A. ②③④B. ①②③C. ①②④D. ①③④【答案】B【解析】【分析】①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:根据正方形的性质得到∠BCD=90°,∠ECN=45°,推出四边形EMCN为正方形,由矩形的性质得到EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,根据全等三角形的性质得到ED=EF,故①正确;②利用已知条件可以推出矩形DEFG为正方形;根据正方形的性质得到AD=DC,∠ADE+∠EDC=90°,推出△ADE≌△CDG(SAS),故②正确;③根据②的结论可得∠ACG=90°,所以AC⊥CG,故③正确;④当DE⊥AC时,点C与点F重合,得到CE不一定等于CF,故④错误.【详解】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴NE=NC,∵∠EMC=∠ENC=∠BCD=90°,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN ≌△FEM (ASA ),∴ED =EF ,故①正确;②∵矩形DEFG 为正方形;∴DE =DG ,∠EDC +∠CDG =90°,∵四边形ABCD 是正方形,∵AD =DC ,∠ADE +∠EDC =90°,∴∠ADE =∠CDG ,在△ADE 和△CDG 中,,∴△ADE ≌△CDG (SAS ),故②正确;③根据②得∠DAE =∠DCG =45°,∴∠ACG =90°,∴AC ⊥CG ,故③正确;④当DE ⊥AC 时,点C 与点F 重合,∴CE 不一定等于CF ,故④错误,综上所述:①②③正确.故选:B .【点睛】本题考查了正方形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解(1)的关键.二、填空题(每小题3分,共15分)11.______.【答案】【解析】【分析】本题考查二次根式有意义的条件,注意被开方数大于等于0即可.,所以解得.DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩3a ≥-30a +≥3a ≥-故答案为:.12. 如图,的对角线相交于点O ,请你添加一个条件使成为矩形,这个条件可以是______.【答案】(答案不唯一)【解析】【分析】依据矩形的判定定理进行判断即可.【详解】解:∵四边形为平行四边形,∴当时,四边形为矩形.故答案为(答案不唯一).【点睛】本题主要考查矩形判定,熟悉掌握矩形判定条件是关键.13. 若关于的一元二次方程有实数根,则的取值范围是_______.【答案】且【解析】【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】关于的一元二次方程有实数根∴ ∴,即且.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.14. 如图,在平面直角坐标系中,正方形的边长为2,,则点的坐标为______.的3a ≥-ABCD Y AC BD ,ABCD Y AC BD =ABCD AC BD =ABCD AC BD =x 2(2)210k x x --+=k 3k ≤2k ≠x 2(2)210k x x --+=()()2202420k k -≠⎧⎪⎨---≥⎪⎩23k k ≠⎧⎨≤⎩3k ≤2k ≠ABCD 60DAO ∠=︒C【答案】##【解析】【分析】本题考查了正方形的性质、三角形全等的判定与性质、坐标与图形,勾股定理的应用,含30度角的直角三角形的性质,由题意可得,,作轴于,证明得到,,即可得解,熟练掌握以上知识点并灵活应用是解此题的关键.【详解】解:∵正方形的边长为2,,,∴,,,,如图,作轴于,则,四边形是正方形,∴,,,在和中,+)11OA=OB =CE y ⊥E ADO DCE≌CE DO ==1DE AO ==ABCD 60DAO ∠=︒90AOD ∠=︒30ADO ∠=︒2AD CD ==1OA ∴=OD ==CE y ⊥E 90CED AOD ∠=∠=︒ ABCD 90ADC ∠=︒90ADO CDE ADO DAO ∴∠+∠=︒=∠+∠CDE DAO ∴∠=∠ADO △DCE △,,,,,点在第一象限,,故答案为:.15. 如图,矩形中,,,点、分别是对角线和边上的动点,且,则的最小值是____________.【答案】【解析】【分析】过点作,使,过点作,交的延长线于点,连接、、,交于点,根据矩形的性质及勾股定理得,,继而得到是等边三角形,证明,得到,继而得到,当、、三点共线时,取“”号,此时有最小值,最小值是线段的长,然后在中,根据角的直角三角形的性质及勾股定理得到,,最后再根据勾股定理计算即可.【详解】解:过点作,使,过点作,交的延长线于点,连接、、,交于点,∴,∵矩形中,,,CDE DAO AOD DEC AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADO DCE ∴≌CE DO ∴==1DE AO ==1OE OD DE ∴=+= C C ∴++ABCD 3AB =AD =E F AC CD AE CF =BE BF +A AG AC ⊥AG AD =G GM BA ⊥GM BA M EG BG BD BD AC O 6AC ==3BO AO AB ===ABO ()SAS AGE CBF ≌GE BF =BE BF BE GE BG +=+≥B E G =BE BF +BG Rt MAG △30︒12MG AG ==92AM ==BG =A AG AC ⊥AG AD =G GM BA ⊥GM BA M EG BG BD BD AC O 90GAE ∠=︒ABCD 3AB =AD =∴,,,∴,∴,∴等边三角形,∴,∴,在和中,∴,∴,∵点、分别是对角线和边上的动点,∴,当、、三点共线时,取“”号,此时有最小值,最小值是线段的长,在中,,,,∴,∴,∴,在中,,∴的最小值是,故答案为:是90ABC G B A F E C ∠=︒=∠∠=BC AD AG ===12BO AO AC ==6AC ===116322BO AO AC AB ===⨯==ABO 60BAO ∠=︒180180609030GAM BAO GAE ∠=︒-∠-∠=︒-︒-︒=︒AGE CBF V AG CBGAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩()SAS AGE CBF ≌GE BF =E F AC CD BE BF BE GE BG +=+≥B E G =BE BF +BG Rt MAG △90GMA ∠=︒30GAM ∠=︒AG =12MG AG ==92AM ===915322BM BA AM =+=+=Rt MBG △BG ===BE BF +【点睛】本题考查矩形的性质,勾股定理,等边三角形的判定和性质,全等三角形的判定和性质,角的直角三角形,三角形三边关系,两点之间线段最短等知识点,通过作辅助线构造全等三角形的是解题的关键.三、解答题(共55分)16. 计算(1(2)【答案】(1)1 (2)【解析】【分析】本题主要考查了二次根式混合运算,(1)根据二次根式乘除运算法则进行计算即可;(2)根据二次根式混合运算法则进行计算即可.【小问1详解】;【小问2详解】解:30︒((2222+-86⨯÷==÷1=((2222+--((((2222⎡⎤⎡⎤=++-+--⎣⎦⎣⎦.17. 解方程:(1)(2)【答案】(1) (2)【解析】【分析】本题主要考查了解一元二次方程:(1)先移项,然后利用因式分解法解方程即可;(2)利用公式法解方程即可.【小问1详解】解:∵,∴,∴,∴或,解得;【小问2详解】解:∵,∴,∴,∴,解得(2222=-+-+4=⨯=()()242++=+x x x 2310x x --=1223x x =-=-,12x x ==()()242x x x ++=+()()()2420x x x ++-+=()()2410x x ++-=20x +=410x +-=1223x x =-=-,2310x x --=131a b c ==-=-,,()()2Δ3411130=--⨯⨯-=>x ==12x x ==18. 如图,在中,D 是的中点,E 是的中点,过点A 作交的延长线于点F .(1)求证:;(2)连接,若,求证:四边形矩形.【答案】(1)见解析; (2)见解析;【解析】【分析】(1)根据两直线平行,内错角相等求出,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.【小问1详解】证明:∵,∴,∵点E 为的中点,∴,在和中,,∴;∴,∵,∴;【小问2详解】是ABC BC AD AF BC ∥CE AF BD =BF AB AC =ADBF AFE DCE ∠=∠AFBD AF BC ∥AFE DCE ∠=∠AD AE DE =AEF △EDC △AFE DCE AEF DEC AE DE ∠∠⎧⎪∠∠⎨⎪⎩===AAS EAF EDC ≌()AF CD =CD BD =AF BD =证明:,∴四边形是平行四边形,∵,∴,∴平行四边形是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.19. 阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以为例,花拉子米的几何解法步骤如下:① 如图1,在边长为x 的正方形的两个相邻边上作边长分别为和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;② 一方面大正方形的面积为(x +)2,另一方面它又等于图中各部分面积之和,因为,可得方程,则方程的正数解是.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程的正数解的正确构图是 (填序号).【答案】(1)5,5,25,3 (2)①【解析】【分析】本题主要考查解一元二次方程−配方法,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据已知算式和图形可得答案.的AF BD AF BD = ∥,AFBD AB AC BD CD ==,90ADB ∠=︒AFBD 21039x x +=x 21039x x +=()239x +=+x =267x x -=(2)根据“在边长为x 的正方形的两个相邻边上作边长分别为和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形”,可得答案.【小问1详解】解:一方面大正方形的面积为,另一方面它又等于图中各部分面积之和,因为,可得方程,则方程的正数解是.故答案为:5;5;25;3.【小问2详解】解:由题意可得,能够得到方程的正数解的正确构图:在边长为x 的正方形的两个相邻边上作边长分别为和3的矩形,再补上一个边长为3的小正方形,最终把图形补成一个大正方形∴①符合.故答案为:①.20. 如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF .猜想并证明:判断四边形AECF 的形状并加以证明.【答案】(1)作图见解析;(2)菱形,证明见解析【解析】【详解】解:(1)如图所示,(2)四边形AECF 的形状为菱形.理由如下:∵AB=AC , ∴∠ABC=∠ACB,x ()25x +21039x x +=()253925x +=+3x =267x x -=x∵AM 平分∠DAC ,∴∠DAM=∠CAM ,而∠DAC=∠ABC+∠ACB ,∴∠CAM=∠ACB ,∴EF 垂直平分AC ,∴OA=OC ,∠AOF=∠COE ,在△AOF 和△COE 中,,∴△AOF ≌△COE ,∴OF=OE ,即AC 和EF 互相垂直平分,∴四边形AECF 的形状为菱形.【点睛】本题考查①作图—复杂作图;②角平分线的性质;③线段垂直平分线的性质.21.的计算,将分母转化为有理数,这就是“分母有理化;.类似地,将分子转化为有理数,就称为“分子有理化;.FAO ECOOA OC AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩======+=======根据上述知识,请你解答下列问题:(1;(2的大小,并说明理由.【答案】(1)2 (2,理由见解析【解析】【分析】本题考查的是分母有理化:(1)根据分母有理化是要求把分子分母同时乘以,再计算即可得到答案;(2)根据分子有理化的要求把原式变形为同分子的分数 ,再比较大小即可.【小问1详解】;【小问2详解】,22. 在菱形中,,点E ,F 分别是边,上的点.【尝试初探】<)2+=2=+2=====<<ABCD 60A ∠=︒AB BC(1)如图1,若,求证:;【深入探究】(2)如图2,点G ,H 分别是边,上的点,连接与相交于点O 且,求证:【拓展延伸】(3)如图3,若点E 为的中点,,,.①设,,请用关于x 的代数式表示y ;②若,求的长.【答案】(1)见解析;(2)见解析;(3)①;②.【解析】【分析】(1)连接,证明和都等边三角形,可得,证明,即可得出结论;(2)连接,过点D 作交于点P ,交于点Q ,可证,四边形和四边形都是平行四边形,得出,,由(1)可知,即可得证;(3)①过点B 作交于点M ,过点D 作交于点P ,交于点Q ,则四边形和四边形、四边形都是平行四边形,得出,,,,,由(1)可知,则,即可求解;②过点B 作于点N ,利用含的直角三角形的性质求出,利用勾股定理求出,根据可求,然后在中利用勾股定理求解即可.【详解】解:(1)如图1,连接,∵菱形、,是60EDF ∠=︒DE DF =CD AD EG FH 60EOF ∠=︒EG FH =AB 6AB =1BF =60EOF ∠=︒DH x =CG y =6CG DH +=EG 4y x =+BD ABD △BCD △ADE BDF ∠=∠ADE BDF ≌V V BD DP EG ∥AB DQ FH ∥BC 60PDQ EOF ∠=∠=︒DPEG DHFQ DP EG =DQ FH =DP DQ =BM EG ∥CD DP EG ∥AB DQ FH ∥BC BPDM BEGM DHFQ DM BP =GM BE =EG BM =HD FQ x ==1BQ x =+ADP BDQ ≌△△1CM AP BQ x ===+BN CD ⊥30︒132CN BC ==BN =6CG DH +=1MN =Rt BMN △BD ABCD 60A ∠=︒,,,,和都是等边三角形,,,,,,;(2)如图2,连接,过点D 作交于点P ,交于点Q则,四边形和四边形都是平行四边形,,,由(1)可知,(3)①如图3,过点B 作交于点M ,过点D 作交于点P ,交于点Q ,则四边形和四边形、四边形都是平行四边形,,,,,∵点E 为的中点,,,,,,AB AD CB CD ∴===60C ∠=︒AD BC ∥AB CD ∥∴ABD △BCD △AD BD ∴=60ADB ∠=︒60DBF ∠=︒60EDF ∠=︒ ADE BDF ∴∠=∠ADE BDF ∴ ≌DE DF ∴=BD DP EG ∥AB DQ FH ∥BC 60PDQ EOF ∠=∠=︒DPEG DHFQ DP EG ∴=DQ FH =DP DQ =EG FH∴=BM EG ∥CD DP EG ∥AB DQ FH ∥BC BPDM BEGM DHFQ DM BP ∴=GM BE =EG BM =HD FQ =AB 6AB =3BE ∴=3GM ∴=1BF = DH x =,,由(1)可知,,,,,,②过点B 作于点N ,,,,,,即,,,,,.【点睛】本题考查了菱形的性质,平行四边形的判定与性质,等边三角形的判定与性质,直角三角形的性质,全等三角形的判定和性质,勾股定理,二次根式的化简等知识,解题的关键是熟练掌握菱形的性质.FQ x ∴=1BQ x =+ADP BDQ ≌△△1AP BQ x ∴==+DM BP = AB CD =1CM AP x ∴==+4y CG CM GM x ∴==+=+BN CD ⊥60C ∠=︒ 30NBC ∴∠=︒132CN BC ∴==BN =6CG DH += 6y x +=46x x ∴++=1x ∴=12CM x =+=∴1MN ∴=EG BM ∴===。

八年级下期中考试数学试题附答案

八年级下期中考试数学试题附答案

1ABCP 第8题图八年级下学期期中考试数学试题一、填空题(3分×10=30分)1、当x 时,分式11+x 有意义.2、当m 时,函数()32--=m xm y 是反比例函数.3、已知当x =-2时,分式a x b x +-无意义,当x=6时,此分式的值为0,则=⎪⎭⎫⎝⎛ab a .4、已知关于x 的方程332=-+x mx 的解是正数,则m 的取值范围是 . 5、直角三角形的两边为3、4,则第三边长为 . 6、如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于点B ,若S △AOB =5,则k = . 7、若ba b a +=+411,则=+b a a b .8、点P 是等边三角形ABC 内一点,且PA=6,PB=8,PC=10,则∠APB= .9、如图,依次摆放着七个正方形,已知余放置的三个三角形的面积分别为1、2、3,正放着的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4= . 10、如果直线kx y =(k >0)与双曲线xy 6=交于A (x 1,y 1)、B (x 2,y 2)两点,则=-122172y x y x .二、选择题(3分×7=21分) 11、下列各式中5a 、m n 2、π21、1+b a 、3b a +、zy 15-、3-z 中分式有( )个. A.2 B.3 C.4 D.512、将281-⎪⎭⎫ ⎝⎛、08-、()52-这三个数按从小到大的顺序排列,正确的排序结果是( ).A.08-<281-⎪⎭⎫ ⎝⎛<()52- B.()52-<08-<281-⎪⎭⎫ ⎝⎛C.281-⎪⎭⎫ ⎝⎛<08-<()52-D.()52-<281-⎪⎭⎫ ⎝⎛<08-x第6题图S 11S 22S 33S 4第9题图213、如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N ,则MN 等于( ).A.56B.59C.512D.51614、若关于x 的分式方程xx x x m x x 1112+=++-+有增根,则m 的值为( ) A.―1或―2 B.-1或2 C.1或2 D.0或-215、如图,地面上有一个长方体,一只蜘蛛在这个长方体的顶点A 处,一滴水珠在这个长方形的顶点C′处,已知长方体的长为6m ,宽为5m ,高为3m ,蜘蛛要沿着长方体的表面从A 处爬到C′处,则蜘蛛爬行的最短距离为( )A.m 130B.8mC.10mD.14m16、函数x y =1(x ≥0)、xy 42=(x >0)的图象如图,则结论 ①两函数图象的交点A 的坐标为(2,2) ②当x>2时,y 2>y 1 ③当x =1时,BC=3④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小 其中正确的是( ).A.①②B.①②③C.①③④D.①②③④ 17、如图,函数()xky x k y =+=与1在同一坐标系中,图象只能是下图中的( ). C第13题图 D′C ′B ′ CBDA′A第15题图xx4 xA xBCxD3三、解答题18、计算(5分×3=15分)(1)111326125.0221032-+⎪⎪⎭⎫ ⎝⎛-+⨯-⎪⎭⎫ ⎝⎛- (2)()33296422+∙+-÷++-a a a a a a(3)已知()111022222++--=-x x x x ,x 求代数式的值.19、解下列分式方程(5分)xx x -=+--2312320、(7分)如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.DCBA421、(8分)如图,在长方形ABCD 中,AB=6,BC=8,P 是BC 边上一动点,过D 作DE ⊥AP 于E ,设AP=x ,DE=y ,试求出y 与x 之间的函数关系式,并画出函数图象.22、(8分)金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书,从投标书中得知,甲单独完成这项工程所需天数是乙单独完成这项工程所需天数的32;若由甲队先做20天,剩下的工程再由甲、乙两队合作30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元,为缩短工期以减少对住户的影响,拟安排甲、乙两个工程队合作完成这项工程,则工程预算的费用是否够用?若不够用,需追加预算费用多少万元?请给出你的判断并说明理由.23、(8分)已知A (-4,n )、B (2,-4)是反比例函数xmy =图象和一次函数b kx y +=的图象的两个交点.(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;ABDEPC5(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式xmb kx -+>0的解集(请直接写出答案).24、(8分)已知如图,AC=5,AB=3,边BC 上的中线AD=2,求△ABC 的面积.25、(10分)如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对标. 以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向,设A 、B 两船可近似看成在双曲线xy 4=上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线x y =上,三船同时发现湖面上有一遇险的C 船. 此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A ( )、B ( )和C ( ). (2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3∶4. 问教练船是否最先赶到?请说明理由.ABDCx (百米)D6参考答案1、x ≠-12、m =-23、914、m >-9且m ≠-65、5或76、k=-107、28、150°9、4 10、30 11—17、CBCDCCD 18、(1)-6 (2)2 (3)1 19、x =1 20、连结AD 21、xy 48=(6≤x ≤10) 22、(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要x 32天,则11321303220=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++x x x . 解之得105=x . 经检验105=x 是所列方程的根且符合题意的701053232=⨯=x ,故甲、乙两队单独完成这项工程各需70天、105天。

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。

山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

绝密★启用前2023-2024学年度第二学期期中考试初三数学试题说明:1.考试时间120分钟,满分120分.2.考试过程允许学生进行剪、拼、折叠等实验.一.选择题(本大题共10个小题,每小题3分,满分30分)1. 下列关于x的方程是一元二次方程的是( )A. B.C. D.答案:B解析:解:、,含有两个未知数,故本选项不符合题意;、,可化为,满足一元二次方程的定义,故本选项符合题意;、不是整式方程,故本选项不符合题意;、最高次数3,故本选项不符合题意;故选:.2. 下列二次根式中,属于最简二次根式的是()A. B. C. D.答案:C解析:解:、,故本选项不符合题意;、,故本选项不符合题意;、是最简二次根式,故本选项符合题意;、,故本选项不符合题意;故选:.3. 如图,的对角线交于点O,下列条件不能判定是菱形的是()A. B.C. D.答案:D解析:解:A.由、,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;B.由可得,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.由,根据对角线垂直的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.是的对边,不能说明四边形是菱形,故该选项符合题意.故选:D.4. 若关于x的方程有两个不相等的实数根,则m的值可能是()A. B. C. D. 7答案:A解析:关于x的方程有两个不相等的实数根,,解得,,,故选:A.5. 若,,则的值为()A. 3B.C. 6D.答案:D解析:解:∵,,∴.故选:D.6. 如图,在正方形中,点,分别在和边上,,,则的面积为()A. 6B. 5C. 3D.答案:C解析:四边形是正方形,四边形平行四边形,的面积为,故选:C7. 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案:B解析:解:如图,四边形中,于点,、、、分别是边、、、的中点,连接、、、,得到四边形,设交于点.,,、、、分别是边、、、的中点,∴,,,,,∴,,四边形是平行四边形,,,∴,,∵,平行四边形是矩形.故选:B.8. 对于实数定义新运算:,若关于的方程没有实数根,则的取值范围()A. B.C. 且D. 且答案:A解析:解:由题意可得方程:,即,∵该方程没有实数根,∴,解得:;故选:A.9. 当时,代数式的值是( )A. 19B. 21C. 27D. 29答案:B解析:解:,,故选:B10. 已知,如图,点为x轴上一点,它的坐标为,过点作x轴的垂线与直线:交于点,以线段为边作正方形;延长交直线于点,再以线段为边作正方形;延长交直线于点,再以线段为边作正方形….依此类推,的坐标为()A. B. C. D.答案:C解析:解:过点作x轴的垂线与直线交于点,,线段为边作正方形,,同理可得,,,故答案为:C;二.填空题(本大题共6个小题,每小题3分,满分18分)11. 若在实数范围内有意义,则的取值范围是_________ .答案:且解析:解:由题意得,且,解得且,故答案为:且;12. 关于x的一元二次方程有两个相等的实数根,则的值为__________ .答案:解析:关于x的一元二次方程有两个相等的实数根,,,,故答案为:13. 在矩形中,对角线、相交于点O,过点A作,交于点M,若,则的度数为______ .答案:##60度解析:四边形是矩形,,,,,,,,,,,,,,故答案为:.14. 已知a是方程的一个根,则的值为______.答案:2030解析:a是方程的一个根,,,故答案为:2030.15. 已知,则___________.答案:25解析:解:由题意知:,解得:,,,故答案为:25;16. 如图,正方形的边长,对角线、相交于点,将直角三角板的直角顶点放在点处,三角板两边足够长,与、交于、两点,当三角板绕点旋转时,线段的最小值为________ .答案:解析:解:四边形是正方形,,,,,,,,,,,故要使有最小值,即求的最小值,当时,有最小值,,,,,线段的最小值为.故答案为:.三.解答题(本大题共9个小题,共72分.请在答题卡指定区域内作答.)17. 计算:(1);(2).答案:(1)(2)【小问1解析:】解:,【小问2解析:】解:原式.18. 用合适的方法解方程:(1);(2).答案:(1)(2)【小问1解析:】解:移项得,配方得,∴.【小问2解析:】,整理得:,∵,∴,∴,∴,.19. 如图,有一张矩形的纸片,将矩形纸片折叠,使点A与点C重合.(1)请用尺规在图中画出折痕,其中,点M在边上,点N在边上;(不写作法,保留痕迹),并说明折痕所在的直线与对角线有怎样的位置关系?(2)在(1)的条件下,直接写出折痕的长度.答案:(1)见解析,折痕所在的直线是对角线的垂直平分线(2)【小问1解析:】线段就是所要求作的折痕;折痕所在的直线是对角线的垂直平分线;【小问2解析:】连接,设,则,四边形是矩形,,,,在中,,是对角线的垂直平分线,在中,,,解得,,在中,,,,,,,折痕的长度为.20. 关于的一元二次方程有实数根.(1)求的取值范围;(2)若为正整数,请用配方法求出此时方程的解.答案:(1)且(2),【小问1解析:】解:∵关于的一元二次方程有实数根,∴且,解得:且,∴的取值范围为且;【小问2解析:】∵且,且m为正整数,∴,∴原方程为,∴,∴,∴,∴,∴此时方程的解为:,.21. 如图,在菱形中,,点E,F分别在上,且.(1)求证:;(2)若,试求出线段的长,并说明理由.答案:(1)证明见解析(2)10,理由见解析【小问1解析:】证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴,,∴是等边三角形,∴,∴,∵,∴,∴,和中,,∴.【小问2解析:】解:∵,∴,∵,∴是等边三角形.∴,∵,∴.22. 已知,.(1)分别求,的值;(2)利用(1)的结果求下列代数式的值:①;②.答案:(1),(2)①;②【小问1解析:】解:,,,;【小问2解析:】由(1)知,,①;②.23. 如图,菱形的对角线,相交于点O,过点D作,且,连接.(1)求证:四边形为矩形.(2)若菱形的面积是10,请求出矩形的面积.答案:(1)证明见解析(2)5【小问1解析:】证明:∵四边形是菱形,∴,,∵,∴,又∵,∴四边形为平行四边形,∵,∴四边形为矩形;【小问2解析:】∵菱形的面积是10,∴,∴,∵四边形是菱形,∴,∴,∴矩形的面积为5.24. 阅读理解:我们解决某些数学题的时候,经常会遇到题目中的条件比较含糊,它们常常巧妙地隐蔽在题设的背后,不易被发现和运用,导致我们解题受阻,因此,挖掘题设中的隐含条件,应该成为我们必备的一种能力.请阅读下面的解题过程,体会如何发现隐含条件,并依次解决所给的问题.化简:解:由题意可知隐含条件解得:,∴,∴.启发应用:(1)按照上面的解法,化简:;类比迁移:(2)已知的三边长分别为,,,请求出的周长.(用含有的代数式表示,结果要求化简)拓展延伸:(3)若,请直接写出的取值范围.答案:(1)2;(2);(3)解析:解:(1)由题意可知隐含条件解得:,∴,∴,(2)由题意可知隐含条件解得:,∴,∴,∴,∴的周长为;(3)由题意可知隐含条件,解得:,当时,,则,符合题意,当时,,则,不符合题意,综上所述,的取值范围为.25. 在学习了“特殊的平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有_______(把所有正确的序号都填上);①“双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,线段、于点O,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上,且,在第一象限内,是否存在点,使得四边形为“双直四边形”,若存在;请直接写出所有点的坐标,若不存在,请说明理由.答案:(1)②③(2)证明见解析(3)存在,点的坐标或小问1解析:】解:∵正方形是“双直四边形”,正方形的对角线相等.故①不正确.∵“双直四边形”的对角线互相垂直,∴“双直四边形”面积等于对角线乘积的一半.故②正确.∵中心对称的四边形是平行四边形,对角线互相垂直且有一个角是直角的的平行四边形是正方形.∴若一个“双直四边形”是中心对称图形,则其一定是正方形.故③正确.故答案为:②③;【小问2解析:】证明:如图,设与的交点为,∵四边形是正方形,,又,,,,,,,,,∴四边形为“双直四边形”.【小问3解析:】解:假设存在点在第一象限,使得四边形为“双直四边形”.如图,设的交点为∵,,,即,,解得,,是的中点,,设直线的解析式为则解得∴直线的解析式为设,①当时,则,,则;②当时,,是的垂直平分线,,,,,此时点坐标还是;③当时,,是等腰直角三角形,,,,∵,,∴,∴,整理得,,当时,,此时在第四象限,不符合题意.当时,,此时在第一象限,符合题意.综上,或.。

山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试题(含答案)

山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试题(含答案)

山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试题注意事项:1.本试题满分120分,考试时间120分钟2.请将答案填写在答题卡上一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置)1.在实数,,,3.141523-π0.32 A .1B .2C .3D .42.下列计算正确的是()A B C D 3=-6=±3=2=-3.若直角三角形两直角边长分别为6和7,则其斜边长度的整数部分为()A .9B .10C .8D .74.如图所示,O 是矩形ABCD 的对角线AC 的中点,E 为AD 的中点.若,6AB =,则的周长为()8BC =BOE △A .10B .C .D .148+8+5.小聪用100元钱去购买笔记本和钢笔共30件.已知每本笔记本2元,每支钢笔5元,小聪最多能买x 支钢笔.可列出不等式()A .B .52(30)100x x +-<52(30)100x x +-≤C .D .52(30)100x x +-≥52(30)100x x +->6.若不等式组无解,则实数a 的取值范围是()0122x a x x +≥⎧⎨->-⎩A .B .C .D .1a ≤-1a <-1a ≤1a ≥-7.平行四边形ABCD 中,对角线,,交点为点O ,则边AB 的取值范围为12AC =8BD =()A .B .C .D .12AB <<420AB <<410AB <<210AB <<8.若方程组的解满足,则m 的取值中负整数的个数是()322222x y m x y m -=+⎧⎨-=-⎩1x y ->A .1个B .2个C .3个D .4个9.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点P 为AB 边上一动点(不与点A ,B 重合),于点E ,于点F ,若,,则EF 的最小值PE OA ⊥PF OB ⊥8AC =6BD =为()A .3B .2C .D .1255210.如图,正方形ABCD 中,,点E 在边BC 上,,将沿DE 对12AB =BE EC =DCE △折至,DFE △延长EF 交边AB 于点G ,连接DG 、BF ,给出以下结论:①;②DAG DFG ≌△△;③;④;⑤.其中正确结论的个数是()2BG AG =120DGF S =△725BEF S =△//BF DEA .5B .4C .3D .2二、填空题(每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)11.若实数m ,n 满足的值是__________.2(4)0m -+=12.如图,的直角边AB 在数轴上,点A 表示的实数为0,以A 为圆心,AC 的Rt ABC △长为半径作弧交数轴的负半轴于点D .若,,则点D 表示的实数为1CB =2AB =__________.13.勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a ,b ,c ,其中a ,b 均小于c ,,,m 是大于1的奇数,则__________(用含m 的式子21122a m =-21122c m =+b =表示).14.关于x 的不等式组整数解共2个,则m 的取值范围是__________.0521x m x -<⎧⎨-≤⎩15.如图,在长方形ABCD 中,,,将沿对角线BD 翻折,点C 落6BC =3CD =BCD △在点处,交AD 于点E ,则线段DE 的长为__________.C 'BC '16.如图,已知等腰的直角边长为1,以的斜边为直角边,画第12Rt AA A △12Rt AA A △2AA 2个等腰,再以的斜边为直角边,画第3个等腰,23Rt AA A △23Rt AA A △3AA 34Rt AA A △…依此类推直到第100个等腰,则第100个等腰直角三角形的面积为100101Rt AA A △__________.三、解答题(本题共72分,把解答或证明过程写在答题卡的相应区域内)17.(8分)计算:(1)(2)21-+30(2)( 3.14)π-++-18.(8分)解下列不等式(组):(1),并把解集在数轴上表示出来;2132134x x -+≤-(2).231125123x x x x +≥+⎧⎪+⎨-<-⎪⎩19.(8分)已知:的立方根是,的算术平方根是3,c31a +2-21b -分.求的平方根.522a b c -+20.(8分)如图,在中,,点D 在AC 边上,以CB ,CD 为边作ABC △AB AC =,DE 交AB 于点F .DCBE (1)若,求的度数;50A ∠=︒E ∠(2)若,,求EF .3AD CD =6BC =21.(8分),如图,在四边形ABCD 中,,.过点D 分别作于//AB CD //AD BC DEAB ⊥点E ,于点F ,且.求证:四边形ABCD 是菱形.DF BC ⊥DE DF =22.(8分),如图,在中,E 、F 分别是AD 、BC 的中点,连接AC 、CE 、AF .ABCD Y (1);ABF CDE ≌△△(2),求证四边形AFCE 是矩形.AB AC =23.(本题12分)某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店预计用不多于1.8万元且不少于1.74万元的资金购进甲、乙两种型号的微波炉销售共20台,请问有几种进货方案?请写出进货方案;(3)该店计划购进甲、乙两种型号的微波炉销售共20台,其中甲型微波炉a 台,甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为.为了促销,公司决定甲型微波45%炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,若全部售出购进的微波炉所获得的利润与a 无关.则m 的值应为多少?24.(本题12分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,,,问四边形ABCD 是AB AD =CB CD =垂美四边形吗?请说明理由;(2)性质探究:试探索垂美四边形ABCD 两组对边AB ,CD 与BC ,AD 之间的数量关系:.请写出证明过程(先画出图形,写出已知、求证,再写出证明);2222AB CD AD BC +=+(3)问题解决:如图3,分别以的直角边AC 和斜边AB 为边向外作正方形Rt ACB △ACFG 和正方形ABDE ,连接CE ,GE ,GB ,已知,,求GE 的长.4AC =5AB =八年级数学期中样题答案一、选择题(本大题共10小题,每小题3分,共30分)1-5CDACB 6-10ADBCB二、填空题(本大题共6小题,每小题3分,共18分)11.512.13.m 14.3m 4<≤15.3.7516.982三、解答题(本题共72分,写出解答或证明过程)17.(8分)解:解:(1)原式)31(2)=-+-312=-+-. (4)分2=-(2)原式.……4分=8315=9-++--18.(1)解:去分母得,,4(21)3(32)12x x -≤+-去括号得,,移项得,,合并同类项得,849612x x -≤+-896124x x -≤-+,2x -≤-把x 的系数化为1得,.……3分2x ≥在数轴上表示为:.……4分(2)解:231125123x x x x +≥+⎧⎪⎨+-<-⎪⎩①②解①得:……1分8x ≥解②得:……2分45x <在数轴上表示:……3分故原不等式组无解.……4分19.的立方根是,31a + 2-,解得,……2分318a ∴+=-3a =-的算术平方根是3,21b - 解得,……4分219b ∴-=5b =c .……6分6c ∴=,……7分52651542a b c ∴-+=--+=4的平方根是.……8分∴2±20..解:(1)在中,,,ABC △50A ∠=︒ AB AC =,()18050265C ABC ∴∠=∠=︒-︒÷=︒四边形BCDE 是平行四边形,;……3分65E C ∴∠=∠=︒(2),3AD CD = ..34AD AC ∴=34DF BC ∴=,.6BC = 92DF ∴=.……8分93622EF ED DF ∴=-=-=21.证明:于点E ,于点F ,,DE AB ⊥ DF BC ⊥9 0AED CFD ∴∠=∠=︒,,//AB CD //AD BC 四边形ABCD 是平行四边形,……3分∴,……4分A C ∴∠=∠在和中,ADE △CDF △,A C AED CFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,……6分(AAS)ADE CDF ∴≌△△,AD CD ∴=四边形ABCD 是菱形.……8分∴22.(1)四边形ABCD 是平行四边形,,,. AB CD ∴=AD BC =B D ∠=∠、F 分别是AD 、BC 的中点,E ,.,,12DE AE AD ∴==12BF CF BC ==BF DE ∴=CF AE =.……4分(SAS)ABF CDE ∴≌△△(2),.(SAS)ABF CDE≌△△AF CE ∴=又,CF AE = 四边形AFCE 是平行四边形.……6分∴,F 分别是BC 的中点,.AB AC = AF BC ∴⊥即.四边形AFCE 是矩形.……8分90AFC ∠=︒∴23.(1)解:设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,……1分,……2分22600234400x y x y +=⎧⎨+=⎩解得:,……3分1000800x y =⎧⎨=⎩答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.……4分(2)解:设购进甲型号微波炉为a 台,则乙型号微波炉为台,由(1)及题意得:(20)a -……5分,……6分1000800(20)180001000800(20)17400a a a a +-≤⎧⎨+-≥⎩解得:,……7分710a ≤≤为正整数,的值为7、8、9、10,a a ∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型∴号9台则乙型号11台;甲型号10台则乙型号10台.……8分(3)解:设总利润为w ,则由(2)可得:,……10(14000.91000)(80045%)(20)(100)720020w a m a m a m =⨯-+⨯--=-+-分所获得的利润与a 无关,,解得:,……11分1000m ∴-=100m =答:要使所获得的利润与a 无关,则m 的值应为100.……12分24.(1)解:四边形ABCD 是垂美四边形.证明:如图连接AC ,BD 交于点E ,,AB AD = 点A 在线段BD 的垂直平分线上……1分∴,CB CD = 点C 在线段BD 的垂直平分线上,……2分∴直线AC 是线段BD 的垂直平分线,∴,即四边形ABCD 是垂美四边形.……3分AC BD ∴⊥(2)如图2,已知四边形ABCD 中,垂足为E ,求证:.2222AD BC AB CD +=+证明:,,AC BD ⊥ 90AED AEB BEC CED ∴∠=∠=∠=∠=︒由勾股定理得,,222222AD BC AE DE BE CE +=+++,222222AB CD AE BE CE DE +=+++.……6分2222AD BC AB CD ∴+=+(3)连接CG 、BE,如图:,,即,90CAG BAE ∠=∠=︒ CAG BAC BAE BAC ∴∠+∠=∠+∠GAB CAE ∠=∠在和中,,GAB △CAE △AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩.……8分GAB CAE ∴≌△△,又,ABG AEC ∴∠=∠90AEC AME ∠+∠=︒,即,90ABG AME ∴∠+∠=︒CE BG ⊥四边形CGEB 是垂美四边形,……10分∴由(2)得,,2222CG BE CB GE +=+在中,,,根据勾股定理可得:,Rt ABC △4AC =5AB =3BC =和BE 分别是正方形ACFG 和ABDG 的对角线,CG,CG ∴=BE =((2222222373GE CG BE CB∴=+-=+-=.……12分GE ∴=。

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

2023~2024学年度第二学期期中检测八年级数学试题(本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每题3分,共24分)1.徐州剪纸是一种江苏省的传统民俗工艺品,鱼与“余”同音,寓意生活富裕、年年有余.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是A .B .C .D .2.牛奶中含有蛋白质、脂肪、碳水化合物等多种营养成分,下列统计图,最能清楚地表示出牛奶中各种营养成分所占百分比的是A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图3.下列事件中,是不可能事件的是A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环C .没有水分,种子发芽D .3天内将下雨4.平行四边形的一边长为6,另一边长为12,则对角线的长可能是A .6B .5C .22D .105.今年某市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析,下列说法正确的是A .近5万名考生是总体B .这1500名考生是总体的一个样本C .每位考生的数学成绩是个体D .1500名考生是样本容量6.在复习特殊的平行四边形时,某小组同学画出了如下关系图,组内一名同学在箭头处填写了它们之间转换的条件,其中填写错误的是A .①对角相等B .③有一组邻边相等C .②对角线互相垂直D .④有一个角是直角7.如图,点E 在矩形纸片的边上,将纸片沿折叠,点C 的对应点F 恰好在线段上.若,,则的长是ABCD CD BE AE 5=AB 1=CE BCA .2B .3C .4D .1.58.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(本大题有8个小题,每题4分,共32分)9.小明在农贸市场购买葡萄时,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”).10.一个不透明袋中装有5个红球、3个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出________球的可能性最大(填“红”、“黑”或“白”).11.“永不言弃”的英语翻译是 Never give up ,短语中“e ”出现的频率为________.12.在平行四边形中,,则的度数为________.13.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度较大的组是________组.(填“一”或“二”)14.如图,,分别以A ,B 为圆心,5长为半径画弧,两弧相交于M ,N 两点.连接,,,,则四边形的面积为________.15.数学家笛卡尔在《几何》一书中阐述了坐标几何思想,主张取代数和几何中最好的东西,互相以长补短.如图,在平面直角坐标系中,矩形的顶点B 的坐标是,则的长是________.ABCD 130∠+∠=︒A C ∠B ︒8cm =AB cm AM BM AN BN AMBN 2cm OABC (1,3)AC16.如图,正方形的边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在上,且点D 的坐标为,点P 是上的一个动点,则的最小值是________.三、解答题(本大题有9个小题,共84分)17.(本题8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”、“无人机”、“创客”、“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占________%,所对应的圆心角度数为________;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?18.(本题8分)下表是某校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 10001500200030004000发芽的种子粒数m 9461425189828533812发芽频率0.946x0.949y0.953(1)表中________,________;OABC OA (1,0)OB +PD PA ︒mn=x =y(2)任取一粒这种植物的种子,它能发芽的概率的估计值是________(精确到0.01);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组需要准备多少粒种子进行发芽培育.19.(本题10分)正方形网格中(网格中的每个小正方形边长是1,小正方形的顶点叫做格点),的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出绕点A 顺时针旋转的,并写出点C 的对应点的坐标为________;(2)画出关于点O 成中心对称的;(3)点D 为平面内一点,若以点A 、B 、C 、D 为顶点的四边形为平行四边形,则所有满足条件的点D 的坐标为________.20.(本题8分)已知:如图,在平行四边形中,点E 、F 在上,且.求证:四边形是平行四边形.21.(本题8分)如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:四边形是菱形.22.(本题10分)如图,在中,,点D 是边的中点,以、为邻边作平行四边形,连接、.(1)求证:四边形是矩形;(2)要使四边形是正方形,则需要满足的条件是________.ABC △ABC △90︒111A B C △1C ABC △222A B C △ABCD AC =AE CF EBFD ABCD ∠BAD BC ∠ABC AD ABEF ABC △=AB AC BC AB BD ABDE AD CE ADCE ADCE ABC △23.(本题10分)如图,在四边形中,,,M 、N 分别是、的中点,连接、、.(1)求证:;(2)若,平分,,求的长.24.(本题10分)如图,点O 是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点(要求:用无刻度的直尺和圆规作图,保留作图痕迹).小亮的作法如下:作,交于点T ,在射线上截取,在上截取,使得,连接,延长交于点P ,线段即为所求.(1)请证明小亮作法的正确性;(2)请你再设计另一种尺规作图的方法(保留作图痕迹,不写作法).25.(本题12分)【阅读理解】如图1,在矩形中,若,,则________(用含a 、b 的式子表示);【探究发现】如图2,小华发现在平行四边形中,若,,则上述结论依然成立,请你跟随小华的思路,帮他继续完成证明过程.证明:如图3,延长,过点B 、点C 分别作于点E ,于点F .在中,且,,..设,.……ABCD 90∠=︒ABC =AC AD AC CD BM MN BN =BM MN 60∠=︒BAD AC ∠BAD 2=AC BN ∠MAN PQ AM AN PQ ∥OT AN AM TO =OE OT AN AQ =AQ TE QO QO AM PQ ABCD =AB a =BC b 22+=AC BD ABCD =AB a =BC b DA ⊥BE AD ⊥CF AD ABCD =AB CD ∥AB CD ∴∠=∠BAE CDF ∴≌ABE DCF △△∴=AE DF ==AE DF d ==BE CF h________(请继续完成以上证明)【拓展提升】如图4,已知为的一条中线,,,.求证:.【尝试应用】如图5,在矩形中,若,,点P 在边上,则的取值范围为________.2023—2024学年度第二学期期中检测八年级数学试题参考答案及评分标准题号12345678选项DBCDCABC9.抽样调查 10.红 11.12.115 13.一14.24151617.(1)(2)20,72BO ABC △=AB a =BC b =AC c 222224+=-a b c BO ABCD 4=AB 6=BC AD 22+PB PC 311(3)名答:估计选择“航模”课程的学生有100名.18.(1)0.95,0.951(2)0.95(3),答:估算需要准备8000粒种子进行发芽培育.19.(1)如图为所画的三角形(字母标错或未标扣1分)的坐标为(2)如图为所画的三角形(字母标错或未标扣1分)(3)或或.20.证明:如图,连接,交于点O .四边形是平行四边形,∴,.∵,∴,即,∴四边形是平行四边形.21.证明:∵四边形是平行四边形,∴AD //BC ,∴∠DAE =∠AEB .∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB=BE .同理可得AB=AF ,∴AF=BE ,∵AF //BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形.22.(1)证明:∵四边形ABDE 是平行四边形,∴BD ∥AE .∵点D 是BC 中点,∴BD =CD ,∴AE ∥CD ,AE =CD ,∴四边形ADCE 是平行四边形.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形.(2)∠BAC =90°23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN //AD ,MN=.5100010050⨯=76000.958000÷=111A B C △1C (2,3)-222A B C △(5,3)--(3,1)-(1,1)-BD BD AC ABCD OA OC =OB OD =AE CF =OA AE OC CF -=-OE OF =EBFD ABCD 12AD 第20题在Rt△ABC中,∵M是AC中点,∠ABC=90°,∴BM=.∵AC=AD,∴BM=MN.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC==30°.由(1)可知,BM=AM=MC=,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN//AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,.由(1)可知MN=BM==1,∴BN.24.(1)证明:连接EQ,∵OT//AN,TE=AQ,∴四边形ATEQ是平行四边形,∴AT//QE,∴∠QEO=∠PTO.∵OE=OT,∠QOE=∠POT,∴△QOE≌△POT(ASA),∴QO=PO,即点O是PQ的中点.(2)方法一:连接AO,延长AO到T,使得OT=OA,作TP//AN交AM于点P,连接PO,延长PO交AN于点Q,线段PQ即为所求.方法二:连接AO,作OR//AN,交AM于点R,在射线AM上截取RP=RA,连接PO,延长PO交AN于点Q,线段PQ即为所求.(画出其中一种即可)25.【阅读理解】【探究发现】在Rt△BED中,,即.同理.∴,整理得.在Rt△AEB中,,即.∴.【拓展提升】(法一)如图25-1,延长BO至点D,使BO=OD.∵BO为△ABC的中线,∴AO=CO.∴四边形ABCD为平行四边形.依上述结论,得.∴,即.12AC12BAD∠12AC222=∴+BN BM MN12AC2222a b+222BD BE DE=+222()BD h b d=++222()AC h b d=+-222222()()AC BD h b d h b d+=+-+++222222()2AC BD h d b+=++222AB AE BE=+222a h d=+222222AC BD a b+=+22222()AC BD AB BC+=+2222(2)2()c BO a b+=+222224a b cBO+=-(法二)如图25-2,过点B 作BE ⊥AC ,垂足于点E .设OE =d ,则,.在Rt △ABE 中,依勾股定理,得,∴,即①.同理②,③.①+②,得:④.④-③×2,得,∴.【尝试应用】.图25-1图25-212AE AC d =-12CE AC d =+222AB BE AE =+222()2ACAB BE OE =+-22212a BE c d ⎛⎫=+- ⎪⎝⎭22212b BE c d ⎛⎫=++ ⎪⎝⎭222BO BE d =+22222222c a b BEd +=++222222c a b BO +-=222224a b c BO +=-225068PB PC ≤+≤。

人教版数学八年级下册《期中考试试题》附答案解析

人教版数学八年级下册《期中考试试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.二次根式1x -有意义的的取值范围是( ) A. 1x > B. 1x < C. 1x ≥ D. 1x ≤2.下列式子中是最简二次根式的是( )A. 8B. 22C. 23D. 1.5 3.下列计算正确的是( )A. 5335-=B. 222()-=-C. 1222÷=D. 235⋅= 4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是( )A. B. C. 7 D. 或7 5.下列条件中,不能判断ABC ∆为直角三角形是( )A 2a =,3b =,5c =B. ::1:2:3a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠=6.等腰三角形腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 647.如图,在ABCD 中,AC 与BD 相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD8.下列说法中错误的是( )A. 四边相等四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形9.如图,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF,你认为( )A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对 10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知112y x x =-+--,则x y -值为_________.12.24化简后与最简二次根式51a +的被开方数相等,则a =_________.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.15.如图,在ABCD 中,按以下步骤作图:①以为圆心,以AB 长为半径作弧,交AD 于点;②分别以、为圆心,以大于12BF 的长为半径作弧,两弧相交于点;③作射线AG ,交边BC 于点.若16BF =,10AB =,则AE 的长为_________.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)(4820)(3125)-;(22148330(223)5++. 18.已知32a =32b =求223a ab b a b ++-+的值.19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.25.△ABC 是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,交射线AC 于点G ,连接BE .(1)如图1所示,当点D 在线段BC 上时,求证:四边形BCGE 是平行四边形;(2)如图2所示,当点D 在BC 的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.答案与解析一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.( )A. 1x >B. 1x <C. 1x ≥D. 1x ≤[答案]D[解析][分析]根据二次根式的被开方数为非负数,可得关于x 的不等式,解之即可.[详解],∴1-x ≥0,解得:x ≤1,故选:D .[点睛]本题考查二次根式的定义、解一元一次不等式,熟练掌握二次根式有意义的条件是解答的关键. 2.下列式子中是最简二次根式的是( )B. 2 [答案]B[解析][分析] 分析每个式子,根据最简二次根式的定义判断即可.[详解故A 错误;是最简二次根式,故B 正确;故C 错误;2,故D 错误; 故选:B .[点睛]本题主要考查了最简二次根式判定,准确利用二次根式的性质化简是解题的关键.3.下列计算正确的是( )A. 5= 2=- 2= = [答案]C[解析][分析]通过对二次根式的化简,利用二次根式的性质进行求解即可得到答案.[详解]=,故A 错误;2=,故B 错误;=,故C 正确;=故D 正确;故答案选C .[点睛]本题主要考查了二次根式性质的应用,准确计算是解题的关键.4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是()A. B.D. [答案]D[解析][分析]根据勾股定理即可求解.[详解]当4为斜边时,当x 为斜边是,5故选D. [点睛]此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.5.下列条件中,不能判断ABC ∆为直角三角形的是( )A. 2a =,3b =,c =B. ::1:a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠= [答案]D[解析][分析]分别根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.[详解]A 、24a =,29b =,25c =,∵222a c b +=,∴△ABC 是直角三角形,故本选项错误;B 、∵2221+=, ∴△ABC 是直角三角形,故此选项不合题意;C 、∵A B C ∠+∠=∠,而180A B C ∠+∠+∠=︒,计算得∠A=90,∴△ABC 为直角三角形,故此选项不合题意;D 、∵180A B C ∠+∠+∠=︒,计算得∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故此选项符合题意;故选:D .[点睛]本题主要考查了勾股定理逆定理和三角形内角和定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形就是直角三角形.6.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.7.如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD [答案]D[解析]试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.8.下列说法中错误的是()A. 四边相等的四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形[答案]B[解析][分析]根据菱形、正方形的判定方法分别分析即可求解.[详解]解:A. 四边相等的四边形是菱形,正确,不合题意;B. 对角线相等的矩形是正方形,错误,符合题意;C. 一组邻边相等的平行四边形是菱形,正确,不合题意;D. 对角线互相垂直平分的四边形是菱形,正确,不合题意.故选B.[点睛]本题考查了菱形、正方形的判定方法,正确把握相关定义是解题关键.9.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为()A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对[答案]C[解析][分析]分别过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,根据正方形的性质可得EG=MP;对于小明的说法,先利用“HL”证明Rt△EFG≌Rt△MNP,根据全等三角形对应角相等可得∠MNP=∠EFG,再根据角的关系推出∠EQM=∠MNP,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义即可证得MN⊥EF;对于小亮的说法,先推出∠EQM=∠EFG,∠EQM=∠MNP,然后得到∠EFG=∠MNP,然后利用“角角边”证明△EFG≌△MNP,根据全等三角形对应边相等可得EF=MN.[详解]如图,过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD 正方形,∴EG=MP ,对于小明的说法:在Rt △EFG 和Rt △MNP 中,MN EF EG MP ⎧⎨⎩==, ∴Rt △EFG ≌Rt △MNP (HL ),∴∠MNP=∠EFG ,∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG=∠MNP ,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ 中,∠MOQ=180°-(∠EQM+∠NMP )=180°-90°=90°,∴MN ⊥EF ,故甲正确.对小亮的说法:∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG ,∵MN ⊥EF ,∴∠NMP+∠EQM=90°,又∵MP ⊥CD ,∴∠NMP+∠MNP=90°,∴∠EQM=∠MNP ,∴∠EFG=∠MNP ,在△EFG 和△MNP 中,90EFG MNP EGF MPN EG MP ∠∠⎧⎪∠∠︒⎨⎪⎩==== , ∴△EFG ≌△MNP (AAS ),∴MN=EF ,故小亮的说法正确,综上所述,两个人的说法都正确.故选C .[点睛]本题考查了正方形的性质、全等三角形的判定与性质、同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5[答案]A[解析][分析] 先依据菱形的性质求得OA 、OD 的长,然后依据勾股定理可求得AD 的长,最后依据三角形中位线定理求的EF 的长即可.[详解]∵四边形ABCD 为菱形,∴AC ⊥BD ,OA=OC=12AC=4,OB=OD=12BD=3 在Rt △AOD 中,依据勾股定理可知: 2222435AD OA OD∵点E ,F 分别为AO ,DO 的中点,∴EF 是△AOD 的中位线∴EF=12AD=2.5 故选:A[点睛]本题考查了菱形的性质:菱形的对角线互相垂直平分;三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知2y =,则x y -的值为_________. [答案]3[解析][分析]由二次根式有意义的条件列不等式组,解不等式组求得,再求,从而可得答案.[详解]解:2y x =-1010x x -≥⎧∴⎨-≥⎩①② 由①得:1,x ≥由②得:1,x ≤1,x ∴=2,y ∴=-()12 3.x y ∴-=--=故答案为:[点睛]本题考查的是二次根式有意义的条件,掌握二次根式有意义的条件列不等式组是解题的关键.,则a =_________.[答案]5[解析][分析]化简为最简二次根式,继而利用题干信息“被开方数相同”列方程求解.[详解=其中被开方数为6;1a + ,故有:16a +=,则5a =.故本题答案为5.[点睛]本题考查最简二次根式的化简以及对二次根式概念的理解,需注意化简原则为被开方数不含分母,也不含能开的尽方的因数或因式.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.[答案]25[解析][分析]先根据勾股定理算出大正方形的边长,再根据勾股定理的面积证明可得结果.[详解]由题可得大正方形的边长=2213-12=5,根据勾股定理的性质可得阴影部分的面积=25=25.故答案为25.[点睛]本题主要考查了勾股定理的理解,准确理解图形面积与勾股定理的关系是解题的关键.14.如图,矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.[答案]16[解析][分析]根据直角三角形30°角所对的直角边等于斜边的一半可得AC =2AB ,再根据矩形的对角线相等解答.[详解]在矩形ABCD 中,∠ABC =90°,∵∠ACB =30°,AB =8,∴AC =2AB =2×8=16,∵四边形ABCD是矩形,∴BD=AC=16.故答案为:16.[点睛]本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.15.如图,在ABCD中,按以下步骤作图:①以为圆心,以AB长为半径作弧,交AD于点;②分别以、为圆心,以大于12BF的长为半径作弧,两弧相交于点;③作射线AG,交边BC于点.若16BF=,10AB=,则AE的长为_________.[答案]12[解析][分析]设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.[详解]如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB =BE =AF ,∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴四边形ABEF 是菱形,∴OA =OE ,OB =OF =8,在Rt △AOB 中,∵∠AOB =90°,∴OA =22221086AB OB -=-=,∴AE =2OA =12.故答案为:12.[点睛]本题考查平行四边形的性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.[答案]23+[解析][分析]首先根据四边形ABCD 是正方形得出AB=AD ,∠B=∠D=90°,根据△AEF 是等边三角形得出AE=AF ,最后根据HL 即可证明△ABE ≌△ADF ;根据全等性质:CE=CF ,∠C=90°,从而得出△ECF 是等腰直角三角形,再根据勾股定理得出EC 的值,设BE x =,则2AB x =在Rt △ABE 中,222AB BE AE +=,求出的值,即可得出正方形ABCD 的边长,最后求出正方形ABCD 的面积.[详解]解:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°, ∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt△ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,∴CE=CF ,∠C=90°,即△ECF 是等腰直角三角形,由勾股定理得222CE CF EF +=,∴EC =在Rt △ABE 中,2AE =,∴222AB BE AE +=,即(224x x +=,解得12x =或22x =(舍去),∴AB =∴2ABCD S =正方形故答案为2.[点睛]本题主要考查了正方形的性质、全等三角形的判定与性质、等边三角形的性质和等腰三角形的性质.解答本题的关键是对正方形和三角形的性质以及勾股定理的运用要熟练掌握.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)-;(22++.[答案](1);(2)15+[解析][分析](1)先逐个化简二次根式,再去括号合并同类二次根式即可;(2)先算乘方、再算乘除、最后算加减合并即可.[详解](1)原式=43256353523+-+=-; (2)原式=42684631526-+++=+.[点睛]本题考查了二次根式的混合运算,解答的关键是熟练掌握二次根式的混合运算法则,会利用二次根式的性质将二次根式化为最简根式.18.已知32a =-,32b =+,求223a ab b a b ++-+的值.[答案]1322+[解析]试题分析:先根据题意求出a-b 的值和ab 的值,然后把已知的式子变形为完全平方和a-b 及ab 的整体形式,然后整体代入即可.试题解析:∵32a =-,32b =+∴323222a b -=---=-,()()32321ab =-+= ∴223a ab b a b ++-+=()()25a b a b ab ---+=()()2222251---+⨯ =8225++=1322+19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?[答案]发生火灾住户窗口距离地面14米[解析][分析]在Rt △ACB 中,利用勾股定理求出BC 即可解答.[详解]由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得: 222215912BC AB AC =-=-=,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.[点睛]本题考查勾股定理得应用,熟练掌握勾股定理在实际生活中的应用是解答的关键. 20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.[答案]75︒[解析][分析]连接BD ,根据3BC DC ==,可得45BDC ∠=︒,223+3=32BD =,由26AD =,AB 6=,可得30ADB ∠=︒,即可求解.[详解]解:如图,连接BD ,∵3BC DC ==,∠C=90°∴45BDC ∠=︒,223+3=32BD =; ∵26AD =,AB 6=, ∴()22=26=24AD ,()2266AB ==,()223218BD ==, ∴△ABD 是直角三角形,且90ABD ∠=︒,又∵60A ∠=︒,∴30ADB ∠=︒,∴75ADC ADB CDB ∠=∠+∠=︒.故答案为75︒.[点睛]本题主要考查四边形的应用,灵活应用勾股定理及其逆定理,是解题的关键. 21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.[答案](1)36;(2)60.[解析][分析](1)根据AB ∥CD ,AE 平分∠BAD ,得∠BAE =∠AEB ,AB =BE =5,求得BC =5+8=13,据此可得平行四边形ABCD 的周长;(2)AB =5,BC =13,AC =12,得△ABC 为直角三角形,则平行四边形ABCD 的面积=AB ×AC =60. [详解]解:(1)如图,∵在平行四边形ABCD 中,AB ∥CD ,∴∠DAE =∠AED ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴AB =BE =5,∵EC =8,∴BC =5+8=13∴平行四边形ABCD 的周长为:2×(5+13)=36;(2)∵AB =5,BC =13,AC =12,AB 2+AC 2=BC 2,∴△ABC 为直角三角形,即AC ⊥AB ,∴平行四边形ABCD 的面积=AB ×AC =60. [点睛]本题考查了角平分线的性质,等腰三角形的性质和平行四边形的性质,熟悉相关性质是解题的关键. 22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.[答案](1)见解析;(2)12°. [解析][分析](1)根据四边形ABCD 是菱形,∠ABC=60°和等边△BEF ,可以证明△FAB ≌△ECB ,进而可得CE=AF ;(2)利用三角形的内角和定理可求∠CBE 的度数.[详解](1)证明:∵四边形ABCD 是菱形,∴AB =BC.∵△BEF 是等边三角形,∴BF =BE ,∠FBE =∠FEB =60°.∵∠ABC =60°,∴∠ABC =∠FBE ,∴∠ABC -∠ABE =∠FBE -∠ABE ,即∠EBC =∠FBA .∴△EBC ≌△FBC (SAS ).∴CE =AF .(2)解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠D =∠ABC =60°.∴∠C =180°-∠D =120°.在△PDE 中,∠D +∠DPE +∠PED =180°,∴∠DEP =72°.由(1)得,∠FEB =60°,∴∠BED =∠DEP +∠BEP =72°+60°=132°.∴∠CBE =∠BED -∠C =132°-120°=12°.[点睛]本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.[答案](1)证明见详解;(2)5[解析][分析](1)依据矩形的性质,即可得出△AEG ≌△CFH ,进而得到GE=FH ,∠CHF=∠AGE ,由∠FHG=∠EGH ,可得FH ∥GE ,即可得到四边形EGFH 是平行四边形;(2)由菱形的性质,即可得到EF 垂直平分AC ,进而得出AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,依据Rt △ADF 中,AD 2+DF 2=AF 2,即可得到方程,即可得到AE 的长.[详解]解:(1)∵矩形ABCD 中,AB ∥CD ,∴∠FCH=∠EAG ,又∵CD=AB ,BE=DF ,∴CF=AE ,又∵CH=AG ,∴△AEG ≌△CFH ,∴GE=FH ,∠CHF=∠AGE ,∴∠FHG=∠EGH ,∴FH ∥GE ,∴四边形EGFH 是平行四边形;(2)如图,连接EF ,AF ,∵EG=EH ,四边形EGFH 是平行四边形,∴四边形GFHE 为菱形,∴EF 垂直平分GH ,又∵AG=CH ,∴EF 垂直平分AC ,∴AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,在Rt △ADF 中,AD 2+DF 2=AF 2,∴42+(8-x )2=x 2,解得x=5,∴AE=5.[点睛]此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.[答案](1)9-2t ,2t -9;(2)t 的值为3或9;(3)t =4.5.[解析][分析](1)求出运动路线BF 的长度,分当F 在线段BC 上时,CF =BC -BF ,当F 在线段BC 的延长线上运动时,CF =BF -BC ,求解即可;(2)分别从当点F 在C 的左侧时与当点F 在C 的右侧时去分析,由当AE =CF 时,以A 、C 、E 、F 为顶点四边形是平行四边形,可得方程,解方程即可求得答案;(3)当,两点间的距离最小时,即EF ⊥BC ,取线段BC 的中点D ,四边形ADFE 是矩形,利用AE =DF 可得方程,解方程即可得出答案.[详解]解:(1)∵运动时间为()t s ,∴2BF t =,∵△ABC 为等边三角形,∴AB =BC =AC =9,∴当点F 在线段BC 上运动时,CF =9-2t ,当点F 在线段BC 的延长线上运动时,CF =2t -9;故答案为:9-2t ,2t -9;(2)当点F 在C 的左侧时(含点C ),根据题意得:CF =9-2t ,AE =t ,∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t=9-2t,解得:t=3;当点F在C的右侧时,根据题意得:CF=2t-9,∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即2t-9=t,解得:t=9,综上可得:当以点A,C,E,F为顶点的四边形是平行四边形时,t的值为3或9;(3)若E,F两点间的距离最小,则EF⊥BC,过A作AD⊥BC于D,则AD也是BC边的中线,∵AB=BC=AC=9,∴BD=CD=4.5,∴DF=2t-4.5∵AD⊥BC∴四边形AEFD为矩形,∴此时AE=DF,∴t=2t-4.5,解得t=4.5,∴当t=4.5时,,两点间的距离最小;[点睛]本题主要考查了平行四边形的判定,矩形的判定,利用了分类讨论思想和方程的思想是解决本题的关键.25.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B,C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点G,连接BE.(1)如图1所示,当点D在线段BC上时,求证:四边形BCGE是平行四边形;(2)如图2所示,当点D在BC的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.[答案](1)证明见解析;(2)结论仍成立,理由见解析;(3)当点D在BC的延长线上,CD=BC时,四边形BCGE 是菱形,理由见解析.[解析][分析](1)利用SAS定理证明△AEB≌△ADC,根据全等三角形的性质得到∠ABE=∠ACB=60°,得到BE∥CG,根据平行四边形的判定定理证明结论;(2)仿照(1)的证明方法解答;(3)分点D在BC上、点D在BC的延长线上两种情况,根据菱形的判定定理解答.[详解](1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=∠BAC=60°.∵△ADE是等边三角形,∴AE=AD,∠EAD=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,∵AE ADEAB DAC AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACB=60°,∠EBC+∠ACB=∠ABE+∠ABC+∠ACB=180°, ∴BE∥CG,∵EG∥BC,∴四边形BCGE是平行四边形;(2)解:(1)中的结论仍成立,理由如下:由(1)可知,△ABE≌△ACD,∴∠BEA=∠CDA.∵EG∥BC,∴∠G=∠ACB=60°,∠GED=∠BDE,∴∠BEG+∠G=∠BEA+∠AED+∠GED+∠G=∠AED+(∠CDA+∠BDE) +∠G=180°,∴BE∥CG,又∵EG∥BC,∴四边形BCGE是平行四边形;(3)解:当点D在BC上时,由(2)可知,△ABE≌△ACD,∴BE=CD.∵BE=CD<BC,∴四边形BCGE不是菱形,当点D在BC的延长线上,CD=BC时,四边形BCGE是菱形,由(2)可知,△ABE≌△ACD,四边形BCGE是平行四边形,∴BE=CD=BC时,四边形BCGE是菱形.[点睛]本题考查平行四边形的判定、菱形的判定、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、平行四边形、菱形的判定定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期中考试试题初二数学(1)本试卷分试题和答题卡两部分,所有答案一律写在答题卡上. (2)本卷满分120分,考试时间为100分钟.一、选择题(本大题共10小题,每题3分,共30分)1.下列图形中,是中心对称图形的是 ( ▲ )A .B .C .D .2.下列调查适合做普查的是 ( ▲ )A .了解初中生晚上睡眠时间B .了解某中学某班学生使用手机的情况C .百姓对推广共享单车的态度D .了解初中生在家玩游戏情况3.下列各式:2+πx ,pp 25,222b a -,m m +1,其中分式共有 ( ▲ )A .1个B .2个C .3个D .4个4.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,下列说法错误..的是 ( ▲ ) A .AB ∥DC B .AB =BD C .AC ⊥BD D .OA =OC5.如图,在□ABCD 中,∠ODA =︒90,AC =10 cm ,BD =6 cm ,则AD 的长为( ▲ ) A .4 cm B .5 cm C .6 cm D .8 cm6.顺次连接矩形各边中点得到的四边形是 ( ▲ ) A .平行四边形 B .矩形 C .菱形 D .正方形7.下列命题中,真命题是 ( ▲ ) A .一组对边平行且另一组对边相等的四边形是平行四边形 B .有两条边相等的平行四边形是菱形C .对角线互相垂直且相等的四边形是正方形D .两条对角线互相垂直平分的四边形是菱形 8.如果把分式ba ab+中的a 、b 都扩大为原来的2倍,那么分式的值一定 ( ▲ ) A .是原来的2倍 B .是原来的4倍 C .是原来的 倍 D .不变 9.对4000米长的大运河河堤进行绿化时,为了尽快完成,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是 ( ▲ )A .21040004000=+-x x B .24000104000=--x x C .24000104000=-+x x D .21040004000=--x x10.如图,在四边形ABCD 中,AB ∥CD ,∠C =90°,AB =8,AD =CD =5,点M 、N 分别为BC 、(第5题图)(第4题图)OOACDA21EF DCB A M NAB 上的动点(含端点),E 、F 分别为DM 、MN 的中点,则EF 长度的最小值为( ▲ )A .3B . 2.5C . 2D .1二、填空题(本大题共8小题,每空2分,共16分) 11.为了了解某区八年级6000名学生的体重情况,从中抽查了500名学生的体重,在这个问题中,样本为 ▲ .12.某同学期中考试数学考了100分,则他期末考试数学考100分属于 ▲ 事件.(选填“不可能”“可能”或“必然”)13.若分式751y -的值为12,则y = ▲ .14.当x = ▲ 时,分式2212+-x x 的值为0.15.我们所学过的图形中,既是轴对称图形,又是中心对称图形的是 ▲ .(填一个即可) 16.若解关于x 的方程产生增根,则m = ▲ .17.已知:如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,若BE =1,则EF 的长为 ▲ .18.已知:如图,l 1∥l 2∥l 3,l 1、l 2的距离为1,l 2、l 3的距离为5,等腰Rt △ABC 的顶点A 、B 、C 分别在l 1、l 2 、l 3上,那么斜边AC 的长为 ▲ .三、解答题(本大题共9小题,共74分.) 19.(本题满分8分)计算或解方程:(1)b a ba b -++2;(2)xx x 212112--=-.20.(本题满分6分)先化简2223311211x x x x x x x --÷--++-,然后从32<<-x 的范围内选取一个你认为合适的整数..,作为x 的值代入求值.抽检件数 50 100 200 300 400 500次品件数0 4 16 19 24 30l 1l 2l 3(第18题图)(第17题图)G B xm x x 33112-+=-+/kg(1) 求从这批衬衣中任抽1件是次品的概率;(2) 如果销售这批衬衣1000件,估计有多少件次品衬衣?22.(本题满分8分)某校为了了解初二年级1000名学生的身体健康情况,从该年级随机抽 取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B : 46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如 下两幅尚不完整的统计图. 23.(本题满分8分)已知:甲、乙两人制作某种机械零件,甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等.(1)求甲、乙两人每小时各做多少个零件?(2)如果甲、乙两人合做2天(每天工作时间按8小时计算),共完成多少个零件?24.(本题满分8分)已知:如图,在□ABCD 中,点E 、F 分别在AD 、BC 上,EF 与BD 相交于点O ,AE =CF .(1)求证:OE =OF ;(第24题图)BA (2)连接BE 、DF ,若BD 平分∠EBF ,试判 断四边形EBFD 的形状,并给予证明.25.(本题满分10分)已知:如图,矩形ABCD 的对角线AC 、BD 相交于点O ,将线段AC 绕点A 逆时针旋转一定角度到AE ,连接CE ,点F 为CE 的中点,连接OF . (1)求证:OF =OB ;(2) 若OF ⊥BD ,且AC 平分∠BAE ,求∠BAE .26.(本题满分10分)我们定义:只有一组对角相等的凸四边形叫做等对角四边形....... (1)四边形ABCD 是等对角四边形,∠A ≠∠C ,若∠A =60°,∠B =80°,则∠C = ▲ °,∠D = ▲ °. (2)图①、图②均为4×4的正方形网格,线段AB 、BC 的端点均在格点上,按要求以AB 、BC 为边在图①、图②中各画一个等对角四边形ABCD .要求:四边形ABCD 的顶点D 在格点上,且两个四边形不全等.(3)如图③,在平行四边形ABCD 中,∠A =60°,AB =12,AD =6,点E 为AB 的中点,过点E 作 EF ⊥DC ,交DC 于点F .点P 是射线FE 上一个动点,设FP =x ,求以点A 、D 、E 、P 为顶点的四边形为等对角四边形时x 的值.图12图图3备用图B CB FE AFEA ACA DBCC B D27.(本题满分10分) 【基础探究】(1)已知:如图①,在正方形A BCD 中,点M 、N 分别是AB 、CD 的中点,对角线AC 交MN 于点O ,点E为OM 的中点,连接BE 、MC ,ME =m .① 用含m 的代数式表示BE= ▲ ,CM = ▲ ; ② CMBE = ▲ .【拓展延伸】(2)已知:如图②,在△ABC 中(∠ABC >90°),AB =CB ,点O 是AC 的中点,OM ⊥AB 于点M ,点E 为线段OM 的中点,连接BE 、CM .若ME =m ,AM =4m , 求CMBE 的值.(第25题图)F E O D A B初二数学一、选择题(每题3分,共30分)1.C 2.B 3.B 4.B 5.A 6.C 7.D 8.A 9.A 10.C 二、填空题(每空2分,共16分)11.被抽查500名学生的体重; 12.可能; 13.3; 14.1; 15.略; 16.8; 17.25; 18.132. 三、解答题(本大题共9小题,共74分) 19.(本题满分8分)化简或解方程:解:(1)b a b a b -++2 (2)122112-+=-x x x =b a b a b a b a b +-+++))((2…………2分 212+-=x x , =b a b a b +-+222 1=-x ,=ba a +2. ………………4分 1-=x . ………………3分 检验:当x =—1时,2x —1≠0, ∴1-=x . ………………4分 20.(本题满分6分)解:2223311211x x x x x x x --÷--++- =11)3()1()1)(1(32---+⋅-+-x x x x x x x ………………1分 =)1(1--+x x x x ………………………………………………………………………2分 =)1(1-x x . ………………………………………………………………………3分 ∵ —2<x <3且x ≠±1,x ≠0,x 为整数,∴x =2. …………………………4分 ∴当x =2时,原式=21. ……………………………………………………6分 21.(本题满分6分)解:(1)抽查总体数m =50+100+200+300+400+500=1550,次品件数n =0+4+16+19+24+30=93, P (抽到次品)=155093≈0.06.…3分(直接用最后一次抽查结果计算同样给分)(2)根据(1)的结论:P (抽到次品)=0.06, 则1000×0.06=60(件). 答:估计有60件次品衬衣.…………6分 22.(本题满分8分)解:(1)50;图形(略);…………2分 (2)0.32;72.………4分(3)样本中体重超过60kg 的学生是10+8=18(人),该校初二年级体重超过60kg 的学生=5018×100%×1000=360(人)答该校初二年级体重超过60kg 的学生为360人.………………8分 23.(本题满分8分)解:(1)设乙每小时做x 个零件,则甲每小时做(x +3)个零件,由题意得:xx 84396=+………2分 解得x =21. ……………………3分 经检验x = 21是方程的解,x +3=24. ………………………4分答:甲乙两人每小时各做24和21个零件. ……………………5分(2)(24+21)×8×2=720. ……………………………………7分 答:甲乙共完成720个零件. ……………………………………8分 24.(本题满分8分)(1)证明:连接BE 、DF ,∵四边形ABCD 为平行四边形, ∴AD =BC ,AD ∥BC .…………………1分 又∵AE=CF ,∴DE =BF ………………2分∴四边形EBFD 为平行四边形. ……4分(其他方法参照给分) (2)解:四边形EBFD 是菱形. 证明:∵BD 平分∠EBF , ∴∠1=∠2,…………………………5分∵AD ∥BC ,∴∠3=∠2,…………………………6分∴BE=ED . ………………………7分 ∴平行四边形EBFD 是菱形. ……8分 25.(本题满分10分)(1)证明:∵四边形ABCD 是矩形,∴AC =BD ,OB =OD =BD 21,OA =OC =AC 21,∴OB =AC 21. …………………………………………………2分∵ OA =OC =AC 21,点F 为CE 的中点,∴OF =AE 21.…………………………4分 又由旋转可知AE =AC ,∴OB =OF . ……………………………………………5分 (2)解:∵AC 平分∠BAE ,∴∠1=∠2 . 设∠1=∠2=x ° ,∵OA =OC =AC 21,点F 为CE 的中点,∴OF ∥AE .………6分 ∴∠3=∠1=x °.……………………………7分∵AC =BD ,OB =OD =BD 21,OA =OC =AC 21,∴OA =OB ,∴∠5=∠2=x °,∴∠4=2x °.…8分 ∵OF ⊥BD ∴∠BOF =90°∴x °+2x °=90°, ∴x =30,∴∠BAE =2x °=60°. ………………10分26.(本题满分10分) (1)∠C =140°,∠D =80°;………………………………………………………2分(2)…………………………6分(3)如图,作DH ⊥AB∵Rt △ADH 中,∠A =60°, ∴∠ADH =30°,∴AH =AD 21=3,∴DH =33.∵点E 为AB 的中点,图(1) 图(2)DDB A CB A C132(第24题图)F A O B E 54321(第25题图)FEO AB HFE AF EAD B C BD PP∴AE =AB 21=6,∴DF =HE =6—3=3. 如图③,当∠ADP =∠AEP =90°时∠DPE =120°,∴∠DPF =60°,易得FP =3.…8分 如图④,连接DE .∵AD=AE =6,∠A =60°,∴△ADE 为等边三角形. 当∠APE =∠ADE =60°时,易得EP =32,∴x =32+33=35.综上,x =3或35. ………………………………………………………………10分27.(本题满分10分)解:(1) ①用含m 的代数式表示BE=m 5、CM =m 52;……………………………4分②CMBE =21;…………5分 (2)延长AM 到F ,使MF =AM ,连接FC ∵MF=AF ,OA =OC∴OM=FC 21,OM ∥FC∴∠F =∠AMO =90°.………6分∵E 为MO 的中点, ∴OM =2ME=2m ,∴FC =2OM=4m .…………7分 设BM=x ,∵MF= AM =4m , ∴BF =4m -x ,BC=AB =4m +x , 在Rt △BFC 中,222)4)4()4x m m x m +=+-(( ,∴x=m .…………………………8分∴Rt △BME 中,BE =m m m 222=+.Rt △MFC 中,CM =m m m 244422=+)()(,∴41242==m m CMBE .……………10分(其他解法酌情给分)图12图FN B AB。

相关文档
最新文档