人教版高中数学必修五教学设计 [整书][全套]

人教版高中数学必修五教学设计 [整书][全套]
人教版高中数学必修五教学设计 [整书][全套]

1.1.1正弦定理

教学目标:

1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题.

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力.

3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣.

4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一. 教学重点与难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用. 教学难点:正弦定理的猜想提出过程.

教学准备:制作多媒体课件,学生准备计算器,直尺,量角器. 教学过程:

(一)结合实例,激发动机 师生活动:

每天我们都在科技楼里学习,对科技楼熟悉吗?那大家知道科技楼有多高吗?给大家一个皮尺和测角仪,你能测出楼的高度吗? 学生思考片刻,教师引导.

生1:在楼的旁边取一个观测点C ,再用一个标杆,利用三角形相似. 师:方法可行吗?

生2:B 点位置在楼内不确定,故BC 长度无法测量,一次测量不行. 师:你有什么想法?

生2:可以再取一个观测点D .

师:多次测量取得数据,为了能与上次数据联系,我们应把D 点取在什么位置? 生2:向前或向后

师:好,模型如图(2):我们设60∠=?ACB ,45∠=?ADB ,CD =10m,那么我们能计算出AB 吗?

生3:由tan45tan3010AB AB ο

ο

-=求出AB .

师:很好,我们可否换个角度,在Rt ABD ?中,能求出AD ,也就求出了AB .在?ACD 中,已知两角,也就相当于知道了三个角,和其中一个角的对边,要求出AD ,就需要我们来研究三角形中的边角关系.

师:探究一般三角形中的边角关系,我们应从我们最熟悉的特殊三角形入手! 生4:直角三角形.

师:直角三角形的边与角之间存在怎样的关系?

生5:思考交流得出,如图4,在Rt ?ABC 中,设BC =a ,AC =b ,AB =c ,

则有

sin a a A c =,sin b b B c =,又1sin c c

C c

==, 则

sin sin sin a b c c A B C

=== 从而在直角三角形ABC 中,

sin sin sin a b c

A B C

==

(二)证明猜想,得出定理 师生活动:

教师:那么,在斜三角形中也成立吗?

用几何画板演示,用多媒体的手段对结论加以验证!

但特殊不能代替一般,具体不能代替抽象,这个结果还需要严格的证明才能成立,如何证明哪?前面探索过程对我们有没有启发?

学生分组讨论,每组派一个代表总结.(以下证明过程,根据学生回答情况进行叙述) 学生6:思考得出

①在ABC ?中,成立,如前面检验.

②在锐角三角形中,如图5设BC a =,CA b =,AB c =

作:AD BC ⊥,垂足为D 在Rt ABD ?中,sin AD

B AB

=

sin sin AD AB B c B ∴=?=?

在Rt ADC ?中,sin AD

C AC

=

sin sin AD AC C b C ∴=?=? sin sin c B b C ∴=

sin sin c b

C B

= 同理,在ABC ?中,

sin sin a c

A C

= sin sin sin a b c

A B C

== ③在钝角三角形中,如图6设C ∠为钝角,BC a =,CA b =,AB c =,作AD BC ⊥交

BC 的延长线于D .

在Rt ADB ?中,sin AD

B AB

=

sin sin AD AB B c B ∴=?=?

在Rt ADC ?中,sin AD

ACD AC

∠=

sin sin AD AC ACD b ACB ∴=?∠=?∠

sin sin c B b ACB ∴?=?∠

sin sin c b

ACB B

=∠

同锐角三角形证明可知

sin sin a c

A C

= sin sin sin a b c

A B ACB

==∠ 教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

sin sin sin a b c

A B C

==

师:我们在前面学习了平面向量,向量是解决数学问题的有力工具,而且和向量的联系紧密,那么同学们能否用向量的知识证明正弦定理? 学生要思考一下.

师:观察式子结构,里面有边及其边的夹角,与向量的哪一部分知识有关? 生7:向量的数量积

师:那向量的数量积的表达式是什么?

生8:cos ,a b a b a b ?=<>r r r r r r

师:表达式里是角的余弦,我们要证明的式子里是角的正弦. 生:利用诱导公式.

师:式子变形为:cos()cos()22

ππ

-=-u u u r u u u r CB A CA B ,

师:很好,那我们就用向量来证明正弦定理,同学们请试一试!

学生讨论合作,就可以解决这个问题

教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学下去再探索.

设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程. (三)利用定理,解决引例 师生活动:

教师:现在大家再用正弦定理解决引例中提出的问题. 学生:马上得出

在ABC ?中,18060,

sin sin c b

B A

C C B

∠=-∠-∠==o

o

sin 600sin 45

sin sin 60b C c B ???

∴=

==?

(四)了解解三角形概念

设计意图:让学生了解解三角形概念,形成知识的完整性

教师:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知,三角形的几个元素,求其他元素的过程叫做解三角形.

设计意图:利用正弦定理,重新解决引例,让学生体会用新的知识,新的定理,解决问题更方便,更简单,激发学生不断探索新知识的欲望. (五)运用定理,解决例题 师生活动:

教师:引导学生从分析方程思想分析正弦定理可以解决的问题. 学生:讨论正弦定理可以解决的问题类型:

①如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如sin sin b A

a B =

; ②如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如sin sin a

A B b

=.

师生:例1的处理,先让学生思考回答解题思路,教师板书,让学生思考主要是突出主体,教师板书的目的是规范解题步骤.

例1:在ABC ?中,已知∠30A =?,∠45B =?,6a =cm ,解三角形.

【解析】“已知三角形中两角及一边,求其他元素”,第一步可由三角形内角和为

?180求出第三个角∠C ,再由正弦定理求其他两边.

解:由题意得,∠C =180°-30°-45°=105°

由正弦定理得,6sin 21sin 2

a B

b A

?=

==

6sin 41sin 2

a C c A

===+

例2.在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精

确到1cm ).

解:根据正弦定理,0

sin 28sin40sin 0.8999.20

==≈b A B a

因为00<B <0180,所以064≈B ,或0116.≈B (1)当064≈B 时,

00000180()180(4064)76=-+≈-+=C A B ,

00

sin 20sin7630sin sin40a C c A ==≈cm

(2)当0116≈B 时,

00000180()180(40116)24=-+≈-+=C A B , (六)尝试小结:

教师:提示引导学生总结本节课的主要内容. 学生:思考交流,归纳总结.

师生:让学生尝试小结,教师及时补充,要体现: (1)正弦定理的内容(

2sin sin sin a b c

R A B C

===)及其证明思想方法. (2)正弦定理的应用范围:①已知三角形中两角及一边,求其他元素;②已知三角形中两边和其中一边所对的角,求其他元素. (3)分类讨论的数学思想.

1.2 应用举例

第1课时解三角形的实际应用

教学目标

1.能将实际问题转化为解三角形问题.(难点)

2.能够用正、余弦定理求解与距离、高度有关的实际应用问题.(重点)

教学过程

教材整理1基线的概念

阅读教材,完成下列问题.

1.定义

在测量上,根据测量需要适当确定的线段叫做基线.

2.性质

在测量过程中,要根据实际需要选取合适的基线长度,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.

教学检测

判断(正确的打“√”,错误的打“×”)

(1)一般来说,在测量过程中基线越长,测量精确度越低.()

(2)已知三角形的三个角,能够求其三条边.()

(3)两个不可到达的点之间的距离无法求得.()

【解析】(1)×.因为在测量过程中基线越长,测量的精确度越高.

(2)×.因为要解三角形,至少要知道这个三角形的一条边.

(3)×.两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.

【答案】(1)×(2)×(3)×

教材整理2测量中有关角的概念

阅读教材,完成下列问题.

1.仰角和俯角

与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1-2-1(1)所示).

图1-2-1(1)

2.方向角

从指定方向线到目标方向线所成的水平角.如南偏西60°,即以正南方向为始边,顺时针方向向西旋转60°.(如图1-2-1(2)所示)

图1-2-1(2)

教学检测

判断(正确的打“√”,错误的打“×”)

(1)东偏北45°的方向就是东北方向.()

(2)仰角与俯角所在的平面是铅垂面.()

(3)若点P在点Q的北偏东44°,则点Q在点P的东偏北44°方向.()

【解析】(1)√,由方向角的定义可知.

(2)√,由仰角与俯角的定义可知.

(3)×,点Q 在点P 的南偏西44°. 【答案】 (1)√

例1 要测量对岸A ,两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.

【精彩点拨】 将题中距离、角度转化到一个三角形中,再利用正弦、余弦定理解三角形.

【解】 如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3 km.

在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°, ∴BC =

3sin 75°sin 60°=6+2

2

.

在△ABC 中,由余弦定理,得AB 2=(3)2+? ??

??6+222-2×3×6+22×cos 75°

=3+2+3-3=5, ∴AB =5(km),

∴A ,B 之间的距离为 5 km.

名师指津

三角形中与距离有关的问题的求解策略:

(1)解决与距离有关的问题,若所求的线段在一个三角形中,则直接利用正、余弦定理求解即可;若所求的线段在多个三角形中,要根据条件选择适当的三角形,再利用正、余弦定理求解.

(2)解决与距离有关的问题的关键是转化为求三角形中的边,分析所解三角形中已知哪些元素,还需要求出哪些元素,灵活应用正、余弦定理来解决.

[再练一题]

1.如图1-2-2,在河岸边有一点A ,河对岸有一点B ,要测量A ,B 两点的距离,先在岸边取基线AC ,测得AC =120 m ,∠BAC =45°,∠BCA =75°,求A ,B 两点间的距离.

图1-2-2

【解】 在△ABC 中,AC =120,A =45°,C =75°, 则B =180°-(A +C )=60°,

由正弦定理,得AB =AC sin C sin B =120sin 75°

sin 60°=20(32+6).

即A ,B 两点间的距离为20(32+6)m.

例2 (1)如图1-2-345°和30°,已知CD =100米,点C 位于BD 上,则山高AB 等于( )

A .100米

B .503米

C .502米

D .50(3+1)米

图1-2-3

(2)在一幢20 m 高的楼顶测得对面一塔吊顶的仰角为60°,塔基的俯角为45°,那么这座塔吊的高是( )

A .20?

??

?

1+

33 m B .20(1+3)m C .10(6+2)m D .20(6+2)m

【精彩点拨】 (1)解决本题关键是求AB 时确定在哪一个三角形中求解,该三角形是否可解.

(2)解决本题关键是画出示意图.

【解析】 (1)设山高为h ,则由题意知CB =h ,DB =3h ,所以3h -h =100,即h =50(3+1).

(2)如图,由条件知四边形ABCD 为正方形,∴AB =CD =20 m ,BC =AD =20 m. 在△DCE 中,∠EDC =60°,∠DCE =90°,CD =20 m ,∴EC =CD ·tan 60°=20 3 m ,∴BE =BC +CE =(20+203)m.选B.

【答案】(1)D(2)B

名师指津

解决测量高度问题的一般步骤:

(1)画图:根据已知条件画出示意图.

(2)分析三角形:分析与问题有关的三角形.

(3)求解:运用正、余弦定理,有序地解相关的三角形,逐步求解.在解题中,要综合运用立体几何知识与平面几何知识,注意方程思想的运用.

[再练一题]

2.某兴趣小组要测量电视塔AE的高度H(单位:m).如图1-2-4所示,竖直放置的标杆BC 的高度h=4 m,仰角∠ABE=α,∠ADE=β.该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值.

图1-2-4

【解】 由AB =H tan α,BD =h

tan β,

AD =H

tan β及AB +BD =AD ,

H tan α+h tan β=H tan β

, 解得H =h tan αtan α-tan β=4×1.24

1.24-1.20=124.

因此电视塔的高度H 是124 m.

探究1 45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足.试画出符合题意的示意图.

【提示】 用线段CD 表示山,用△DAB 表示海平面.结合题中相应的距离及角度,画出立体图形,如图所示.

探究2在探究1中若要求山高CD怎样求解?

【提示】由探究1知CD⊥平面ABD,首先在△ABD中利用正弦定理求出AD的长,然后在Rt△ACD中求出CD.

图1-2-5

例3如图1-2-5,为了测量河对岸的塔高AB,有不同的方案,其中之一是选取与塔底B在同一水平面内的两个测点C和D,测得CD=200米,在C点和D点测得塔顶A的仰角分别是45°和30°,且∠CBD=30°,求塔高AB.

【精彩点拨】利用方程的思想,设AB=h.表示出BC=h,BD=h

tan 30°=3h,然后在△BCD中利用余弦定理求解.

【解】在Rt△ABC中,∠ACB=45°,若设AB=h,则BC=h.在Rt△ABD中,∠ADB =30°,则BD=3h.

在△BCD中,由余弦定理可得

CD2=BC2+BD2-2·BC·BD·cos∠CBD,

即2002=h2+(3h)2-2·h·3h·3

2,

所以h2=2002,解得h=200(h=-200舍去),

即塔高AB=200米.

名师指津

测量高度问题的两个关注点

(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.

(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[再练一题]

3.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m,则电视塔的高度是() A.100 2 m B.400 m

C.200 3 m D.500 m

【解析】由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos ∠BCD,得3h2=h2+5002+500h,解得h=500(m).

【答案】 D

当堂检测

1.甲、乙两人在同一地平面上的不同方向观测20 m高的旗杆,甲观测的仰角为50°,乙观测的仰角为40°,用d1,d2分别表示甲、乙两人离旗杆的距离,那么有() A.d1>d2B.d1

C.d1>20 m D.d2<20 m

【解析】如图,设旗杆高为h,

则d1=h

tan 50°,d2=h

tan 40°.

因为tan 50°>tan 40°,所以d1

【答案】 B

2.如图1-2-6,D,C,B三点在地面同一直线上,DC=100米,从C,D两点测得A点仰角分别是60°,30°,则A点离地面的高度AB等于()

图1-2-6

A.503米B.1003米

C.50米D.100米

【解析】因为∠DAC=∠ACB-∠D=60°-30°=30°,

所以△ADC为等腰三角形,

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

高中数学必修五全套教案(非常好的)

(第1课时) 课题 §2.1数列的概念与简单表示法 ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 数列及其有关概念,通项公式及其应用 ●教学难点 根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“ 3 1 ”是这个数列的第“3”项,等等 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 1 51 413121 ↓ ↓ ↓ ↓ ↓ 序号 1 2 3 4 5 这个数的第一项与这一项的序号可用一个公式:n a n 1 = 来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

北师大版高中数学必修五教学案

数列 1.1数列的概念 预习课本P3~6,思考并完成以下问题 (1)什么是数列?数列的项指什么? (2)数列的一般表示形式是什么? (3)按项数的多少,数列可分为哪两类? (4)数列的通项公式是什么?数列的通项公式与函数解析式有什么关系? [新知初探] 1.数列的概念 (1)定义:按一定次序排列的一列数叫作数列. (2)项:数列中的每一个数叫作这个数列的项. (3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,a n…,简记为数列{a n}.数列的第1项a1,也称首项;a n是数列的第n项,也叫数列的通项. [点睛] (1)数列的定义中要把握两个关键词:“一定次序”与“一列数”.也就是说构成数列的元素是“数”,并且这些数是按照“一定次序”排列的,即确定的数在确定的位置. (2)项a n与序号n是不同的,数列的项是这个数列中的一个确定的数,而序号是指项在数列中的位次. (3){a n}与a n是不同概念:{a n}表示数列a1,a2,a3,…,a n,…;而a n表示数列{a n}中的第n 项. 2.数列的分类 项数有限的数列叫作有穷数列,项数无限的数列叫作无穷数列.

3.数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子叫作数列{a n }的通项公式. [点睛] (1)数列的通项公式实际上是一个以正整数集N +或它的有限子集{1,2,3,…,n }为定义域的函数解析式. (2)同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 4.数列的表示方法 数列的表示方法一般有三种:列表法、图像法、解析法. [小试身手] 1.判断下列结论是否正确.(正确的打“√”,错误的打“×”) (1)同一数列的任意两项均不可能相同.( ) (2)数列-1,0,1与数列1,0,-1是同一个数列.( ) (3)数列中的每一项都与它的序号有关.( ) 答案:(1)× (2)× (3)√ 2.已知数列{a n }的通项公式为a n =1-(-1)n +1 2,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,1 2 ,0 D .2,0,2,0 解析:选B 把n =1,2,3,4分别代入a n =1-(-1)n + 12中,依次得到0,1,0,1. 3.已知数列{a n }中,a n =2n +1,那么a 2n =( ) A .2n +1 B .4n -1 C .4n +1 D .4n 解析:选C ∵a n =2n +1,∴a 2n =2(2n )+1=4n +1. 4.数列1,3,6,10,x,21,…中,x 的值是( ) A .12 B .13 C .15 D .16 解析:选C ∵3-1=2,6-3=3,10-6=4, ∴? ???? x -10=5,21-x =6,∴x =15. [典例] (1){0,1,2,3,4};(2)0,1,2,3;(3)0,1,2,3,4,…; (4)1,-1,1,-1,1,-1,…;(5)6,6,6,6,6. [解] (1)是集合,不是数列;

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

2021年高中数学必修5全册基础知识点复习提纲(全册完整版)

2021年高中数学必修5全册基础知识点复习提纲 (全册完整版) 第一章:解三角形 1、正弦定理: R C c B b A a 2sin sin sin ===. (其中R 为AB C ?外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ?=== sin ,sin ,sin ;222a b c A B C R R R ?= == ::sin :sin :sin .a b c A B C ?= 用途:⑴已知三角形两角和任一边,求其它元素; ⑵已知三角形两边和其中一边的对角,求其它元素。 2、余弦定理: 222222 2222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ?=+-?=+-??=+-? 222 222222 cos ,2cos ,2cos .2b c a A bc a c b B ac a b c C ab ?+-=?? +-? = ?? ?+-= ?? 用途:⑴已知三角形两边及其夹角,求其它元素; ⑵已知三角形三边,求其它元素。 做题中两个定理经常结合使用. 3、三角形面积公式:

B ac A bc C ab S ABC sin 2 1 sin 21sin 21=== ? 4、三角形内角和定理: 在△ABC 中,有()A B C C A B ππ++=?=-+ 222 C A B π+? =- 222()C A B π?=-+. 5、一个常用结论: 在ABC ?中,sin sin ;a b A B A B >?>?> 若sin 2sin 2,.2 A B A B A B π ==+=则或特别注意,在三角函数中, sin sin A B A B >?>不成立。 第二章:数列 1、数列中n a 与n S 之间的关系: 1 1,(1),(2). n n n S n a S S n -=?=? -≥?注意通项能否合并。 2、等差数列: ⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。 ⑵等差中项:若三数a A b 、、成等差数列2 a b A +?= ⑶通项公式:1(1)()n m a a n d a n m d =+-=+- 或(n a pn q p q =+、是常数). ⑷前n 项和公式: ()() 11122 n n n n n a a S na d -+=+ = ⑸常用性质: ①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+; ②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;

高中数学必修五-不等关系与不等式-教案

第三章不等式 必修5 3.1 不等关系与不等式 一、教学目标 1.通过具体问题情境,让学生感受到现实生活中存在着大量的不等关系; 2.通过了解一些不等式(组)产生的实际背景的前提下,学习不等式的相关内容; 3.理解比较两个实数(代数式)大小的数学思维过程. 二、教学重点: 用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值. 三、教学难点: 使用不等式(组)正确表示出不等关系. 四、教学过程: (一)导入课题 现实世界和生活中,既有相等关系,又存在着大量的不等关系我们知道,两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边,等等.人们还经常用长与短,高与矮,轻与重,大与小,不超过或不少于等来描述某种客观事物在数量上存在的不等关系. 在数学中,我们用不等式来表示这样的不等关系.

提问: 1.“数量”与“数量”之间存在哪几种关系?(大于、等于、小于). 2.现实生活中,人们是如何描述“不等关系”的呢?(用不等式描述) 引入知识点: 1.不等式的定义:用不等号<、>、≤、≥、≠表示不等关系的式子叫不等式. 2.不等式a b ≥的含义. 不等式a b ≥应读作“a 大于或者等于b ”,其含义是指“或者a >b ,或者a =b ”,等价于“a 不小于b ,即若a >b 或a =b 之中有一个正确,则a b ≥正确. 3.实数比较大小的依据与方法. (1)如果a b -是正数,那么a b >;如果a b -等于零,那么a b =;如果a b -是负数,那么a b <.反之也成立,就是(a b ->0?a >b ;a b -=0?a =b ;a b -<0?a

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总 第一章 解三角形 一、知识点总结 正弦定理: 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 步骤1. 证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA 得到b b a a s i n s i n = 同理,在△ABC 中, b b c c sin sin = 步骤2. 证明:2sin sin sin a b c R A B C === 如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90° 因为同弧所对的圆周角相等,所以∠D 等于∠C. 所以C R c D sin 2sin == 故2sin sin sin a b c R A B C === 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; (4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ?中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算 解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:

高中数学必修5试题及详细答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11,…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{a n }中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2 n 9.如果a <b <0,那么( ).

人教版高二数学必修五学案(全套)

加油吧,少年,拼一次,无怨无悔! 高二数学必修五全套学案 §1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. 学习过程 一、课前准备 试验:固定?ABC的边CB及∠B,使边AC绕着顶点C转动. 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而.能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直 角三角形中,角与边的等式关系. 如图,在Rt?ABC中,设BC=a, AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,

有 sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B = sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B =

高中数学必修5教材电子课本(人教版)

高中数学必修5_教材电子课本(人教 版).pdf 篇一:人教版高一数学必修一电子课本1 第一章集合和函数概念 1.1 集合 1.1.1 集合的含义和表示 1.1.2 集合间的基本关系 1.1.3 集合的基本运算 1.2 函数及其表示 1.2.1 函数的概念 1.2.2 函数的表示法 1.3 函数的基本性质 1.3.1 单调性和最大(小)值 1.3.2 奇偶性 第二章基本初等函数 2.1 指数函数 2.1.1 指数和指数幂的运算 2.1.2 指数函数及其性质 2.2 对数函数

2.2.1 对数和对数运算(一) 2.2.1 对数和对数运算(二) 2.2.2 对数函数及其性质 2.3 幂函数 第三章函数的使用 3.1 函数和方程 3.1.1 方程的根和函数的零点 3.1.2 用二分法求方程的近似解 3.2 函数模型及其使用1 2 3 4 5 篇二:人教版高一数学必修一至必修五教材目录 必修一、二、四、五章节内容 必修一必修四 第一章集合和函数的概念第一章三角函数1.1 集合 1.1 任意角和弧度制1.2 函数及其表示1.2 任意角的三角函数1.3 函数的基本性质第二章基本初等函数 2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的使用 3.1 函数和方程3.2 函数模型及其使用必修五第一章解三角形1.1 正弦定理和余弦定理1.2 使用举例第二章数列

2.1 数列的概念和简单表示方法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列前n 项和第三章不等式 3.1 不等关系和不等式3.2 一元一次不等式及其解法3.3 二元一次不等式(组) 及其解法3.4 基本不等式 1.3 三角函数的诱导公式 1.4 三角函数的图像和性质1.5 函数y=Asin(?x+?) 1.6 三角函数模型的简单使用第二章平面向量 2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表 2.4 平面向量的数量积 2.5 平面向量使用举例第三章三角恒等变换 3.1 两角和和差的正弦、余弦3.2 简单的三角恒等变换必修二 第一章空间几何体1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图1.3 空间体的表面积和体积 第二章点、直线、平面间的关系2.1 空间点、直线、平面之间的位2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线和方程 3.1 直线的倾斜角和斜率3.2 直线的方程 3.3 直线的交点坐标和距离公式

高中数学必修一教案全套

高中数学必修一教案全套 Last revision date: 13 December 2020.

『高中数学·必修1』第一章集合与函数概念 课题:§1.1 集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方 面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于” 关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不 同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、引入课题 军训前学校通知:8 月15日8点,高一年段在体育馆集合进行军训动员;试问 这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高 一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新 的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本 P-P内容 二、新课教学 (一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能 意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set), 也简称集。 ——————————————第 1 页(共 70页)——————————————

高中数学必修五全套教案

第一章解三角形 章节总体设计 (一)要求 本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标: (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 (2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。 (二)编写意图与特色 1.数学思想方法的重要性 数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。 本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。 教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。 2.注意加强前后知识的联系 加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。 本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 sin a A =, sin b B =,又s i n 1 c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

人教版高中数学必修五知识点总结

必修5 第一章 解三角形 一、正弦定理 1.定理 2.sin sin sin a b c R A B C === 其中a ,b ,c 为一个三角形的三边,A ,B ,C 为其对角,R 为外接圆半径. 变式:a =2R sin A ,b =2R sin B ,c =2R sin C 二、余弦定理 1.定理 a 2= b 2+ c 2-2bc cos A 、b 2=a 2+c 2-2ac cos B 、c 2=a 2+b 2-2ab cos C 变形:222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222 cos 2a b c C ab +-= 2.可解决的问题 ①已知三边,解三角形; ②已知两边及其夹角,解三角形; ③已知两边及一边的对角,求第三边.

三、三角形面积公式 (1)111 222 a b c S ah bh ch ?===. 其中h a ,h b ,h c 为a ,b ,c 三边对应的高. (3)如果一个数列已给出前几项,并给出后面任一项与前面的项之间关系式,这种给出数列的方法叫做递推法,其中的关系式称为递推公式. (4)一个重要公式:对任何数列,总有 111, (2). n n n a S a S S n -??? ??==-≥ 注:数列是特殊的函数,要注意数列与函数问题之间的相互转化. 二、等差数列 (1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做数列的公差. (2)递推公式:a n +1=a n +d . (3)通项公式:a n =a 1+(n -1)d . (4)求和公式:11()(1).22 n n n a a n n S na d +-==+ (5)性质:

人教版高中数学必修五试题

必修五·数学试卷Ⅳ Ⅰ、选择题 一、选择题 1、在ABC V 中,若 sin cos A B a b = ,则角B 等于 ( ) A 、30? B 、45? C 、60? D 、90? 2、在ABC V 中,10,30a c A ===?,则角B 等于 ( ) A 、105? B 、60? C 、15? D 、105?或15? 3、已知一个锐角三角形的三边边长分别为3,4,a ,则a 的取值范围 ( ) A 、(1,5) B 、(1,7) C 、 ) D 、 ) 4、ABC V 中,若 1cos 1cos A a B b -=-,则ABC V 一定是 ( ) A 、等腰三角形 B 、直角三角形 C 、锐角三角形 D 、钝角三角形 5、在等差数列{} n a 中,若34567450a a a a a ++++=,则28a a +等于 ( ) A 、45 B 、75 C 、180 D 、300 6、设等差数列{} n a 的前n 项和为n S ,且2 11210,38m m m n a a a S -+-+-==,则m 等于 ( ) A 、38 B 、20 C 、10 D 、9 7、若数列{} n a 的通项公式为n a = ,且9m S =,则m 等于 ( ) A 、9 B 、10 C 、99 D 、100 8、已知{} n a 为等差数列,135105a a a ++=,34699a a a ++=,用n S 表示{} n a 的前n 项和,则使n S 达到最大值的n 是 ( ) A 、21 B 、20 C 、19 D 、18 9、若关于x 的不等式2 20ax bx ++>的解集为1 12 3x x ?? - < B 、12 a b a -< C 、22log log 2a b +<- D 、12a b b a a +> 12、已知集合{} 22 40,1M x x N x x ??=->= B 、{} 2x x <- C 、N D 、M Ⅱ、非选择题 二、填空题 13、ABC V 的三个内角之比为1:2:3,则这个三角形的三边之比为 . 14.已知数列{} n a 的前n 项和为2 31n S n n =++,则它的通项公式为 . 15、设等差数列{} n a 的前n 项和为n S ,且53655S S -=,则4a = . 16、已知函数16 ,(2,)2 y x x x =+∈-+∞+,则此函数的最小值为 . 三、解答题 17、在ABC V 中,已知a =2,150c B ==?,求边b 的长及ABC V 的面积S . 18、在ABC V 中,sin b a C =且sin(90)c a B =?-,试判断ABC V 的形状.

高中数学必修五教案-应用举例

课题: §2.2解三角形应用举例 第一课时 授课类型:新授课 ●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点 根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理

北师大版数学必修五教材分析

北师大版数学必修五教材分析 高三一轮复习已经进入中期,刚刚复习完不等式、数列及解三角形部分,在此将所涉及的教材必修五进行简要的分析。本册教材包含:解三角形、数列、不等式三章内容。具体课时分配如下:第一章解三角形8课时 第二章数列12课时 第三章不等式16课时 本模块的地位和内容: 解三角形在数学中有一定的应用,同时有利于发展学生的推理能力和运算能力。在本模中,学生该在已有的知识的基础上,通过多任意三角形边角关系的探究,发展并掌握三角形中的变长与角度之间的数量关系,并认识到运用它们可以理解一些与测量和几何计算有关的实际问题。 数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握他们一些几门数量关系,感受这两种数列模型的管饭运用,并利用他们解决一些实际问题。 不等关系与相等关系都是客观事物的基本数量关系,是数学探究的重要内容。建立不等观念,处理不等式关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受,在现实世界和 日常生活中存在着大量的不等关系,理解不等式(组对于刻画不等式的意义和价值:掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式方程及函数之间的联系。 “解三角形”的主要内榕树介绍三角形的正,余弦定理,及其简单应用。旨在通过对任意三角形变与角之间的探索,掌握正弦定理,余弦定理,并能解决一些简单的三角形度量问题以及能够运用正弦定理,余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 正弦定理,余弦定理,常作为解斜三角形的工具,有时也用于立体几何中的求三角形的边,角的计算中。在三角形中,常与三角函数的有关公式的相连联系,解决相关问题。另外,解三角形问题与知识综合,且在实际中应用广泛,因而是高考观察的一个热点,题型一般为选择题,填空题,也可能在中档解答题中出现。

人教版高中数学必修5测试题及答案全套

第一章 解三角形 测试一 正弦定理和余弦定理 Ⅰ 学习目标 1.掌握正弦定理和余弦定理及其有关变形. 2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形. Ⅱ 基础训练题 一、选择题 1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-4 1 ,则c 等于( ) (A)2 (B)3 (C)4 (D)5 3.在△ABC 中,已知3 2 sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A ) 4 5 (B) 3 5 (C) 9 20 (D) 5 12 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形. 9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________. 三、解答题 11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13. (1)求角B 的大小; (2)若D 是BC 的中点,求中线AD 的长. 13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.

相关文档
最新文档