新课标-最新华东师大版九年级数学上学期期中模拟检测及答案解析-精编试题
华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.二次根式:( ) A .①和② B .②和③ C .①和④ D .③和④ 2.一元二次方程2x 2﹣x ﹣3=0的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,﹣3 C .2,﹣1,3 D .2,﹣1,﹣3 3.下列计算正确的是( )A .√3⋅√2=√6B .√2+√3=√6C .√(−2)2=−2D .√2+√2=24.将方程x 2﹣6x +2=0配方后,原方程变形为( )A .(x+3)2=﹣2B .(x ﹣3)2=﹣2C .(x ﹣3)2=7D .(x +3)2=7 5.如图,四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA ′=2:3,则四边形ABCD 与四边形A ′B ′C ′D ′的面积比为( )A .4:9B .2:5C .2:3D 6.如图,已知12,∠=∠则添加下列一个条件后,仍无法判定ABC ADE ∆∆的是( )A .AB BC AD DE = B .AB AC AD AE = C .B ADE ∠=∠ D .C E ∠=∠ 7.如图,DE 是ABC 的中位线,已知ABC 的面积为12,则四边形BCED 的面积为A.3 B.6 C.9 D.108.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.如图,已知AB、CD、EF互相平行,且AB=1,CD=4,那么EF的长是()A.13B.23C.34D.4510.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A .(32,3),(23-,4) B .(74,72),(23-,4) C .(32,3),(12-,4) D .(74,72),(12-,4)二、填空题11x 的取值范围是_____. 12.若53a b =,则a b a +=_____. 13.已知等腰三角形的两边长是方程x 2﹣9x+18=0的两个根,则该等腰三角形的周长为_____. 14.如图,在▱ABCD 中,E 为AD 的三等分点,AE=23AD ,连结BE ,交AC 于点F ,AC=15,则AF 为_____.15.将三角形纸片(ABC )按如图所示的方式折叠,使点C 落在边AB 上,记为点C ',折痕为EF ,已知4AB AC ==,5BC =,若以点B ,F ,C '为顶点的三角形与ABC 相似,那么CF 的长是________.16.已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=45,则AC=____.三、解答题17.计算:(1-(2)-(3)21)+--18.解方程:(1)(2x -1)2-25=0 (2) (x +3)2−3x(x +3)=0 (3)x 2−3x +1=0 19.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0 (1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a=4,另两边b 、c 恰好是这个方程的两个根,求△ABC 的周长.20.某商业街有店面房共100间,2015年平均每间店面房的年租金为1万元,由于物价上涨,到2017年平均每间店面房的年租金上涨到了1.21万元,据预测,当每间的年租金定为12100元时,可全部租出;若每间的年租金每增加0.1万元,就要少租出10间,该商业街管委会要为租出的商铺每间每年交各种费用0.1万元,未租出的商铺每间每年交各种费用0.05万元.(1)求2015年至2017年平均每间店面房年租金的平均增长率;(2)当每间店面房的年租金上涨多少万元时,该商业街的年收益(收益=租金﹣各种费用)为103.8万元?21.如图,在Rt △ABC 中,∠C =90˚,tanA 34=,BC =6,求AC 的长和sinA 的值.22.在△ABC 中,AB =8,BC =6,∠B 为锐角且cosB =12. (1)求△ABC 的面积.(2)求tanC .23.已知:如图,在平面直角坐标系中,ABC 是直角三角形,90ACB ︒∠=,点A 、C 的横坐标是一元二次方程2230x x +-=的两根(AO OC >),直线AB 与y 轴交于D ,D 点的坐标为90,4⎛⎫ ⎪⎝⎭.(1)求直线AB 的函数表达式;(2)在x 轴上找一点E ,连接EB ,使得以点A 、E 、B 为顶点的三角形与ABC 相似(不包括全等),并求点E 的坐标;(3)在(2)的条件下,点P 、Q 分别是AB 和AE 上的动点,连接PQ ,点P 、Q 分别从A 、E 同时出发,以每秒1个单位长度的速度运动,当点P 到达点B 时,两点停止运动,设运动时间为t 秒,请直接写出几秒时以点A 、P 、Q 为顶点的三角形与AEB △相似. 24.(1)观察发现:如图1,在Rt ABC △中,90B ︒∠=,点D 在边AB 上,过D 作DE BC ∥交AC 于E ,5AB =,3AD =,4AE =.填空:①ABC 与ADE 是否相似(直接回答)________;②AC =________;DE =________;△与AEC是否相(2)拓展探究:将ADE绕顶点A旋转到图2所示的位置,猜想ADB似?若不相似,说明理由;若相似,请证明;(3)迁移应用:将ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.参考答案1.C【解析】把各二次根式化简,然后根据能合并的是同类二次根式进行判断即可.【详解】解:=;;;;①和④.故选:C.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.2.D【解析】根据一元二次方程的一般式:20ax bx c ++=,a 是二次项系数,b 是一次项系数,c 是常数项.故选D.3.A【解析】【分析】根据二次根式的乘法和加减法则及√a 2=|a|判断即可.【详解】A.因为√3⋅√2=√6,故本选项正确;B.因为√2+√3=√6,不是同类二次根式,不能合并,故本选项错误;C.因为√(−2)2=2≠−2,故本选项错误;D.因为√2+√2=2√2≠2,故本选项错误;故选:A .【点睛】本题考查了二次根式的性质,二次根式的乘法,二次根式的加减等知识点,解题的关键是理解二次根式的有关性质和法则.4.C【分析】方程常数项移到右边,两边加上9变形后,即可得到结果.【详解】方程x 2−6x+2=0,变形得:x 2−6x=−2,配方得:x 2−6x+9=7,即(x−3)2=7,故选C.【点睛】本题考查解一元二次方程-配方法,解题的关键是掌握解一元二次方程-配方法.5.A【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,OA :OA′=2:3,∴DA :D′A′=OA :OA′=2:3,∴四边形ABCD 与四边形A′B′C′D′的面积比为:4:9,故选:A .【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.6.A【分析】先根据∠1=∠2得出∠BAC=∠DAE ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,∴∠BAC=∠DAE . A. AB BC AD DE=,∠B 与∠D 的大小无法判定,∴无法判定△ABC ∽△ADE ,故本选项符合题意; B.AB AC AD AE =,∴△ABC ∽△ADE ,故本选项不符合题意; C. B ADE ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;D. C E ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键. 7.C【分析】根据中位线得到面积的比,即可求出答案.【详解】∵DE 是ABC 的中位线, ∴12DE BC =,DE ∥BC, ∴△ADE ∽△ABC , ∴211()24S ADE S ABC ==∆,∵ABC 的面积为12,∴△ADE 的面积是3,∴四边形BCED 的面积为9,故选:C.【点睛】此题考查三角形的中位线的性质,相似三角形的性质.8.A【详解】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程:(32−2x )(20−x )=570,故选A.9.D【分析】易证明△DEF ∽△DAB ,△BEF ∽△BCD,EF BF CD BD =,从而可得+EF EF AB CD =+DF BF DB BD=1,然后把AB =1,CD =3代入即可求出EF 的值.【详解】∵AB ∥CD ∥EF ,∴∠A =∠FED ,∠C =∠FEB ,在△DAB 和△DEF 中,∵==A FED ADB EDF ∠∠⎧⎨∠∠⎩, ∴△DAB ∽△DEF ,, 同理可得△BEF ∽△BCD ,且EF BF CD BD =, ∴+EF EF AB CD =+DF BF DB BD=1, 又∵AB =1,CD =4,∴14EF EF +=1, ∴EF =45, 故答案选D.【点睛】 本题主要考查了相似三角形的判定与性质,发现+DF BF DB BD=1是解决问题的关键. 10.C【分析】如过点A 、B 作x 轴的垂线垂足分别为F 、M .过点C 作y 轴的垂线交FA 、根据△AOF ∽△CAE ,△AOF ≌△BCN ,△ACE ≌△BOM 解决问题.【详解】解:如图过点A 、B 作x 轴的垂线垂足分别为F 、M .过点C 作y 轴的垂线交FA 、∵点A 坐标(-2,1),点C 纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF ,∵∠E=∠AFO=90°,∴△AEC ∽△OFA ,EC AE AF OF∴=, 3EC ,2∴= ∴点C 坐标1,42⎛⎫- ⎪⎝⎭, ∵△AOF ≌△BCN ,△AEC ≌△BMO ,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,3OM EC 2==,∴点B坐标3,32⎛⎫ ⎪⎝⎭,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.11.x≥﹣1且x≠1【分析】根据被开方数是非负数且分母不等于零,可得答案.【详解】由题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1,故答案为x≥﹣1且x≠1.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.12.8 3【分析】由53ab=得出5a3b=,然后代入求值.【详解】解:∵53 ab=∴5 a3b =∴5833b ba bb b++==故答案为8 3【点睛】本题考查了在给定条件下求分式的值,一般难以直接代入求值,将已知条件或所求分式适当变形,然后巧妙求解. 13.15. 【分析】解方程,分类讨论腰长,即可求解. 【详解】解:x 2﹣9x+18=0得x=3或6,分类讨论:当腰长为3时,三边为3、3、6此时不构成三角形,故舍, 当腰长为6时,三边为3、6、6,此时周长为15. 【点睛】本题考查了解一元二次方程和构成三角形的条件,属于简单题,分类讨论是解题关键. 14.6 【解析】 【分析】根据平行四边形对边相等的性质可得AD=BC ,然后求出AE=23AD=23BC ,再根据平行线分线段成比例定理求出AF 、FC 的比,然后求解. 【详解】解:在▱ABCD 中,AD =BC ,AD ∥BC ,∵E 为AD 的三等分点, ∵AE =23AD =23BC ,∵AD ∥BC , ∴AF FC =AE BC =23, ∵AC =15, ∴AF =22+3×15=6. 故答案为6. 【点睛】本题考查了平行线分线段成比例定理,平行四边形的对边平行且相等的性质,熟记定理并求出AF 、FC 的比是解题的关键.15.209或52【分析】分两种情况FC BF '=时,FC BC ''=时,根据等腰三角形的性质求线段CF 的长. 【详解】由折叠得:FC FC '=, ∵4AB AC ==, ∴△ABC 是等腰三角形,∵以点B ,F ,C '为顶点的三角形与ABC 相似, ∴△BFC '是等腰三角形, 当FC BF '=时,即5FC FC ''=-得52FC '=, ∴CF=52FC '=;当FC BC ''=时, ∵BFC '∽△BCA ,∴BF C F BC AC '=,即554C F C F''-=, 得CF=C F '=209, 故答案为:209或52. 【点睛】此题考查相似三角形的性质,等腰三角形的性质,注意分类讨论的方法. 16.5 【分析】根据三角形的内角和定理求出∠B=∠CAD ,推出cos ∠CAD=45=ADAC,把AD 的值代入求出即可. 【详解】 解:如图:∵AD 是△ABC 的高,∠BAC=90°, ∴∠ADB=∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠DAC=90°, ∴∠B=∠CAD ,∵cosB=45,AD=4, ∴cosB=cos ∠CAD=45=ADAC,即445AC =, ∴AC=5, 故选:A . 【点睛】本题考查了三角形的内角和定理和解直角三角形,解题的关键是推出cosB=cos ∠CAD ,题目比较好.17.(1)0;(2)16;(3)4. 【分析】(1)先同时化简二次根式及乘法计算,再合并同类二次根式; (2)先化简二次根式并合并,再计算除法即可;(3)同时运算平方差公式及完全平方公式计算,再合并同类项. 【详解】解:(1)原式0=-=-=.(2)原式16=+-==;(3)原式21(5154=---=-+=. 【点睛】此题考查二次根式的混合运算,正确化简二次根式,掌握正确的运算顺序是解题的关键.18.(1)x 1=3,x 2=−2;(2)x 1=−3,x 2=32;(3)x 1=3+√52,x 2=3−√52.【解析】【分析】(1)分解因式得出(2x﹣1+5)(2x﹣1﹣5)=0,推出方程2x﹣1+5=0,2x﹣1﹣5=0,求出方程的解即可;(2)分解因式得出(x+3)(x+3﹣3x)=0,推出方程x+3=0,x+3﹣3x =0,求出方程的解即可;(3)求出b2﹣4ac的值,代入x=−b±√b2−4ac2a求出即可.【详解】(1)分解因式得:(2x﹣1+5)(2x﹣1﹣5)=0,2x﹣1+5=0,2x﹣1﹣5=0,解得:x1=3,x2=﹣2.(2)分解因式得:(x+3)(x+3﹣3x)=0,∴x+3=0,x+3﹣3x =0,解得:x1=﹣3,x2=32.(3)b2﹣4ac=32﹣4×1×1=5,∴x=3±√52,即x1=3+√52,x2=3−√52.【点睛】本题考查了对解一元二次方程,能正确地选择适当的方法解方程是解答此题的关键.19.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.20.(1)10%;(2)当上涨0.2万元.【解析】【分析】(1)设2015年至2017年平均每间店面房年租金的平均增长率为x,根据2015年及2017年平均每间店面房年租金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每间店面房的年租金上涨y万元,则可租出(100﹣100y)间店面房,根据收益=租金﹣各种费用,即可得出关于y的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设2015年至2017年平均每间店面房年租金的平均增长率为x,根据题意得:1(1+x)2=1.21,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:2015年至2017年平均每间店面房年租金的平均增长率为10%.(2)设每间店面房的年租金上涨y万元,则可租出(100﹣100y)间店面房,根据题意得:(1.21+y)(100﹣100y)﹣0.1(100﹣100y)﹣0.05×100y=103.8,化简得:500y2+80y﹣36=0,解得:y1=0.2,y2=﹣0.36(舍去).答:当每间店面房的年租金上涨0.2万元时,该商业街的年收益为103.8万元.【点睛】考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.AC=8,sinA3 5【分析】 由tanA =34和BC =6可以求得AC 的值,再由勾股定理求得AB 的值后即可得到sinA 的值. 【详解】解:∵△ABC 中,tanA 34=,BC =6,∴34BC AC =,∴AC =8,∴AB ===10,∴sinA 35BC AB == 【点睛】本题考查用勾股定理解直角三角形,熟练掌握正弦和正切的定义是解题关键.22.(1)(2) 【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题. (2)解直角三角形求出AH ,CH 即可解决问题. 【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 23.(1)3944y x =+;(2)13,04E ⎛⎫⎪⎝⎭;(3)259t =或12536.【分析】(1)解方程得到点A 、C 的坐标,根据点D 的坐标设直线AB 解析式为94y kx =+, 将点A 坐标代入即可得到直线AB 的解析式;(2)过B 作BE AB ⊥交x 轴于E ,求出点B 的坐标,根据Rt Rt ABC AEB ∽得到对应线段成比例,由此求出AE ,即可得到点E 的坐标; (3)由题意得到AP t =,254AQ t =-,分两种情况:APQ ABE ∽,APQ AEB ∽,列比例式即可求出答案. 【详解】解:(1)2230x x +-=, (x+3)(x-1)=0, ∴13x =-,21x =,∵点A 、C 的横坐标是一元二次方程2230x x +-=的两根, ∴点A 、C 的横坐标分别为-3,1,即点(3,0)A -,点(1,0)C , 设直线AB 解析式为94y kx =+,且过点A , ∴9034k =-+, ∴34k =,∴直线AB 解析式:3944y x =+; (2)如图:过B 作BE AB ⊥交x 轴于E ,当1x =时,则39344y =+=,∴点()1,3B ∴4AC =,3BC =, ∴5AB =,∵Rt Rt ABC AEB ∽, ∴AB ACAE AB =, ∴545AE =, ∴254AE =, ∴2513344OE =-=, ∴点13,04E ⎛⎫⎪⎝⎭; (3)由题意可得:AP t =,254AQ t =-如图: 若APQ ABE ∽,∴AP AQAB AE=, ∴2542554t t-=,∴259t=;如图:若APQ AEB∽,∴AQ AQ AE AB=,∴2542554tt-=,∴12536t=,综上所述:259t=或12536时以点A、P、Q为顶点的三角形与AEB△相似.【点睛】此题考查解一元二次方程,待定系数法求函数解析式,三角形相似的性质定理,相似三角形与动点问题.24.(1)①相似;② 203(2)ADB AEC △∽△,证明见解析;(3)44 【分析】(1)①根据DE BC ∥即可得到相似的结论;②根据相似的性质列比例线段即可得到答案;(2)相似,根据两组边成比例夹角相等即可证明;(3)分别画出图形,根据勾股定理求出BD ,即可得到答案.【详解】解:(1)①∵DE BC ∥,∴ABC 与ADE 相似,故答案为:相似;②∵90B ︒∠=, DE BC ∥,∴∠ADE=90°,∵3AD =,4AE =,∴DE =∵ADE ∽ABC , ∴ADAEDEAB AC BC ==,∵5AB =,3AD =,4AE =,∴AE=203,故答案为:203(2)ADB AEC △∽△,理由如下:由旋转变换的性质可知,BAD CAE ∠=∠,由(1)得,ADAEAB AC =,又BAD CAE ∠=∠,∴ADB AEC △∽△;(3)如图2,在Rt ADB 中,4BD ==,∵点B、D、E在同一条直线上,∴4=+=+BE BD DE=-=-如图3,4BE BD DE线段BE的长为4+4综上所述,将ADE绕顶点A旋转到点B、D、E在同一条直线上时,线段BE的长为4+4【点睛】此题考查三角形相似的判定定理及性质定理,勾股定理,图形旋转的性质.。
华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案) 1.下列根式是最简二次根式的是( )A B C D 2.下列运算正确的是( )A =BC =D 23= 3.已知关于x 的方程2(1)210a x x -+-=有实数根,则a 的取值范围是( ) A .1a ≠B .2a ≤C .2a ≤且1a ≠D .无法确定4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是A .12DE BC =B .AD AEAB AC = C .△ADE ∽△ABC D .:1:2ADEABCS S=5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A .20%;B .40%;C .18%;D .36%.6.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:247.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAECAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③8.在ABC 中,13,cos 2AB AC B ∠===BC 边长为( ) A .7B .8C .7或17D .8或179.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值( )A B C .13D .1510.已知△ABC ∽△A 1B 1C 1,且∠A =60°,∠B 1=40°,则∠C 1的度数为( ) A .40° B .60°C .80°D .100°二、填空题 11.若23b a =,则a ba b +=-______________. 12.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.13.如图,在一块长为22m 、宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m 2.若设道路宽为xm ,则根据题意可列方程为 .14.如图,在矩形ABCD 中,点E 为AB 的中点,点F 为射线AD 上一动点,A 'EF 与AEF 关于EF 所在直线对称,连接AC ,分别交E A '、EF 于点M 、N ,AB =AD =2.若EMN 与AEF 相似,则AF 的长为_____.三、解答题15.(1)计算: 2|1+-(2)解下列方程①2(2)24x x -=- ②2410x x --=(配方法)16.先化简,再求值:222444(2)11x x x x x x x-+++-+÷--,其中x 满足x 2﹣4x +3=0.17.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为12x x ,,且221210x x +=,求m 的值.18.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?19.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE . (1)求证:△ABE ∽△DEF .(2)若正方形的边长为4,求BG 的长.20.如图,在ABCD 中,AM BC ⊥,AN CD ⊥,垂足分别为M ,N .求证:(1)~AMB AND ∆∆; (2)AM MNAB AC=.21.先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4,∵(y +2)2≥0,∴(y +2)2+4≥4,∴y 2+4y +8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20 m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?22.在△ABC中,AB=8,BC=6,∠B为锐角且cosB=12.(1)求△ABC的面积.(2)求tanC.23.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则PMPN=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则PMPN=;(3)如图3,若BDAB=k,BC=m,AC=n,请直接写出PMPN的值.(用k,m,n表示)参考答案1.A【分析】根据最简二次根式的定义,逐一验证排除即可.【详解】A是最简二次根式,故此选项正确;BCD=故选:A.【点睛】本题考查了最简二次根式的定义,熟记最简二次根式的定义是解题的关键.2.C【分析】根据二次根式的加减乘除运算法则进行计算即可.【详解】AB2-C=,故此选项正确; D= 故选:C . 【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键. 3.B 【分析】根据方程2(1)210a x x -+-=有实数根,分情况讨论:方程为关于x 的一次方程时,则1a -=0计算可得;方程为关于x 的二次方程时,10a -≠且0∆≥计算即可得,综合二种情况即可. 【详解】根据题意知,若方程是关于x 的一次方程时,可得1a -=0,解得a =1;若方程为二次方程时,10a -≠且0∆≥,解得2a ≤且1a ≠,综合二种情况可得2a ≤, 故选:B . 【点睛】本题考查了方程的根的判定,分情况讨论的思想,掌握分情况讨论思想是解题的关键. 4.D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC=, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D. 5.A 【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20% 故选A . 【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键. 6.C 【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果. 【详解】∵S △BDF :S △DFC =1:4, ∴BF :FC=1:4, ∴BF :BC=1:5, ∵DF ∥AC , ∴△BFD ∽△BCA ,∴2125BFD BCASBF SBC ⎛⎫== ⎪⎝⎭, 设S △BFD =k ,则S △DFC =4k ,S △ABC =25k , ∴S △ADC =20k ,∴S △BDF :S △DCA =1:20. 故选C . 【点睛】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.7.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵∴2CB 2=CP•CM 所以③正确 故选A .点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案. 8.C 【分析】由B 的余弦值得到它的度数,再分情况讨论,画出图象,利用锐角三角函数求出BC 的长. 【详解】解:∵cos B ∠= ∴45B ∠=︒,如图,当ABC 是钝角三角形时,∵AB =,45B ∠=︒, ∴12AD BD ==, ∵13AC =, ∴5CD =,∴1257BC BD CD =-=-=, 如图,当ABC 是锐角三角形时,12517BC BD CD =+=+=.故选:C .【点睛】本题考查解直角三角形,解题的关键是掌握解直角三角形的方法,需要注意进行分类讨论.9.D【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==. 【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =, ∴设5AD x =,则3AB x =,CDE BDA ∠=∠,CED BAD ∠=∠,CDE BDA ∴∆∆∽, ∴12CE DE CD AB AD BD ===, 32CE x ∴=,52DE x =, 152AE x ∴=, 1tan 5EC CAD AE ∴∠==. 故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中. 10.C【分析】直接利用相似三角形的性质得出对应角相等进而得出答案.【详解】解:∵△ABC∽△A1B1C1,∴∠A1=∠A=60°,∠B=∠B1=40°,则∠C1=180°﹣60°﹣40°=80°.故选:C.【点睛】此题主要考查了相似三角形的性质,正确得出对应角度数是解题关键.11.5【分析】根据题意,把23ba=化简整理得23b a=,代入所求代数式计算即可.【详解】由题意得,23b a=,代入所求代数式,可得原式=253352133a a aa a a+==-,故答案为:5.【点睛】本题考查了分式的化简求值,整体代换的思想,掌握整体代换的思想是解题的关键.12.12【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 13.(22-x )(17-x )=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【详解】设道路的宽应为x 米,由题意有(22﹣x )(17﹣x )=300,故答案为(22﹣x )(17﹣x )=300.14.1或3【分析】分两种情形①当EM ⊥AC 时,△EMN ∽△EAF .②当EN ⊥AC 时,△ENM ∽△EAF ,分别求解.【详解】解:①当EM ⊥AC 时,△EMN ∽△EAF ,∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴tan ∠CAB =3BC AB =, ∴∠CAB =30°,∴∠AEM =60°,∴∠AEF =30°,∴AF =AE•tan30°1, ②当EN ⊥AC 时,△ENM ∽△EAF ,由(1)可知,∠CAB =30°,EN ⊥AC∴∠AEN=∠MEN=60°,∵1122AE AB ==⨯= ∴tan tan 60AF AEF AE ∠=︒=,= ∴AF =3,故答案为:1或3.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(1)②3;(2)①12x =,24x =;②12x =22x =【分析】(1)①先把每个二次根式进行化简,化成最简二次根式,然后进行合并计算即可; ②先把每个式子进行化简,利用最简二次根式,二次根式平方的性质,绝对值的性质,化简后进行计算即可;(2)①先去括号,把一元二次方程化简为一般形式,然后利用因式分解法解方程即可; ②利用配方法直接求解一元二次方程即可.【详解】(1)①原式3=-,=②原式21=,3=,故答案为:3;(2)①把原方程化简为:244240x x x -+-+=,2680x x -+=,(2)(4)0x x --=,解得:12x =或24x =,故答案为:12x =或24x =;②原方程可化为:2445x x +=-,2(2)5x -=,2x =解得:12x =22x =故答案为:12x =22x =【点睛】本题考查了二次根式的化简计算,绝对值的性质,二次根式平方的性质,一元二次方程的解法,掌握计算的方法是解题的关键.16.化简结果是12x -+,求值结果是:15-. 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】解:原式=2224(2)(1)1(112)⎛⎫-+---⋅ ⎪--⎝⎭-+x x x x x x x x =222243211(2)-+-+--⋅-+x x x x x x x =2211(2)+-⋅-+x x x x =12x -+, ∵x 满足x 2﹣4x +3=0,∴(x -3)(x -1)=0,∴x 1=3,x 2=1,当x =3时,原式=﹣132+=15-; 当x =1时,分母等于0,原式无意义.∴分式的值为15-. 故答案为:化简结果是12x -+,求值结果是:15-. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.17.(1)证明见详解.(2)m 的值为3或1-.【分析】(1)根据240b ac =->,即可证明方程有两个不相等的实数根(2)根据根与系数的关系,通过变形计算即可求出答案.【详解】解:(1)证明:∵22[(22)]4(2)m m m ∆=----=2248448m m m m -+-+=40>∴该方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得:1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=,即22(22)2(2)10m m m ---=,化简,得2230m m --=,解得13m =,21m =-,∴m 的值为3或1-.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.18.解:设购买了x 件这种服装,根据题意得:()802x 10x 1200⎡⎤--=⎣⎦,解得:x 1=20,x 2=30.当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去.答:她购买了30件这种服装.【详解】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.19.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得B D ∠=∠,AD BC =,再由AM BC ⊥,AN CD ⊥得到90AMB AND ∠=∠=︒,然后根据相似三角形的判定方法即可得到结论;(2)由~AMB AND ∆∆得到AM AB AN AD=,再证明出B MAN ∠=∠,利用AD BC =,从而证明出~AMN BAC ∆∆即可得出结论.【详解】解:(1)四边形ABCD 为平行四边形,B D ∴∠=∠,AD BC =,AM BC ⊥,AN CD ⊥,90AMB AND ∴∠=∠=︒,~AMB AND ∴∆∆;(2)~AMB AND ∆∆,AM AB AN AD∴=, 而AD BC =, AM AB AN BC∴=①, //AD BC , 90DAM AMB ∴∠=∠=︒,90MAN DAN ∠=︒-∠,而90D DAN ∠=︒-∠,MAN D ∴∠=∠,而D B ∠=∠,B MAN ∴∠=∠②,由①②得,~AMN BAC ∆∆,AM MN AB AC∴=. 【点睛】本题考查了平行四边行的性质应用,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.21.(1)154;(2)5;(3)当x =5m 时,花园的面积最大,最大面积是50m 2. 【详解】试题分析:(1)、将原式进行配方,然后根据非负数的性质得出最小值;(2)、将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.试题解析:(1)、m 2+m+4=(m+)2+, ∵(m+)2≥0, ∴(m+)2+≥,则m 2+m+4的最小值是; (2)、4﹣x 2+2x=﹣(x ﹣1)2+5, ∵﹣(x ﹣1)2≤0, ∴﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值为5;(3)、由题意,得花园的面积是x (20﹣2x )=﹣2x 2+20x ,∵﹣2x 2+20x=﹣2(x ﹣5)2+50=﹣2(x ﹣5)2≤0, ∴﹣2(x ﹣5)2+50≤50,∴﹣2x 2+20x 的最大值是50,此时x=5, 则当x=5m 时,花园的面积最大,最大面积是50m 2.考点:一元二次方程的应用22.(1)(2)【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题.(2)解直角三角形求出AH ,CH 即可解决问题.【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC 2AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)1,证明见解析;(2)n m;(3)()1kn k m - . 【分析】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,只需证明△PHM ∽△PGN ,根据相似三角形对应边成比例即可得;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H 通过证明△PHM ∽△PGN ,可得PM PH PN PG =,再根据△PHC ∽△ACB ,PG=HC ,即可得PM n PN m=; (3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,易证△PMH ∽△PGN ,可得PM PH PN PG =,由1·21·2ACD BCD AC DT S AD S BD BC DK==,得出()1DK kn DT k m =-,再根据DT ∥PG ,DK ∥PH ,可得PH CPPGDK CD DT ==,从而可推导得出()1PHDK knPG DT k m ==-,据此问题得以解决.【详解】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵AC=BC ,∠ACB=90°,且D 为AB 的中点,∴CD 平分∠ACB ,∵PG ⊥AC 于G ,PH ⊥BC 于H ,∴PG=PH ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN ,∴PM PHPN PG ==1,故答案为:1;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN , ∴PMPHPN PG =,∵PG=HC , ∴C PMPHPN H =∵D 为AB 中点,∴DC=DB ,∴∠DBC=∠DCB ,∴△PHC ∽△ACB , ∴PHACHC BC =, ∴HC PMPHACnPN BC m === 故答案为:nm ;(3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,同(2)可得△PMH ∽△PGN , ∴PMPHPN PG =, ∵1·21·2ACD BCD AC DTSAD S BDBC DK ==,∴()1DK kn DT k m=-, ∵DT ∥PG ,DK ∥PH , ∴PH CP PG DK CD DT==, ∴()1PH DK kn PG DT k m==-, ∴()1PM kn PN k m=-. 【点睛】本题考查了相似三角形的综合题,涉及相似三角形的判定与性质、角平分线的性质定理、三角形的面积等,解题的关键是灵活运用所知识、添加辅助线构造直角三角形解决问题.。
华东师大版九年级数学上册期中考试卷【及参考答案】

华东师大版九年级数学上册期中考试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,BAC∠=︒,390AD=,则CE的长为()A.6 B.5 C.4 D.339.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:33-=___________.a b ab3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、C5、B6、B7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、ab(a+b)(a﹣b).3、24、30°5、1 36、 1三、解答题(本大题共6小题,共72分)1、x=523、详略.4、(1)2(2)略5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)4元或6元;(2)九折.。
新华师大版九年级上学期期中数学试卷及参考答案

动,同时动点Q从点B开始在线段BA
上以每秒2个单位的速度向点A移动,
设P、Q移动的时间为t秒.
∴直线
AB
的表达式为
y
x
6;
……………………………………4分
(2)由题意可知:
APt,BQ2t,AQ102t
∵A( 0 , 6 ),B( 8 , 0 )
∴OA6,OB8
(1)求直线AB的表达式;
,
A
P
ABAO10
6
50
解之得:t
……………………9分
13
50
∴AP
A
13
5028
∴OPOAAP6
,
1313
D
28
13
∴P0,
………………………10分
E
30
11
50
13
综上所述,当t
3b1
a
第2页
y3
xy
12.已知,则
_________.
x4
x
13.若b1a40且一元二次方程kxaxb0有实数根,则的取值范
2
k
围是__________.
14.如图(4)所示,在△ABC中,BE平分
则AC的长为_________.
,
ABCDEBC
//
,若
2,2,
ADAE
DE
A
D
E
C
E
D
A
P
B
B
C
图(4)
(B)x2x30
2
2
(C)x2x10
(D)x2x30
2
2
A
6.如图(1)所示,在△ABC中,EF//BC,AB3AE,
华东师大版九年级数学上册期中考试卷(附答案与解析)

华东师大版九年级数学上册期中考试卷(附答案与解析)(满分:120分;考试时长:90分钟)姓名班级学号成绩一.选择题(共8小题,满分24分,每小题3分)1.如图是一个机器的零件,则下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图均不相同2.175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.1.75×1011元D.17.5×109元3.若关于x的不等式(a+2020)x>a+2020的解为x<1,则a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20204.如图,在数轴上对应的点可能是()A.点A B.点B C.点C D.点D5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠C=34°,则∠ABD=()A.66°B.56°C.46°D.36°6.如图,为测量一根与地面垂直的旗杆AH的高度,在距离旗杆底端H10米的B处测得旗杆顶端A的仰角∠ABH=α,则旗杆AH的高度为()A.10sinα米B.10cosα米C.米D.10tanα米7.用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再是分别以E,F为圆心,以大于EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不正确的是()A.AF=DF B.∠BAD=∠CAD C.∠AFD=∠AED D.DE=DF8.如图,平面直角坐标系中,已知A(3,3),B(0,﹣1),将线段AB绕点A顺时针旋转90°得到线段AB′,点B'恰好在反比例函数y=的图象上,则k等于()A.6B.﹣6C.7D.﹣7二.填空题(共6小题,满分18分,每小题3分)9.分解因式:a2b﹣18ab+81b=.10.若关于x的一元二次方程ax2+3x+2=0有两个不相等的实数根,则a的取值范围为.11.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”中,如图是一个三阶幻方(即每行、每列、每条对角线上的三个数之和都相等),则x的值为.12.将等腰直角三角板ABC与量角器按如图方式放置,其中A为半圆形量角器的0刻度线,直角边BC与量角器相切于点D,斜边AB与量角器相交于点E,若量角器在点D的读数为120°,则∠DAE的度数是°.13.如图,正八边形ABCDEFGH内接于⊙O,点P是上的任意一点,则∠CPE的度数为.14.若点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上,则y1y2.三.解答题(共10小题,满分78分)15.先化简,再求值:(x+3)(x﹣3)+x(4﹣x),其中x=.16.某电脑公司现有A,B两种型号的甲品牌电脑和C,D,E三种型号的乙品牌电脑.树人中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,请用列表法或画树状图法求C型号电脑被选中的概率;(2)现知树人中学购买甲、乙两种品牌电脑共30台(价格如图所示),恰好用了10万元人民币,其中乙品牌电脑为C型号电脑,请直接写出购买的C型号电脑有台.17.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?18.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,2),B(3,4),C(4,1).(1)请画出与△ABC关于x轴对称的△A1B1C1;(2)△ABC绕O点逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出线段OA 在旋转过程中扫过的图形的面积.19.如图,在△ABC中,AB=AC,AE是中线,点D是AB的中点,连接DE,且BF∥DE,EF∥DB.(1)求证:四边形BDEF是菱形;(2)若AC=3,BC=2,直接写出四边形BDEF的面积.20.现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用表示5月份的方差;用表示3月份的方差,比较大小:;比较3月份与5月份,月份的更稳定.21.盐城市初级中学为了缓解校门口的交通堵塞,倡导学生步行上学.小丽步行从家去学校,图中的线段表示小丽步行的路程s(米)与所用时间t(分钟)之间的函数关系.试根据函数图象回答下列问题:(1)小丽家离学校米;(2)小丽步行的速度是米/分钟;(3)求出m的值.22.(1)如图①,矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心.直线l经过点O,与矩形的边AD,BC分别交于点M,N,请判断线段OM与ON的数量关系,并说明理由;(2)如图②,将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合,请判断直线l是否经过矩形ABCD的几何中心,并说明理由;(3)如图③,在(2)的条件下,AB=6,BC=8,在线段EF上有一点P,若点P到矩形ABCD一边的距离与OP的长都等于a,请直接写出a的所有可能的值.23.问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.24.如图1,直线y=ax2+4ax+c与x轴交于点A(﹣6,0)和点B,与y轴交于点C,且OC =3OB.(1)直接写出抛物线的解析式及直线AC的解析式;(2)抛物线的顶点为D,E为抛物线在第四象限的一点,直线AE解析式为y=﹣x﹣2,求∠CAE﹣∠CAD的度数.(3)如图2,若点P是抛物线上的一个动点,作PQ⊥y轴垂足为点Q,直线PQ交直线AC于E,再过点E作x轴的垂线垂足为R,线段QR最短时,点P的坐标及QR的最短长度.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:该几何体的主视图与左视图相同,底层是一个矩形,上层的中间是一个矩形;俯视图是两个同心圆.故选:A.2.解:175亿=175****0000=1.75×1010.故选:B.3.解:∵关于x的不等式(a+2020)x>a+2020的解为x<1∴a+2020<0解得:a<﹣2020.故选:B.4.解:∵1<3<4∴1<<2∴A点符合题意.故选:A.5.解:∵AB为⊙O的直径∴∠ADB=90°∴∠DAB+∠ABD=90°∵∠DAB=∠BCD=34°∴∠ABD=90°﹣34°=56°故选:B.6.解:∵BH=10m,∠ABH=α∴tanα=∴AH=BH•tanα=10tanα(米)故选:D.7.解:由基本作图方法可得:AF=AE,FD=DE在△AFD和△AED中∴△AFD≌△AED(SSS)∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D正确,不合题意;无法得出AF=DF故选项A错误,符合题意.故选:A.8.解:作AC⊥y轴于点C,B′D⊥AC于D,如图所示∵∠BAB′=90°,∠ACB=90°,AB=AB′∴∠BAC+∠ABC=90°,∠BAC+∠B′AD=90°∴∠ABC=∠B′AD∴△ABC≌△B′AD∴AC=B′D,BC=AD∵A(3,3),B(0,﹣1)∴BC=AD=4,AC=B′D=3∴CD=4﹣3=1∴B′(﹣1,6)∵点B'恰好在反比例函数y=的图象上∴k=﹣1×6=﹣6故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:a2b﹣18ab+81b=b(a2﹣18a+81)=b(a﹣9)2.故答案为:b(a﹣9)2.10.解:根据题意得a≠0且Δ=32﹣4×a×2>0 解得a<且a≠0即a的取值范围为a<且a≠0.故答案为:a<且a≠0.11.解:依题意得:4+3+8=8+5+x解得:x=2.故答案为:2.12.解:如图,连接OD、DF由D为切点可知:OD⊥BC∵AC⊥BC∴OD∥AC由题意可得:∠AOD=120°∴∠DOF=∠CAO=60°∴∠BAO=60°﹣45°=15°∵∠DAO=30°∴∠DAE=∠DAO﹣∠BAO=15°故答案为:15.13.解:连接OD、OC、OE,如图所示:∵八边形ABCDEFGH是正八边形∴∠COD=∠DOE==45°∴∠COE=45°+45°=90°∴∠CPE=∠COE=45°.故答案为:45°.14.解:∵点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上∴y2﹣y1=﹣()2+2×+m﹣[﹣(﹣)2+2×(﹣)+m]=﹣(2﹣)2+2×(2﹣)+(﹣)2+=﹣4+﹣()2+4﹣+()2+=>0∴y1<y2故答案为:<.三.解答题(共10小题,满分78分)15.解:原式=x2﹣9+4x﹣x2=4x﹣9当x=时原式=1﹣9=﹣8.16.解:(1)画树状图得:共有6种等可能的结果,其中C型号电脑被选中的结果有2种∴C型号电脑被选中的概率为=;(2)①选用方案AC时设购买C型号电脑x台,A型号电脑y台由题意得:解得:(不合题意舍去);②选用方案BC时设购买C型号电脑a台,B型号电脑b台由题意得:解得:综上所述,购买的C型号电脑有20台故答案为:20.17.解:设张老师用骑公共自行车方式上班平均每小时行驶x千米,则用自驾车的方式上班平均每小时行驶(x+45)千米依题意得:=4×解得:x=15经检验,x=15是原方程的解,且符合题意∴﹣=﹣=(小时).答:张老师用骑公共自行车方式上班比用自驾车的方式上班多用小时.18.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;∵OA2=12+22=5,∠AOA2=90°∴S==π答:线段OA在旋转过程中扫过的图形是扇形△OAA2,面积是.19.(1)证明:∵BF∥DE,EF∥DB∴四边形BDEF是平行四边形∵AB=AC,AE是中线∴AE⊥BC∴∠AEB=90°∵点D是AB的中点∴DE=AB=BD∴四边形BDEF是菱形;(2)解:∵AE⊥BC,BE=BC=1,AC=3∴AE===2∴△ABE的面积=BE×AE=×1×2=∵点D是AB的中点∴△BDE的面积=△ADE的面积=△ABE的面积∵菱形BDEF的面积=2△BDE的面积∴四边形BDEF的面积=△ABE的面积=.20.解:(1)最低气温14℃的有3天所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃)故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比5月份最低气温波动小所以S32<,3月份更稳定故答案为<,3.21.解:(1)根据题意可知,小丽家离学校1000米故答案为:1000;(2)小丽步行的速度是:1000÷10=100(米/分钟)故答案为:100;(3)m=4×100=400.22.解:(1)线段OM与ON的数量关系为:OM=ON,理由:∵四边形ABCD为矩形∴AO=CO,AD∥BC∴∠MAC=∠NCA.在△AOM和△CON中∴△AOM≌△CON(ASA)∴OM=ON;(2)直线l经过矩形ABCD的几何中心,理由:连接AC,AC交EF于点G,如图∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴l为AC的垂直平分线∴AG=CG∵矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心∴OA=OC.∴点G与点O重合∴直线l经过矩形ABCD的几何中心O;(3)①当点P到矩形ABCD的边BC的距离与OP的长都等于a时,连接AC,则AC经过EF的中点O,如图∴AC===10∴AO=CO=AC=5.由题意:OE⊥AC∴∠AOE=∠D=90°.∵∠OAE=∠DAC∴△AOE∽△ADC∴∴∴OE=.∴OF=OE=.由题意:PH⊥BC,OP=PH=a∴PF=﹣a.过点O作OM⊥BC于点M,则OM为△ABC的中位线∴OM=AB=3.∵PH⊥BC,OM⊥BC∴PH∥OM∴△FPH∽△FOM∴∴解得:a=.同理可求:②当点P到矩形ABCD的边AD的距离与OP的长都等于a时,a=;③当点P到矩形ABCD的边AB的距离与OP的长都等于a时,PH⊥AB,PH=OP=a 连接AC,则AC经过EF的中点O,过点P作PG⊥BC于点G,过点OP作OM⊥BC于点M,如图由①知:OF=,PF=﹣a,OM为△ABC的中位线∴BM=BC=4.∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴∠D′=∠D=90°,AD′=CD=AB,DE=D′E,∠FAD′=90°∵∠BAD=90°∴∠BAF=∠D′AE.在△BAF和△D′AE中∴△BAF≌△D′AE(ASA)∴BF=D′E.设D′E=DE=x,则AE=8﹣x在Rt△AED′中∵AE2=D′E2+AD′2∴(8﹣x)2=x2+62解得:x=.∴BF=D′E=.∵PH⊥AB,PG⊥BC,∠B=90°∴四边形PHBG为矩形∴BG=PH=a∴FG=BG﹣BF=a﹣,FM=BM﹣BF=4﹣=.∵PG⊥BC,OM⊥BC∴PG∥OM∴△FPG∽△FOM∴∴解得:a=.同理可求:④当点P到矩形ABCD的边CD的距离与OP的长都等于a时,a=.综上,若点P到矩形ABCD一边的距离与OP的长都等于a,a的所有可能的值为和.23.解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA∴cos∠ABD==如图2,设AB与DF交于点O,AE与DF交于点H∵△BEF绕点B按逆时针方向旋转90°∴∠DBF=∠ABE=90°∴△FBD∽△EBA∴=,∠BDF=∠BAE又∵∠DOB=∠AOF∴∠DBA=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°故答案为:,30°;(2)结论仍然成立理由如下:如图3,设AE与BD交于点O,AE与DF交于点H∵将△BEF绕点B按逆时针方向旋转∴∠ABE=∠DBF又∵=∴△ABE∽△DBF∴=,∠BDF=∠BAE又∵∠DOH=∠AOB∴∠ABD=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°∴BE=,AD=2,DB=4∵∠EBF=30°,EF⊥BE∴EF=1∵D、E、F三点共线∴∠DEB=∠BEF=90°∴DE===∵∠DEA=30°∴DG=DE=由(2)可得:=∴∴AE=∴△ADE的面积=×AE×DG=××=;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G同理可求:△ADE的面积=×AE×DG=××=;故答案为:或.24.解:(1)∵y=ax2+4ax+c=a(x+2)2﹣4a+c ∴抛物线的对称轴为直线x=﹣2∵A(﹣6,0)∴B(2,0)∴OB=2∴OC=3OB=6∴C(0,6)将B、C两点坐标代入y=ax2+4ax+c∴解得∴抛物线的解析式为y=﹣x2﹣2x+6设直线AC的解析式为y=kx+m∴∴∴直线AC的解析式为y=x+6;(2)∵y=﹣x2﹣2x+6=﹣(x+2)2+8∴顶点D(﹣2,8)过D作DM⊥y轴于M则M(0,8)∵C(0,6)∴DM=CM=2∴∠MCD=45°,CD=2∵OA=OC=6∴∠OCA=45°∴∠ACD=90°,AC=Rt△ACD中,∵直线AE与y轴交点N(0,﹣2)∴ON=2∴tan∠BAE==∴∠CAD=∠BAE∴∠CAE﹣∠CAD=∠CAE﹣∠BAE=∠OAC=45°;(3)∵PQ⊥y轴,ER⊥x轴∴∠OQE=∠ROQ=∠QOR=90°∴四边形OQER为矩形∴QR=OE∴当OE⊥AC时,QR=OE最短∵OA=OC=6∴△AOC为等腰直角三角形,此时E为线段AC的中点∴最短长度QR=OE=AC=3∵E(﹣3,3),PQ⊥y轴∴P点纵坐标也为3∴﹣x2﹣2x+6=3解得∴点P的坐标为(﹣2+,3)或(﹣2﹣,3)∴QR的最短长度为.。
2023-2024学年华东师大新版九年级上册数学期中复习试卷(含答案)

2023-2024学年华东师大新版九年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.下列方程中,一定是关于x的一元二次方程的是( )A.ax2+bx+c=0B.2(x﹣9)2﹣(x+1)2=1C.x2++5=0D.x2+5x﹣6=x22.下列二次根式中,不能和其他二次根式进行合并的是( )A.B.C.D.3.既=,那么下列各式中不成立的是( )A.2x=3y B.3x=2y C.=D.=4.下列计算正确的是( )A.×=B.+=C.=3D.÷=2 5.用配方法解方程x2﹣6x﹣3=0,下列配方结果正确的是( )A.(x﹣3)2=12B.(x+3)2=12C.(x﹣3)2=6D.(x﹣6)2=39 6.如图,在△ABC中,DE∥AB,且,则的值为( )A.B.C.D.7.如图,点F是平行四边形ABCD边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( )A.B.C.D.8.某校有一位同学感染了流感,经过两次感染后,全校共有144人染上了流感.设每一次感染中,平均一个人传染给了x人,列方程为( )A.x+2(1+x)=144B.1+x(x+1)=144C.1+x+x(x+1)=144D.x(x+1)=144二.填空题(共6小题,满分18分,每小题3分)9.如果|x﹣a|=a﹣|x|(x≠0,x≠a),那么﹣= .10.若+=0,则的值为 .11.若关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,则a+m﹣3的值为 .12.已知x(x﹣3)=4,则代数式2x2﹣6x﹣5的值为 .13.如图,在△ABC中,CE:EB=1:2,DE∥AC,已知S△ABC=m,那么S△AED = .14.如图,⊙O的半径为1,点A为⊙O外一定点,OA=,点C在⊙O上运动,且△ABC 为等腰直角三角形,∠BAC=90°,则线段OB的最大值是 .三.解答题(共10小题,满分78分)15.计算:.16.用公式法解下列方程.(1)8x2﹣4x+1=0;(2)(y﹣2)(3y﹣5)=1;(3)4t2+4t=﹣2.17.如图,在7×4方格纸中,点A,B,C,D都在格点上.(1)在图1中画一个格点△CDE,使△CDE与△ABC相似(2)在图2中画一个格点△BDF,使∠BFD=∠BAC,且△BDF与△ABC不相似.18.已知k为实数,关于x的方程为x2+(k+2)x+2k=1.(1)判断方程有无实数根.(2)当方程的根和k都是有理数时,请直接写出其中k的两个值和相应方程的根.19.根据图象所示化简:a,b为实数,试化简:|a﹣b|﹣.20.如图,在△ABC中,,D,M,N分别在直线AB,直线AC,直线BC上.(1)若D是AB中点,∠MDN=∠A+∠B,求;(2)若点D,M,N分别在AB,CA,CB的延长线上,且,∠MDN=∠ACB,求.21.小雁塔位于西安市南郊的荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.数学活动小组的同学对该塔进行了测量,测量方法如下:如图所示,间接测得该塔底部点B到地面上一点E的距离为38米,塔的顶端为点A,且AB⊥EB,在点E处竖直放一根标杆,其顶端为D,DE⊥EB,在BE的延长线上找一点C,使C,D,A三点在同一直线上,测得CE=2米.已知标杆DE=2.2米,求该塔的高度AB.22.已知,如图,直线l1,l2,l3是三条等距的平行线,将一块含30°角的直角三角板如图放置,使直角顶点C落在l2上,另两个顶点A与B刚好分落在l1与l3上,AB与l2交于点D(1)求证:AD=BD;(2)若BD=2,求直线l1,l2,l3之间的距离.23.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低1元,销售量平均增加2件.如果用x表示商品售价.(1)当售价为每件50元,销量为 件;(2)用含x的代数式表示商品的销量为 件;(3)如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?24.在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”.已知点O(0,0),Q(1,0).(1)在P1(0,﹣1),P2(,),P3(﹣1,1)中是线段OQ的“潜力点”是 ;(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ的“潜力点”时,直接写出b的取值范围.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:A.ax2+3x+1=0,当a=0时不是一元二次方程,故本选项不合题意;B.2(x﹣9)2﹣(x+1)2=1是一元二次方程,故本选项符合题意;C.是分式方程,故本选项不合题意;D.x2+5x﹣6=x2,整理后不含二次项,不是一元二次方程,故本选项不合题意;故选:B.2.解:A、=2,B、=3,C、=3,D、=4,则B中不能和其他二次根式进行合并,故选:B.3.解:A.由=,得2x=3y,那么A正确,故A不符合题意.B.由=,得2x=3y,那么B不正确,故B符合题意.C.由,得=,那么C正确,故C不符合题意.D.由=,得,那么D正确,故D不符合题意.故选:B.4.解:A、×=,故本选项正确;B、与不是同类二次根式,不能合并,故本选项错误;C、=2,故本选项错误;D、÷=,故本选项错误;故选:A.5.解:∵x2﹣6x﹣3=0,∴x2﹣6x=3,则x2﹣6x+9=3+9,即(x﹣3)2=12,故选:A.6.解:∵DE∥AB,∴,故选:D.7.解:根据题意知:DF∥AB,BC∥DE,∴,,,∴A,C,D中的结论正确,B中结论错误,故选:B.8.解:设平均一个人传染给了x人,依题意,得:1+x+x(x+1)=144,故选:C.二.填空题(共6小题,满分18分,每小题3分)9.解:∵|x﹣a|=a﹣|x|,∴|x|=x,且x≤a,而x≠0,x≠a,∴a﹣x>0,a+x>0,∴﹣=﹣=|a﹣x|﹣|a+x|=a﹣x﹣(a+x)=a﹣x﹣a﹣x=﹣2x.故答案为:﹣2x.10.解:∵+=0,∴,解得:,∴=﹣1.故答案为:﹣1.11.解:∵关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,∴Δ=b2﹣4ac=4a(a﹣4+m)=0,∵a≠0,∴a﹣4+m=0,∴a+m=4,∴a+m﹣3=4﹣3=1.故答案为:1.12.解:∵x(x﹣3)=4,∴x2﹣3x=4,∴原式=2(x2﹣3x)﹣5=2×4﹣5=3,故答案为:3.13.解:∵CE:EB=1:2,设CE=k,则EB=2k,∵DE∥AC,∴BE:BC=2k:3k=2:3,∴=()2,∴S△BDE=m,∵DE∥AC,∴==,∴==,则S△ADE=S△BDE=m.故答案为m.14.解:过A作AD⊥OA,且AD=OA,连接OD、OC、BD,如图:∵AD⊥OA,AD=OA,∴△OAD是等腰直角三角形,∴OD=OA=,∵AD⊥OA,∠BAC=90°,∴∠OAC=90°﹣∠CAD=∠BAD,∵△ABC为等腰直角三角形,∴AC=AB,在△OAC和△DAB中,,∴△OAC≌△DAB(SAS),∴BD=OC=1,在△OBD中,OD+BD>OB,∴OB<+1,当O、B、D不能构成三角形,即O、B、D共线时,OB最大,如图:此时OB=OD+BD=+1,故答案为:+1.三.解答题(共10小题,满分78分)15.解:原式=+4﹣6=﹣.16.解:(1)这里a=8,b=﹣4,c=1,∵△=32﹣32=0,∴x==,解得:x1=x2=;(2)方程整理得:3y2﹣11y+9=0,这里a=3,b=﹣11,c=9,∵△=121﹣108=13,∴x=,解得:x1=,x2=;(3)方程整理得:2t2+2t+1=0,这里a=2,b=2,c=1,∵△=4﹣8=﹣4<0,∴此方程无解.17.解:(1)如图,△CDE即为所求作.(2)如图,△BDF即为所求作.18.解:(1)原方程化为:x2+(k+2)x+2k﹣1=0,Δ=(k+2)2﹣4(2k﹣1)=k2﹣4k+8=(k﹣2)2+4≥4,∴该方程不管k取任何值,都有两个不相等的实数根;(2)当k=2时,此时Δ=4,该方程为:x2+4x+3=0,此时方程的两根为:x=﹣1或x=﹣3;当k=时,此时Δ=,∴该方程为:x2+x=0,此时方程的两根为:0,﹣.19.解:∵从数轴可知:a<0<b,|a|>|b|,∴|a﹣b|﹣=|a﹣b|﹣|a|=b﹣a+a=b.20.解:(1)连接CD,过点D作DE⊥AC于点E,DF⊥BC于点F,如图,∵D是AB中点,∴S△ACD=S△BCD.∴AC•DE=BC•DF,∴AC•DE=BC•DF.∴.∵∠MDN=∠A+∠B,∠A+∠B+∠C=180°,∴∠MDN=180°﹣∠C.∵四边形DECF的内角和为360°,∠DEC=∠DFC=90°,∴∠EDF=360°﹣90°×2﹣∠C=180°﹣∠C,∴∠MDN=∠EDF,∴∠MDE=∠NDF,∵∠DEM=∠DFN=90°,∴△DEM∽△DFN,∴.(2)连接CD,过点D作DG⊥AC交AC的延长线于点G,DF⊥NC于点H,MD与NC 交于点K,如图,∵同高的三角形的面积比等于它们底的比,∴,∵,∴.∴.∴.∵,∴设BC=2k,则AC=3k,∴,∴.∵∠MDN=∠ACB,∠MKC=∠DKN,∴∠M=∠N.∵∠MGD=∠DHN=90°,∴△MDG∽△NDH,∴.21.解:∵AB⊥EB,DE⊥EB,∴∠DEC=∠ABC=90°,又∵∠DCE=∠ACB,∴△ABC∽△DEC,∴,即,解得:AB=44(米).答:该塔的高度AB为44米.22.解:(1)过点C作l2的垂线分别交l1与l3于点E、F,如图,∵l1∥l2∥l3,且EC=CF,∴,∴AD=BD;(2)∵∠A=30°,∠ACB=90°,AD=BD,∴CD=BD=BC,即:△BCD是等边三角形,∴CF=BC•sin60°==.即:l1,l2,l3之间的距离为.23.解:(1)20+2×(70﹣50)=20+2×20=20+40=60(件).故答案为:60.(2)若商品的售价为x元,则每件降价(70﹣x)元,∴该商品的销售量=20+2(70﹣x)=(160﹣2x)(件).故答案为:(160﹣2x).(3)依题意得:(x﹣30)(160﹣2x)=1200,整理得:x2﹣110x+3000=0,解得:x1=50,x2=60.答:这种商品每件售价是50元或60元.24.解:(1)在坐标系中找到P1(0,﹣1),P2(,),P3(﹣1,1)三点,如图,根据“潜力点”的定义,可知P3是线段OQ的潜力点.故答案为:P3;(2)∵点P为线段OQ的“潜力点”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴点P在以O为圆心,1为半径的圆外.∵PO<PQ,∴点P在线段OQ垂直平分线的左侧.∵PO≤2,∴点P在以O为圆心,2为半径的圆上或圆内.又∵点P在直线y=x上,∴点P在如图所示的线段AB上(不包含点B).由题意可知△BOC和△AOD是等腰三角形∴BC=AD=∴﹣≤x p<﹣.(3)如图①,当直线MN与半径长为2的圆相切时,开始有“潜力点”,且点E是“潜力点”;过点O作OE⊥MN,则OE=2,ME=1,∴OM=,则b=ON=2;点N继续当下运动,如图②,当点N与点(0,1)重合时,开始没有“潜力点”,且点N不是“潜力点”;此时b=1;如图③,当点N与(0,﹣1),重合时,开始有“潜力点”,且点N不是“潜力点”;此时b=﹣1;如图④,当线段MN过点G时,开始没有“潜力点”,且点G不是“潜力点”;此时G(,﹣),∴2×+b=,∴b=﹣﹣1.综上所示,b的取值范围为:1<b≤或<b<﹣1.。
2022-2023学年华东师大版九年级上册数学期中复习试卷及参考答案

2022-2023学年华东师大新版九年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.已知n 是正整数,是整数,n的最小值为()A.21B.22C.23D.242.如果关于x的方程x2+px+q=0有一根为﹣1,则p、q应满足()A.p+q=1B.p﹣q=1C.p=0D.q=03.如图,图形甲与图形乙是位似图形,点O是位似中心,点A、B的对应点分别为点A′、)B′若OA′=2OA,AB=4.5,则A′B′的长为(A.8B.9C.10D.154.新纪元学校团委准备在艺术节期间举办学生绘画展览,为美化画面,在长为30cm、宽为20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图所示),若设彩纸的宽度为xcm,根据题意可列方程()A.(30+x)(20+x)=600B.(30+x)(20+x)=1200C.(30﹣2x)(20﹣2x)=600D.(30+2x)(20+2x)=12005.某校为了解本校九年级男生在“新冠肺炎“疫情期间每天在家进行锻炼的时长情况,随机抽查了100名九年级男学生进行问卷调查,将收集到的数据整理如下:x<100≤x<2020≤x<3030≤x<4040≤x<5050≤x<60x>60时间x(分)人数181034221510根据以上统计结果,抽查该校一名九年级男生,估计他每天进行锻炼的时间不少于40分钟的概率是()A.0.22B.0.53C.0.47D.0.816.若A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=2(x+1)2+c上的三个点,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 7.新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,点A、B、C、D为不同的点且都在格点上,如果∠ADC =∠ABC,那么图中所有符合要求的格点D的个数是()A.3B.5C.7D.98.已知点A(﹣2,y1),点B(﹣1,y2)和点C(1,y3)在反比例函数y=(k>0)的图象上,则y1、y2、y3大小关系正确的是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y3>y1>y2二.填空题(共6小题,满分183分)9.当x=1时,二次根式的值是.10.一元二次方程x2﹣2x+3=0的根的判别式的值是.11.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为m.12.如图,在△ABC中,点E是BC的中点,AB=BE,BD⊥AE交AD于点D,若△ABC 的面积为2,则△CDE的面积为.13.如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,M是射线AB上的一动点,以AM为斜边在△ABC外作Rt△AMN,且使tan∠MAN=,O是BM的中点,连接ON.则ON长的最小值为.14.如图,在平面直角坐标系中,正方形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,抛物线y=ax2﹣2ax+c经过点B、C.若抛物线y=ax2﹣2ax+c的顶点在正方形OABC的内部,则a的取值范围是.三.解答题(共10小题,满分78分)15.计算:(π﹣3.14)0++2tan60°﹣(﹣2)2021•()2020.16.甲口袋中装有两个相同的小球,它们分别写有数字1和2,乙口袋中装有三个相同的小球,它们分别写有数字3,4和5.从两个口袋中各随机取出1个小球,用画树状图或列表的方法,求取出的2个小球上的数字之和为5的概率.17.如图,有一块长30m、宽20m的矩形田地,准备修筑同样宽的三条直路,把田地分成六块种植不同品种的蔬菜,并且种植蔬菜面积为矩形田地面积的,求道路的宽为多少m?18.已知:BD是△ABC的角平分线,点E在AB边上,BE=BC,过点E作EF∥AC,交BD于点F,连接CF,DE.(1)如图1,求证:四边形CDEF是菱形;(2)如图2,当∠DEF=90°,AC=BC时,在不添加任何辅助线的情况下,请直接写出图2中度数为∠ABD的度数2倍的角.19.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.20.被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点,学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大玉米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量项目及结果如下表.项目内容课题测量郑州会展宾馆的高度测量示意图如图,在E 点用测倾器DE 测得楼顶B 的仰角是α,前进一段距离到达C 点用测倾器CF 测得楼顶B 的仰角是β,且点A 、B 、C 、D 、E 、F 均在同一竖直平面内测量数据∠α的度数∠β的度数EC 的长度测倾器DE ,CF 的高度40°45°53米1.5米……请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)21.某商店销售某种品牌的蜂蜜,购进时的价格是30元/千克.根据市场调查:在一段时间内,销售单价x (元/千克)与销售量y (千克)之间满足的关系如图所示.(1)求y 关于x 的函数关系式;(2)要使该商店销售这种蜂蜜获得11250元的销售利润且让利于顾客,则该蜂蜜的销售单价应定为多少元?22.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:任意两点横坐标差的最大值称为“水平底”a ,任意两点纵坐标差的最大值称为“铅垂高”h ,“水平底”与“铅垂高”的乘积为点A 、B 、C 的“矩面积S ”,即“矩面积”S =ah .例如:点A(1,2)、B(﹣3,1)、C(2,﹣2),它们的“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)已知点A(2,1)、B(﹣2,3),C(0,t).①若A、B、C三点的“矩面积”为12,写出点C的坐标:;②写出A、B、C三点的“矩面积”的最小值:;(2)已知点D(﹣1,3)、E(4,0)、F(t,2t),设D、E、F三点的“矩面积”为S,求S(用含t的式子表示)23.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣4,0),B(1,0)两点,与y轴交于点C,点P为抛物线上的一个动点,连接BC.(1)求抛物线的解析式;(2)若点P在直线AC上方,当四边形PABC面积最大时,求点P的坐标;(3)过点P作抛物线对称轴的垂线,垂足为点D,点Q是对称轴上一点,当△PDQ与△AOC全等时,求点P,Q的坐标.24.(1)【探究发现】如图①,等腰△ACB,∠ACB=90°,D为AB的中点,∠MDN=90°,将∠MDN绕点D旋转,旋转过程中,∠MDN的两边分别与线段AC、线段BC交于点E、F(点F与点B、C不重合),写出线段CF、CE、BC之间的数量关系,并证明你的结论;(2)【类比应用】如图②,等腰△ACB,∠ACB=120°,D为AB的中点,∠MDN=60°,将∠MDN绕点D旋转,旋转过程中,∠MDN的两边分别与线段AC、线段BC交于点E、F(点F与点B、C不重合),直接写出线段CF、CE、BC之间的数量关系为;(3)【拓展延伸】如图③,在四边形ABCD中,AC平分∠BCD,∠BCD=120°,DAB =60°,过点A作AE⊥AC,交CB的延长线于点E,若CB=6,DC=2,则BE的长为.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.2.解:把x=﹣1代入原方程得:1﹣p+q=0,移项得:p﹣q=1;故选:B.3.解:∵图形甲与图形乙是位似图形,∴AB∥A′B′,∴△AOB∽△A′OB′,∴=,即=,解得:A′B′=9,故选:B.4.解:设彩纸的宽度为xcm,则由题意列出方程为:(30+2x)(20+2x)=2×30×20.故选:D.5.解:估计他每天进行锻炼的时间不少于40分钟的概率是=0.47,故选:C.6.解:∵抛物线y=2(x+1)2+c的开口向上,对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大,∵A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=2(x+1)2+c上的三个点,∴点A关于对称轴x=﹣1的对称点是(0,y1),∴y3>y2>y1,故选:C.7.解:如图,满足条件的点D有9个.故选:D.8.解:∵反比例函数y=中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<0,﹣1<0,∴点A(﹣2,y1),B(﹣1,y2)位于第三象限,∴y1<0,y2<0,∵﹣2<﹣1<0,∴0>y1>y2>0.∵1>0,∴点C(1,y3)位于第一象限,∴y3>0,∴y3>y1>y2.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:当x=1时,原式==2,故答案为:2.10.解:∵a=1,b=﹣2,c=3,∴b2﹣4ac=(﹣2)2﹣4×1×3=4﹣12=﹣8,故答案为:﹣8.11.解:作EH⊥CD于H,交AB于G,如图,则EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,所以AG=AB﹣GB=2.5﹣1.6=0.9(m),∵AG∥CH,∴△EAG∽△EHC,∴=,即=,解得:CH =3,∴CD =CH +DH =4.6(m ).故答案为:4.6.12.解:∵AB =BE ,BD ⊥AE ,∴AD =DE ,∴S △CDE =S △ACE ,∵点E 是BC 的中点,∴S △ACE =S △ABC =1,∴△CDE 的面积=.故答案为:.13.解:作NP ⊥AB 于点P ,在Rt △ACB 中,由勾股定理得:AB ===5,设AM 长为x ,则BM =5﹣x ,∵tan ∠MAN ==,∴AN =2MN ,∴AM ==MN ,∴MN=AM=x,AN=2MN=x,同理,在Rt△ANP中可得NP==x,AP=2NP=x,∵O为BM中点,∴BO=BM=,∴AO=AB﹣BO=,∴OP=AO﹣AP=﹣x=,在Rt△ONP中,由勾股定理得ON2=OP2+NP2,即ON2=()2+(x)2=(25x2﹣150x+3125)=(x2﹣6x+125)=(x﹣3)2+20,∴当x=3时,ON2取最小值为20,∴ON最小值为2.故答案为:2.14.解:∵抛物线y=ax2﹣2ax+c开口向上,∴a>0,∵对称轴为直线x=﹣=1,且经过点B、C.∴BC=2,∴正方形的边长为2,∴C(0,2),B(2,2),∴c=2,∵抛物线为y=ax2﹣2ax+2,∵抛物线y=ax2﹣2ax+c的顶点在正方形OABC的内部,∴0<<2,解得0<a<2,故答案为0<a<2.三.解答题(共10小题,满分78分)15.解:原式=1+(﹣2)+2×﹣(﹣2)2020×()2020×(﹣2)=1﹣2+6﹣(﹣2×)2020×(﹣2)=1﹣2+6﹣1×(﹣2)=1﹣2+6+2=7.16.解:根据题意,画树状图如下:共有6种结果,并且它们出现的可能性相等,符合题意的结果有2种,则取出的2个小球上的数字之和为5的概率是=.17.解:设道路宽为x米,则六块菜地可合成长为(30﹣2x)m,宽为(20﹣x)m的矩形,依题意,得:(30﹣2x)(20﹣x)=×30×20,整理,得:x2﹣35x+66=0,解得:x1=33(不合题意,舍去),x2=2.答:道路的宽为2m.18.(1)证明:在△BDE和△BDC中,,∴△BDE≌△BDC(SAS);∴DE=DC,∠BDE=∠BDC同理△BFE≌△BFC,∴EF=CF∵EF∥AC∴∠EFD=∠BDC,∴∠EFD=∠BDE,∴DE=EF,∴DE=EF=CF=DC,∴四边形CDEF是菱形;(2)∵四边形CDEF是正方形,∴∠CDE=∠DEF=2∠EFD=90°,∵AC=BC,∴∠A=∠CBE,∵∠A+∠AED=180°﹣90°=90°,∠AED+∠FEB=90°,∴∠A=∠FEB=∠CBE=2∠EBF,∵∠ABD+∠FEB=∠DFE=45°,∴∠ABD=15°,∴∠FEB=30°,∴∠A=∠ABC=∠FEB=30°,∵△BFE≌△BFC,∴∠FEB=∠FCB=30°,综上所述,度数为∠ABD的度数2倍的角是∠A,∠ABC,∠FEB,∠FCB.19.解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.20.解:由题意可得:设BN=FN=x,则tan40°==≈0.84,解得:x=278.25,故AB=278.25+1.5≈280(米),答:郑州会展宾馆的高度为280米.21.解:(1)设y与x的函数解析式为y=kx+b(k≠0),将(60,400),(50,500)代入y=kx+b,得:,解得:,∴y与x的函数解析式为y=﹣10x+1000(30≤x≤100);(2)依题意得:(x﹣30)(﹣10x+1000)=11250,整理得:x2﹣130x+3600=0,解得:x1=40,x2=90答:销售单价应定为每千克40元.22.解:(1)由题意:a=4.①当t>3时,h=t﹣1,则4(t﹣1)=12,可得t=4,故点C的坐标为(0,4);当t<1时,h=3﹣t,则4(3﹣t)=12,可得t=0,故点C的坐标为(0,0);故答案为:(0,4)或(0,0);②根据题意得:a的最小值为2,h的最小值为2,∴A、B、C三点的“矩面积”的最小值为2×2=4;故答案为:4;(2)分情况讨论:如图所示:①当t >4时,S =(t +1)×2t =2t 2+2t ;②当≤t ≤4时,S =5×2t =10t ;③当0≤t ≤时,S =5×3=15;④当﹣1≤t <0时,S =5(3﹣2t )=15﹣10t ;⑤当t <﹣1时,S =(4﹣t )(3﹣2t )=2t 2﹣11t +12.23.解:(1)将A (﹣4,0),B (1,0)代入y =﹣x 2+bx +c ,∴,解得,∴y =﹣x 2﹣3x +4;(2)令x =0,则y =4,∴C (0,4),设直线AC 的解析式为y =kx +b ,∴,解得,∴y =x +4,过P 点作PG ∥y 轴交AC 于点G ,设P (t ,﹣t 2﹣3t +4),则G (t ,t +4),∴PQ =﹣t 2﹣3t +4﹣t ﹣4=﹣t 2﹣4t ,∴S 四边形APBC =S △ABC +S △PAC =×5×4+×4×(﹣t 2﹣4t )=18﹣2(t +2)2,∵﹣4<t <0,∴t=﹣2时,四边形PABC面积有最大值,此时P(﹣2,6);(3)∵y=﹣x2﹣3x+4=﹣(x+)2+,∴抛物线的对称轴为直线x=﹣,∵AO=4,OC=4,∴△AOC是等腰直角三角形,∵△PDQ与△AOC全等,∴△PDQ是等腰直角三角形,∵PD⊥DQ,∴PD=DQ,设P(t,﹣t2﹣3t+4),Q(﹣,m),∴|t+|=|﹣t2﹣3t+4﹣m|=4,∴t=或t=﹣,m=﹣或m=﹣,∴P(,﹣)或(﹣,﹣),Q(﹣,﹣)或(﹣,﹣).24.解:(1)CF+CE=BC.证明如下:∵等腰△ACB中∠ACB=90°,D为AB的中点,∴CD⊥AB,,∠A=∠B=45°,∴∠CDB=90°,∴∠B=∠BCD,∴DC=DB.又∵∠MDN=90°,∴∠EDC=∠BDF.在△EDC和△FDB中,,∴△EDC≌△FDB,∴CE=BF,∴BC=BF+CF=CE+CF;(2)CF+CE=BC.证明如下:取BC中点G,连接DG,∵等腰△ACB中∠ACB=120°,D为AB的中点,∴CD⊥AB,即∠CDB=90°,,∵在Rt△CDB中,点G是BC中点,∴,∴△DCG是等边三角形,∴∠CDG=∠CGD=60°,DG=DC,又∵∠CDG=∠MDN=60°,∴∠EDC=∠FDG,又∵∠ECD=∠FGD=60°,DG=DC,∴△EDC≌△FDG(ASA),∴CE=GF,∴BC=2CG=2(GF+CF)=2(CE+CF),∴.故答案为:;(3)延长EA,CD交于点F,取G为CF的中点,∵AE⊥AC,∴∠CAF=90°,在Rt△CAF中,点G是CF中点,∴AG=GC=GF,∵AC平分∠BCD,∠BCD=120°,∴,∴△ACG是等边三角形,∴∠GAC=∠AGD=60°,AG=AC,又∵∠DAB=60°,∴∠GAD=∠CAB,又∵∠ACB=∠AGD=60°,AG=AC,∴△ACB≌△AGD(ASA),∴GD=BC=6,∴FC=2CG=2(GD+DC)=2×(6+2)=16,∵∠F=90°﹣∠ACD=90°﹣°=30°,∠E=90°﹣∠ACE=90°﹣60°=30°,∴∠F=∠E,∴CE=CF=16,∴BE=CE﹣BC=16﹣6=10.故答案为:10.。
九年级数学上学期期中检测题新版华东师大版(含答案)

九年级数学上册新版华东师大版:期中检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.(2021·重庆)计算14 ×7 - 2 的结果是( B )A .7B .62C .72D .272.(2021·新疆)一元二次方程x 2-4x +3=0的解为( B )A .x 1=-1,x 2=3B .x 1=1,x 2=3C .x 1=1,x 2=-3D .x 1=-1,x 2=-33.如图,△ABO ∽△CDO ,若BO =6,DO =3,CD =2,则AB 的长是( C )A .2B .3C .4D .5第3题图 第5题图 第6题图4.(2021·怀化)对于一元二次方程2x 2-3x +4=0,则它的根的情况为( A )A .没有实数根B .两根之和是3C .两根之积是-2D .有两个不相等的实数根 5.实数a ,b 在数轴上的对应点如图所示,化简a 2-4ab +4b 2 +|a +b|的结果为( B )A .2a -bB .-3bC .b -2aD .3b6.(2021·巴中)如图,在△ABC 中,点D ,E 分别在AB ,AC 上,且AD DB =AE EC =12,下列结论正确的是( D )A .DE ∶BC =1∶2B .△ADE 与△ABC 的面积比为1∶3C .△ADE 与△ABC 的周长比为1∶2D .DE ∥BC7.(2021·通辽)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( C )A .507(1+2x)=833.6B .507×2(1+x)=833.6C .507(1+x)2=833.6D .507+507(1+x)+507(1+x)2=833.68.(2021·贵港)已知关于x 的一元二次方程x 2-kx +k -3=0的两个实数根分别为x 1,x 2,且x 12+x 22=5,则k 的值是( D )A .-2B .2C .-1D .19.(遂宁中考)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( C ) A .12 B .13 C .23 D .34第9题图 第10题图10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB =2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于点M ,连结AM ,AF ,H 为AD 的中点,连结FH 分别与AB ,AM 交于点N ,K.则下列结论:①△ANH ≌△GNF ;②∠AFN =∠HFG ;③FN =2NK ;④S △AFN ∶S △ADM =1∶4.其中正确的结论有( C )A .1个B .2个C .3个D .4个二、细心填一填(每小题3分,共15分)11.(2021·聊城)计算: 2 (18 -12 8 )=__4__. 12. (2021·黄冈)若关于x 的一元二次方程x 2-2x +m =0有两个不相等的实数根,则m 的值可以是__-1__.(写出一个即可)13.(绥化中考)在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是__(4,8)或(-4,-8)__.14.(大连中考)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x 步,根据题意,可列方程为__x(x +12)=864__.15.(2021·营口)如图,矩形ABCD 中,AB =5,BC =4,点E 是AB 边上一点,AE =3,连结DE ,点F 是BC 延长线上一点,连结AF ,且∠F =12∠EDC ,则CF =__6__. 三、用心做一做(共75分)16.(8分)计算:(1)(3 2 +48 )×(18 -4 3 );解:-30(2)(1-π)0+| 2 - 3 |-12 +(12)-1. 解:1- 317.(9分)解方程:(1)5(x +3)2=2(x +3); (2)(2021·常德)x 2-x -2=0.解:x 1=-3,x 2=-135解:x 1=2,x 2=-118.(9分)(济宁中考)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.解:(1)如图,作出∠APD=∠ABP,即可得到△PCD∽△ABP(2)∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB19.(9分)如图,在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0),B(3,0),C(2,1),D(4,3),E(6,5),F(4,7).按下列要求画图:以点O为位似中心,将△ABC向y轴左侧放大2倍得到△ABC的位似图形△A1B1C1,并解决下列问题:(1)顶点A1的坐标为________,B1的坐标为________,C1的坐标为________;(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼成一个平行四边形(非正方形).写出符合要求的变换过程.解:图略.(1)(-2,0);(-6,0);(-4,-2)(2)将△A1B1C1先向上平移一个单位,再绕点A1顺时针旋转90°后,沿x轴正方向平移8个单位,得△A2B2C220.(9分)(2021·山西)2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).解:设这个最小数为x,则最大数为(x+8),依题意,得x(x+8)=65,整理,得x2+8x -65=0,解得x1=5,x2=-13(不合题意,舍去).答:这个最小数为521.(10分)(2021·南充)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:无论k 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x 1,x 2,且k 与x 1x 2 都为整数,求k 所有可能的值. 解:(1)∵Δ=[-(2k +1)]2-4×(k 2+k)=1>0,∴无论k 取何值,方程都有两个不相等的实数根 (2)∵x 2-(2k +1)x +k 2+k =0,即(x -k)[x -(k +1)]=0,解得x =k 或x =k +1.∴一元二次方程x 2-(2k +1)x +k 2+k =0的两根分别为k ,k +1,∴x 1x 2 =k +1k =1+1k 或x 1x 2=k k +1 =1-1k +1 ,如果1+1k 为整数,则k 为1的约数,∴k =±1,如果1-1k +1为整数,则k +1为1的约数,∴k +1=±1,则k 为0或-2.∴整数k 的所有可能的值为±1,0或-222.(10分)如图,在正方形ABCD 中,P 是边BC 上一点,BE ⊥AP ,DF ⊥AP ,垂足分别是点E ,F.(1)求证:EF =AE -BE ;(2)连结BF ,如果AF BF =DF AD.求证:EF =EP. 题图 答图解:(1)如图,∵四边形ABCD 为正方形,∴AB =AD ,∠BAD =90°,∴∠1+∠2=90°,∵BE ⊥AP ,DF ⊥AP ,∴∠BEA =∠AFD =90°,∴∠2+∠3=90°,∴∠1=∠3,在△ABE 和△DAF 中,⎩⎪⎨⎪⎧∠BEA =∠AFD ,∠1=∠3,AB =DA ,∴△ABE ≌△DAF(AAS ),∴BE =AF ,∴EF =AE -AF =AE -BE (2)∵AF BF =DF AD ,又AF =BE ,∴BE BF =DF AD ,∴BE DF =BF AD,∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,∵BE ⊥AP ,∴∠BEF =∠BEP =90°,又∵BE =BE ,∴△BEF ≌△BEP ,∴EF =EP23.(11分)(2021·山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F =95 C +32得出,当C =10时,F =50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式1R =1R 1 +1R 2求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式1R =1R 1 +1R 2 计算:当R 1=7.5,R 2=5时,R 的值为多少; ②如图,在△AOB 中,∠AOB =120°,OC 是△AOB 的角平分线,OA =7.5,OB =5,用你所学的几何知识求线段OC 的长.解:(1)图算法方便、直观,不用公式计算即可得出结果(答案不唯一) (2)①当R 1=7.5,R 2=5时,1R =1R 1 +1R 2 =17.5 +15 =5+7.57.5×5 =13,∴R =3②过点A 作AM ∥CO ,交BO 的延长线于点M ,如图,∵OC 是∠AOB 的角平分线,∴∠COB =∠COA =12 ∠AOB =12×120°=60°.∵AM ∥CO ,∴∠MAO =∠AOC =60°,∠M =∠COB =60°.∴∠MAO =∠M =60°.∴OA =OM.∴△OAM 为等边三角形.∴OM =OA =AM =7.5.∵AM ∥CO ,∴△BCO ∽△BAM.∴OC AM =BO BM .∴OC 7.5 =57.5+5.∴OC =3.综上,通过计算验证第二个例子中图算法是正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新华东师大版九年级上学期
期中检测题
时间:100分钟满分:120分
一、选择题(每小题3分,共30分)
1.如果代数式x
x-1
有意义,那么x的取值范围是( D ) A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1
2.下列运算正确的是( D )
A.6a
2
=3aB.-23=(-2)2×3
C.a21
a
=aD.18-8= 2
3.用配方法解方程x2+4x+1=0,配方后的方程是( A )
A.(x+2)2=3 B.(x-2)2=3
C.(x-2)2=5 D.(x+2)2=5
4.已知x2-2x-2=0,则3x2-6x+1的值为( C )
A.-5 B.5 C.7 D.19
5.若两个相似三角形的面积之比为1∶4,则它们的周长之比为( A )
A.1∶2 B.1∶4 C.1∶5 D.1∶16
6.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,需添加一个条件,不正确的是( C )
A .∠ABD =∠C
B .∠ADB =∠AB
C C.AB B
D =CB CD D.AD AB =AB AC
7.如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB =5,CD =3,则EF 的长是( D )
A .4
B .3
C .2
D .1
8.小明家有一块长150 cm ,宽100 cm 的矩形地毯,为了使地毯美观,小明请来了工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,若设花色地毯的宽度为x cm ,则根据题意列方程为( A ) A .(150+2x)(100+2x)=150×100×2 B .(150-2x)(100-2x)=150×100×2 C .(150+x)(100+x)=150×100×2 D .(150+2x)(100+2x)=150×100×12
9.已知x 0是一元二次方程ax 2
+bx +c =0的根,则Δ=b 2
-4ac 与M =(2ax 0+b)2
的关系是( B )
A .Δ>M
B .Δ=M
C .Δ<M
D .不能确定
10.(2014·河北)在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( A )
A .两人都对
B .两人都不对
C .甲对,乙不对
D .甲不对,乙对
二、填空题(每小题3分,共24分)
11.计算32
-
1
2
的结果是__2__. 12.如果点P(4,-5)和点Q(a ,b)关于x 轴对称,则点Q 的坐标为__(4,5)__. 13.若两数的和为-7,积为12,则这两个数是__-3,-4__.
14.已知关于x 的一元二次方程x 2
-23x -k =0有两个相等的实数根,则k 的值为__-3__. 15.(2014·江西)若a ,b 是方程x 2
-2x -3=0的两个实数根,则a 2
+b 2
=__10__.
16.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线交点,若DE =1,则DF 的长为__3
2
__.
17.(2014·长春)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为__20%__.
18.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推……若△ABC 的周长为1,则△A n B n C n 的周长为__1
2
n __.
三、解答题(共66分) 19.(8分)计算:
(1)(24-
12
)-(1
8
+6); (2)18-12
÷43×63
. 解:(1)6-34 2 (2)3
2 2
20.(8分)解方程:
(1)(2x -1)2
=x(3x +2)-7; (2)(x +1)(x -1)+2(x +3)=8. 解:(1)x 1=2,x 2=4 (2)x 1=-3,x 2=1
21.(7分)已知a ,b ,c 满足|a -22|+b -5+(c -32)2
=0. (1)求a ,b ,c 的值;
(2)试问以a ,b ,c 为三边能否构成三角形?如果能构成三角形,请求出三角形的周长;如果不能构成三角形,请说出理由.
解:(1)a =22,b =5,c =3 2 (2)易知a +c>b ,a +b>c ,b +c>a ,∴以a ,b ,c 为三边能构成三角形,其周长为52+5
22.(7分)(2014·襄阳)已知x =1-2,y =1+2,求x 2
+y 2
-xy -2x +2y 的值.
解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2
+y 2
-xy -2x +2y =(x -y)2
-2(x -y)+xy =(-22)2
-2×(-22)+(-1)=7+4 2
23.(8分)已知关于x 的方程x 2
-2(k -1)x +k 2
=0有两个实数根x 1,x 2. (1)求k 的取值范围;
(2)若|x 1+x 2|=x 1·x 2-1,求k 的值.
解:(1)由Δ≥0得k ≤12 (2)当x 1+x 2≥0时,2(k -1)=k 2
-1,∴k 1=k 2=1(舍去);当x 1+x 2<0
时,2(k -1)=-(k 2
-1),∴k 1=1(舍去),k 2=-3,∴k =-3
24.(8分)(2014·南宁)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). (1)请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1; (2)请画出△ABC 关于原点对称的△A 2B 2C 2;
(3)在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出P 的坐标.
解:(1)△A1B1C1如图所示(2)△A2B2C2如图所示(3)△PAB如图所示,P(2,0)
25.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.
(1)若该公司当月销售3部汽车,则每部汽车的进价为__26.8__万元;
(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)
解:(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为28-[27-0.1(x-1)]=(0.1x +0.9)(万元).当0≤x≤10时,根据题意,得x·(0.1x+0.9)+0.5x=12,整理得x2+14x-120=0,解得x1=-20(不合题意,舍去),x2=6.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理得x2+19x-120=0,解得x1=-24(不合题意,舍去),x2=5<10,所以x2=5舍去.综
上可知,需要售出6部汽车
26.(10分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点. (1)求证:AC 2
=AB ·AD ; (2)求证:CE ∥AD ;
(3)若AD =4,AB =6,求AC
AF
的值.
解:(1)∵AC 平分∠DAB ,∴∠DAC =∠CAB ,∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD AC =AC AB ,∴AC 2
=AB ·AD (2)∵E 是AB 的中点,∴CE =12AB =AE ,∴∠EAC =∠ECA ,∵∠DAC =∠CAB ,∴∠DAC =∠ECA ,∴CE ∥AD (3)∵CE ∥AD ,∴△AFD ∽△CFE ,∴AD CE =AF
CF ,∵CE
=12AB =3,∴AF CF =43,∴AC AF =74。