南大西洋深海表层沉积物细菌多样性和生物地理学研究

合集下载

地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展

地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展

DOI:10.7524/j.issn.0254-6108.2022090901黄柳青, 王雯冉, 张浴曈, 等. 地表水中全氟及多氟烷基化合物(PFASs )的污染现状研究进展[J ]. 环境化学, 2024, 43(3): 693-710.HUANG Liuqing, WANG Wenran, ZHANG Yutong, et al. Research progress on the pollution status of per-and polyfluoroalkyl substances (PFASs) in surface water: A review [J ]. Environmental Chemistry, 2024, 43 (3): 693-710.地表水中全氟及多氟烷基化合物(PFASs )的污染现状研究进展 *黄柳青1 王雯冉1 张浴曈1 徐翊宸1 王新皓1 俞学如2 陈 森2 谷 成1 陈张浩1 **(1. 南京大学环境学院,污染控制与资源化国家重点实验室,南京,210023;2. 南京市生态环境保护科学研究院,南京,210013)摘 要 近年来,全氟及多氟烷基化合物(per- and polyfluoroalkyl substances ,PFASs )的大量生产使用,使得其在自然水体中的浓度日益升高. 由于PFASs 的生物毒性及强稳定性,环境中的PFASs 严重威胁到生态环境及人类健康. 目前,多个国家及相关国际组织开始对地表水中的PFASs 展开检测,但目前的监测基本属于点源监测,大范围、长时间维度的监测依然缺乏,从而无法准确揭示PFASs 的时空赋存特征. 本文概述了PFASs 在地表水中的赋存水平,同时阐述了地表水环境中PFASs 的水平分布和垂直分布特征,并揭示了地表水中PFASs 污染水平与组成的时间变化规律,总结了影响PFASs 污染的主要因素,对后续PFASs 监测提出了建议,以期为准确评估水环境中PFASs 的污染状况提供依据.关键词 全氟及多氟烷基化合物,地表水,污染特征,时空差异性.Research progress on the pollution status of per-and polyfluoroalkylsubstances (PFASs) in surface water: A reviewHUANG Liuqing 1 WANG Wenran 1 ZHANG Yutong 1 XU Yichen 1 WANG Xinhao 1  YU Xueru 2 CHEN Sen 2 GU Cheng 1 CHEN Zhanghao 1 **(1. School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing,210023, China ;2. Nanjing Municipal Academy of Ecological and Environment Protection Science, Nanjing, 210013, China )Abstract Recently, the mass production and usage of per- and polyfluoroalkyl substances (PFASs)have caused the serious PFASs pollution in natural water. Due to the biological toxicity and the strong persistence, PFASs pollution is threating the ecological environment and human health.Nowadays, many countries and international organizations have begun to monitor the PFASs pollution in surface water. However, the current monitoring only focus on the point source, and there still lacking the large-scale and long-term monitoring. Therefore, it is impossible to accurately reveal the spatiotemporal characteristics of PFASs pollution. This study summarizes the occurrence level of PFASs in surface water, and expounding the distribution characteristics of PFASs in the surface water. Moreover, the temporal variation law of PFASs pollution in surface water was revealed, and some environmental factors were also discussed. Finally, the follow-up suggestions on PFASs 2022 年 9 月 9 日 收稿(Received :September 9,2022).* 中国博士后科学基金(2021M701662)和国家自然科学基金(21777066)资助.Supported by the China Postdoctoral Science Foundation (2021M701662) and National Science Foundation of China (21777066).* * 通信联系人 Corresponding author ,E-mail :**************.cn694环 境 化 学43 卷monitoring are proposed, providing a basis for accurately assessing the pollution status of PFASs in the environment.Keywords per- and polyfluoroalkyl substances (PFASs),surface water,pollution characteristics,spatial and temporal differences.全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类人工合成的有机氟化物,其结构上至少存在一个完全氟化的甲基(—CF3)或亚甲基(—CF2—)碳[1]. 由于C-F键极高的化学键能(460 kJ·mol−1)[2],PFASs具有极强的稳定性,同时具有疏水疏脂、耐高温、耐氧化的性质,能在自然环境中长久稳定地存在[3].据统计,人工合成的PFASs已逾4700种,仅2000年至2017年,就有超过3000 t PFASs被合成,并被用于塑料、橡胶、电子工业产品以及油漆的生产[4]. 长期的生产使用使得PFASs不断在环境中积累,目前,在中国东南部地区河流水[5]、约旦Zarqa河两岸土壤[6]、北极圈大气[7]等全球范围环境介质中内均有PFASs检出. 研究表明,环境中的PFASs可以通过饮用水和食物链传递作用进入人体,并造成生殖系统损伤[8]、免疫系统损伤[9]以及神经性伤害[10]. 全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)和全氟辛酸(perfluorooctanoic acid,PFOA)是环境中最典型的两种PFASs,分别于2009年和2019年被正式列入《斯德哥尔摩公约》. 与此同时,欧盟2015年颁布的《水框架指令》中规定地表水中PFOS年平均浓度不得超过0.65 ng·L−1,最大浓度不得超过65 ng·L−1;2016年,美国环境保护署(EPA)设立了饮用水中PFOS和PFOA总浓度低于70 ng·L−1的健康标准. 2014年我国原环保部和农业部等12部委发布的文件要求,五年内确保PFOS在特定豁免用途全部淘汰. 在《重点管控新污染物清单(2021年版)》中重申,禁止PFOS类物质生产,并严禁生产、使用和进出口PFOA类物质. 尽管PFOS、PFOA等长链PFASs已被限制生产使用,仍有大量短链或含有其他新兴PFASs替代品被不断开发应用,环境中可检出PFASs种类不断增加,如何解决PFASs污染已逐渐成为当下最受关注的环境问题之一.环境水体是环境中PFASs的重要储存库[11 − 12],由于PFASs分子结构的特殊性,PFASs在水环境中的分布及其与不同环境介质的结合状态相比传统疏水有机污染物差异较大[13 − 15]. 此外,水的地球循环过程、水力作用也会影响PFASs的环境迁移与转化过程[16 − 17]. 因此,厘清PFASs在水环境中的迁移转化规律,并揭示多种环境介质对该过程的影响,对于科学评估PFASs的环境污染现状并进一步有效治理PFASs污染具有重要科学意义. 在过去的数十年间,有关PFASs的综述研究已有较多,例如,Gagliano、Wei、 Bolan等[18 − 25] 总结比较了PFASs在大气、土壤及水环境中的修复技术,包括吸附法、水热法、超声法、光降解及生物降解法等. Podder 等[26 − 28]对现有研究中PFASs的潜在暴露途径及生物毒性进行了总结. 此外,Kurwadkar等[29 − 32]回顾了PFASs在自然水环境中的污染浓度和分布特征、暴露及现场分析方法. 上述研究总结归纳了已有研究中报道的PFASs检测分析手段、修复技术,或是针对特定区域、环境介质、单一类别PFASs进行了统计分析,而对于全球尺度上地表水中全类别PFASs的污染水平研究依然缺乏. 本文总结归纳了多种地表水体中PFASs污染现状与时空分布特征,概述了地表水体中PFASs的主要来源及迁移规律,并揭示了影响该过程的多个环境要素及作用机制,为后续研究PFASs在环境中的迁移转化过程提供理论支撑,并对未来新型PFASs研发方向与监测手段进行了展望.1地表水中PFASs的污染现状(Pollution status of PFASs in surface water)水环境中的全氟及多氟烷基化合物来源众多(图1),直接来源包括工厂生产排放和人类日常活动.在氟化工企业生产过程中,大量含PFASs的废水直接排入地表水[33];另外,消防灭火剂、防水涂层等含氟产品的日常使用中,也会将PFASs带入环境中[34]. 除了直接排放,环境中的PFASs前体物质也可以在生物或化学作用下转化为全氟烷基酸(perfluoroalkanoic acids,PFAAs)[35]. 环境中的PFASs在植物根系吸收[36]、干湿沉降作用[37]以及地表径流[38]等自然力作用下可在不同圈层之间发生迁移转化;水圈对于PFASs,既是最主要汇同时也是潜在的源[11, 39 − 42]. 因此,揭示PFASs在水环境中的赋存特征和迁移转化规律对理解这类物质的地球循环过程具有重要意义.图 1 水体中全氟化合物的来源Fig.1 Sources of PFASs in the liquid environment全氟烷基羧酸(perfluorocarboxylic acids ,PFCAs )和全氟烷基磺酸(perfluorosulfonic acids ,PFSAs )是两类典型的PFASs ,分别含有亲水性官能团羧基或磺酸基,其水溶性高于多氯联苯、多环芳烃等传统有机污染物[43],其中一些短链PFCAs 在水中溶解度可以达到g·L −1级.1.1 内陆河流湖泊中PFASs 的污染现状近年来,关于内陆河流中PFASs 的检测报道日益增多. Li 等在不同位点采集的太湖水样中均测到不同浓度的PFCAs 和PFSAs ,全氟丁酸(PFBA )及全氟辛酸(PFOA )浓度分别达到35.51—65.78 ng·L −1和27.63—31.82 ng·L −1[44];Liu 等监测发现,钱塘江上下游水中的PFASs 总浓度为3.58—786 ng·L −1,在氟工业集中区附近水体中检测到的PFASs 浓度最高[45];杜国勇等在长江流域重庆段中检出16种全氟烷基酸,包含多种链长的全氟羧酸、磺酸类物质,该流段沿岸分布着以化工行业为主的合江临港工业园、万州化工园区等多个工业园区,生产废水经由污水处理厂处理后排入河道,处理过程中大多数PFASs 会转化为PFOA ,导致该流域中所检出主要单体为PFOA [46]. 王鑫璇等调查了中国七大流域PFASs 的污染现状,结果显示,七大流域PFASs 污染程度(中位值)为:松辽(92 ng·L −1)>太湖(57 ng·L −1)>海河(18 ng·L −1)>淮河(17 ng·L −1)>长江(14 ng·L −1)>黄河(9.9 ng·L −1)>珠江(7.1 ng·L −1),其中,松辽流域年降水量居七者最少,且PFASs 浓度呈现明显季节性差异,枯水期PFASs 浓度最高;而太湖流域虽然面积较小,但受工业园区分布及流域内人口密集影响较大,PFASs 污染也较为严重[47]. 在欧美, Pétré等在美国北卡罗来纳州开普菲尔河水系中可检出最高浓度416.8 ng·L −1的全氟己酸(perfluorohexanoic acid ,PFHxA ),同时含有较高浓度的全氟戊酸(perfluoropentanoic acid ,PFPeA ) [48].近年来,传统长链全氟烷基化合物 PFOA 和PFOS 的禁止生产使用促进了一系列新兴PFASs 的研发和应用(表1). 新兴PFASs 代替物主要分为以下几类:(1)短链的全氟烷基磺酸或羧酸盐;(2)未被F 完全取代的多氟化合物;(3)在碳链中引入醚键的全氟和多氟烷醚类化合物(per-and polyfluoropolyether substances ,PFPEs ),多为分为全氟和多氟烷醚羧酸、磺酸及其盐类(PFPCAs 和PFPSAs ); (4)含环状结构的全氟磺酸盐等.Marchiandi 等在墨尔本工业园区临近溪水中,检测到部分新型全氟化合物,如全氟己基磷酸(PFHxPA )、N-亚甲基-全氟辛烷磺酸钾盐(MeFBSA )等,这些新兴PFASs 大约可占总PFASs 的20%[54].Sun 等对比了美国开普菲尔河流域2006年至2013年水样PFASs 的浓度特征,结果显示2006年主要的PFCAs 为C7至C9,而2013年主要PFCAs 为C5至C7[55]. 2015年,Strynar 等在美国北卡罗来纳州的地表水中首次检测到Gen-X [56]. 随后,在德国莱茵河支流斯赫尔河、荷兰多德雷赫特市氟化厂下游、中国渤海湾、印度洋、北极等地均检测到较高浓度的Gen-X ,表明此类化合物已造成全球性污染[52, 55 − 59].3 期黄柳青等:地表水中全氟及多氟烷基化合物(PFASs )的污染现状研究进展695现有文献中,Gen-X和同系物HFPO-TA被报道的最高污染浓度在中国山东小清河,分别为3825 ng·L−1[60]和68500 ng·L−1[61]. 有研究显示,在中国海河流域地表水中,检测到了26种PFASs,而且新兴PFASs,如F-53B,在一些沉积物样品中甚至占主导地位[62]. Lin等发现,F-53B在采集自浙江省奉化江河水样中的检出率高达100%[63]. 这些地区分布了较多电镀企业,含高浓度PFASs电镀废水的排放可能是造成该地区PFASs污染严重的主要原因.表 1 文献中的新兴多氟及全氟烷基化合物Table 1 Emerging polyfluorinated and perfluoroalkyl compounds reported in literatures名称Name简称Abbreviation分子式Molecular formula地点PlaceCAS参考文献Reference 短链全氟烷基磺酸及全氟烷基羧酸Short chain perfluorooctane sulfonates and perfluorooctanoic acids全氟戊酸Perfluoropentanoic acidPFBA C4F9COOH西班牙2706-90-3[49]全氟已酸Perfluorohexanoic acidPFHxA C5F11COOH中国307-24-4[50]全氟丁烷磺酸Perfluorobutanesulfonic acidPFBS C4F9SO3H中国375-73-5[5]多氟烷基化合物Polyfluoroalkyl compounds1H,1H,2H,2H-全氟辛磺酸1H,1H,2H,2H-perfluorooctane sulfonic acid6:2FTS C6F13CH2CH2SO3H中国27619-97-2[51]全氟和多氟烷醚类化合物Perfluoropolyethers4- 8-二氧-3H-全氟辛酸铵Ammonium 4,8-dioxa-3H-perfluorononanoateADONA CF3O(CF2)3OCHFCF2COO-NH4 +中国958445-44-8[52]全氟(2-甲基-3-氧杂己酸)Undecafluoro-2-methyl-3-oxahexanoic acid HFPO-DA(Gen-X)C3F7OCF(CF3) COOH(C3F7OCF( CF3 ) COO-NH4 +)中国13252-13-6[52]全氟-2,5-二甲基-3,6-二氧杂壬酸Perfluoro(2,5-dimethyl-3,6-dioxanonanoic)acid HFPO-TAC3F7OC6F7OCF(CF3 ) COOH中国13252-14-7[52]6:2 氯代多氟烷醚磺酸盐6:2 chlorinated polyfluoroalkyl ether sulfonate 6:2 Cl-PFAES(F-53B)Cl(CF2) nO(CF2)2SO3H中国756426-58-1[53]环状全氟烷基化合物Cyclic perfluorinated acid十氟-4-(五氟乙基)环氧己烷磺酸钾盐PerfluoroethylcyclohexanesulfonatePFECHS C2F5C6F10SO3-K+澳大利亚335-24-0[54] 1.2 海洋中PFASs的污染现状陆源环境介质(土壤、江河湖水底泥及生物体)中的PFASs可随着水循环过程汇入海洋水体,造成PFASs污染逐步由近海向远海迁移.2011年之前的监测数据显示,大西洋赤道附近的表层海水以传统的PFOA、PFOS为主,浓度仅为102—103 pg·L−1和101—102 pg·L−1,其他短链PFSAs、PFCAs浓度均小于101 pg·L−1[11]. 随着各种限制PFASs法规的推行,大西洋绝大部分海域中传统PFASs浓度均有所下降,PFOA浓度水平维持在101—102 pg·L−1[64]. 太平洋和印度洋远洋表层海水中的不同PFASs(主要包括C4—C10 PFCAs,C4—C8 PFSAs,N-甲基全氟辛基磺胺)污染水平更低(太平洋∑PFASs中位数645 pg·L−1、印度洋527 pg·L−1)[65].针对北冰洋和南极洲调查数据显示:检出的PFASs绝大多数为PFAAs,浓度一般为2×101—1×102 pg·L−1[66].可见,海洋水体中的PFASs检出总浓度的数量级一般为pg·L−1,明显低于内陆水体(ng·L−1级),其中主要污染物仍是以全氟烷基磺酸和羧酸为代表的全氟烷基酸PFAAs,表2总结了全球各大洋中的PFASs的污染特征.表 2 五大洋中典型PFASs的赋存水平Table 2 Spatial characteristics of PFASs around the area of the five oceans大洋Ocean 地区Area主要PFASsMain PFASs检出浓度/(pg·L−1)Concentration参考文献References大西洋Altantic Ocean Bay of Biscay of ArgentiaPFOAPFOSPFOA 77—980PFOS 40—250[67]the River WeserPFOAPFOS∑PFAAs 120—260[68]696环 境 化 学43 卷续表 2大洋Ocean 地区Area主要PFASsMain PFASs检出浓度/(pg·L−1)Concentration参考文献References太平洋Altantic Ocean the River QingshuiPFOAPFOSPFOA 3—420[69] Tokyo BayPFOAPFOSPFOA 48—192PFOS 8—59[70]印度洋Indian OceanBay of Bengal coastPFOAPFOS∑PFAAs 10.6—46.8[11] Between Asia and AntarcticaPFOAPFOSPFOA 1—441PFOS 5—23.9[71 − 72]北冰洋Arctic Ocean European High ArcticPFOAPFDA∑PFAAs 0.1—3.6[39] the Central ArcticPFOAPFOS∑PFAAs 11—174[13]南冰洋Antarctic Ocean Antarctic Peninsula coastPFOAPFOSPFOA 0—25PFOS 25—45[64] Coastal Livingston IslandPFHpAPFOA∑PFAAs 94—420[73]2地表水中PFASs污染空间分布特征及归趋成因分析(The temporal distribution in surface water bodies and the analysis of the causes)2.1 内陆江河湖泊中的PFASs污染地域分布特征及归趋成因分析内陆地表水中PFASs浓度的地域差异较大,以长江上、中、下游各水系中PFASs污染水平为例(表3),PFASs浓度大体呈现西低东高的趋势,与工业发达程度及人类生产活动密切相关.表 3 长江流域PFASs污染状况Table 3 Contamination status of PFASs in the Yangtze River Basin地区Area 检出PFASs总浓度/(ng·L−1)Concentration主要PFASsMain PFASs主要PFASs检出浓度/(ng·L−1)Concentration of main PFASs参考文献Reference上游岷江 1.54—30.2PFBA0.16—28.4[74]青藏高原峡谷区0.272—2.224PFBA0.272—1.796[75]宜昌段<20PFOA<10[76]中游武汉段 4.16—4.77PFBS 1.28—1.49[77]洞庭湖18.07—29.95PFBAPFOA4.63—11.593.22—8.53[78]洪湖25.45—63.39PFOAPFHxAPFBA6.25—12.392.88—30.674.92—10.95[78]荆州、岳阳、武汉、鄂州、黄石段 2.2—74.56PFOAPFBS9.9—161.1—40[76]下游太湖10.0—119.8PFOAPFHxA2.2—74<0.4—22[79]九江至上海段 3.62—31.91PFOA 6.8—8.2[76]黄浦江39.2—576.2PFOAPFOS1.0—403<286[80]长江上游工业分布较少,人口密度低,氟化产品生产量小,含氟废水排放量少,所以地表水中的PFASs浓度较中、下游浓度偏低. 宋等人在研究沱江流域典型和新兴PFASs时发现,沱江是长江上游主要的支流之一,上游PFASs污染低(12.5—48 ng·L−1),中游位置受氟工业园区影响PFASs污染严重,最高浓度点位于某氟科技有限公司附近,浓度为3.8 mg·L−1,区域内氟化工相关企业对地表水PFASs污染有重要贡献[81]. 重庆地区分布了多个电子、石化等相关涉及PFASs企业. 研究显示,在长江流域重庆地表水中PFASs检出浓度最高点为入境断面[46],地理位置与上游合江临港工业园重合.长三角地区工业发达,是化工、纺织、印染、造纸的重要产区,拥有常熟氟化工产业园、中化太仓化工工业园等多个氟化工产业园区. 针对氟化工产业园及周边水环境中的PFASs污染,Lu等调查发现常熟氟工业园区周边地表水样品∑PFASs的浓度范围为15.6—480.9 ng·L−1,平均值为(217.1±161) ng·L−1,而园区内地表水中的 ∑PFASs 浓度范围为 281—489 ng·L−1,平均为 (352.5 ± 78.6) ng·L−1,浓度由园区中心向四周呈梯度降低[82]. 而在园区附近的太湖水体中,由北至南的6个区域中,3 期黄柳青等:地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展697698环 境 化 学43 卷∑PFASs有明显的从北至南的空间下降趋势(梅梁湾728 ng·L−1、竺山湾621 ng·L−1、贡湖湾491 ng·L−1以及其余28个采样点介于219—411 ng·L−1)[83]. 梅梁湾位于太湖北部,毗邻常州和无锡两个工业发达城市,这两个地区氟化工产业发达,紧靠常熟氟化工业园,生产过程中常常会造成PFASs流出[84]. 同样,位于宜兴和无锡工业城附近的竺山湾和贡湖湾也显示出相当高的∑PFASs浓度.除长江流域外,因上游氟化企业污水排放,山东小清河中也检测出高浓度的PFOA. 在生产聚四氟乙烯(PTFE)的东岳集团以及济南3F公司附近均检测到较高浓度PFOA[85]. 在国外氟化工产业发达地区均有类似现象:美国斯宾塞海军飞行场及其周围工厂排放含有PFOS的废水,这导致了Escambia湾中PFOS重度污染[86];法国工业地区地表水中的PFHxA、PFHxS和PFOS平均含量明显较高(工业≈城市>农田)[87]. 上述研究均表明:陆源污染输入是造成江河湖泊中PFASs污染高负荷的主要原因.此外,水力运输过程[88 − 89]以及河湖之间水动力差引起相对强烈的沉积作用[90],可能会导致水体中污染水平呈现沿流向逐渐降低的地域差别. Lu等在骆马湖观测到采样点的PFASs浓度沿河流—河口—湖泊方向(300.09 ng·L−1—220.40 ng·L−1—147.80 ng·L−1)连续降低的分布模式[91].2.2 海洋中的 PFASs污染地域分布特征及归趋成因分析目前,本领域学者公认以下四个途径是海洋中PFASs的主要扩散方式:(1)挥发性PFASs(如FTOH等)经由大气中距离传输至高纬度地区,并在过程中转化为羧酸盐[92] ;(2)离子型PFASs随着洋流大范围、远距离输送至高纬度地区[93];(3)生物体内富集的PFASs通过食物链或者食物网迁移至高纬度地区[94];(4)海洋气溶胶裹夹着PFASs远距离迁移[94].近海陆源PFASs是海洋的直接污染来源,包括土壤、内陆河流湖泊、地下水、底泥沉积物等. 近海陆源的释放会直接增加沿海水体中PFASs的浓度,排放量越大或距陆源越近,其PFASs浓度一般越高. 在人口稠密和工业化高度集中的东南亚和北海等地区,沿岸水体中的PFAAs浓度范围在0.2—20 ng·L−1[95]. 西欧、北美在大西洋沿海地区工业化发达,工业废水直接向大西洋输入,致使北大西洋PFASs浓度高于南大西洋[96]. 相反的,两极地区人为活动较少,北冰洋海域表层海水中的PFASs以传统长链PFAAs为主,且浓度基本在2×101—1×102 pg·L−1以下,大西洋以南的南大洋海域也只检测到低浓度的PFOA和PFOS[94]. 其中,河流输入是污染物由陆地至沿海的主要迁移方式,汇入河流污染水平的高低也是造成不同沿海地区水体PFASs差异性的原因之一. 泰晤士河和塞纳河中∑PFASs分别为60 ng·L−1和27 ng·L−1,这两条河流都汇入英吉利海峡,而比斯开湾的汇入河流污染水平低(如卢瓦尔河∑PFAS浓度仅为8.1 ng·L−1),这就导致了英吉利海峡PFASs污染(650 pg·L−1)高于比斯开湾(590 pg·L−1)[97]. 一项调查发现,由中国河流入太平洋西北岸的传统PFASs的陆地年排放量约为17.3—203 t[53],这导致沿海地区的较严重的PFAS污染[98]. 因此,距离陆源的远近会造成近海与远洋海域中PFASs存在明显差距.洋流作用被认为是将离子态PFASs由近海运输至远洋地区及高纬度地区的重要途径[99],是改变海洋中PFASs分布的重要驱动力. 例如,北冰洋西半球海域中PFOA浓度有向北稀释特征,Busch等解释,这是由于北大西洋洋流将PFASs从欧洲向北运输,并在北冰洋中再分配的结果[100]. 此外,洋流会将陆源排放的PFASs混合,从而导致开阔海域中PFASs比例变化,如含有低浓度PFOA和高浓度PFOS的南大西洋环流与含高浓度PFOA、低浓度PFOS的加那利寒流在赤道附近交汇,促使大西洋赤道附近表层海水中 C PFOA/ C PFOS趋近1[67]. 因此,陆源汇入以及洋流作用的长距离运输,是造成全球海洋水体污染的直接原因.2.3 地表水中的垂直分布特征及归趋成因分析2.3.1 江河湖泊中的PFASs垂直分布特征及归趋成因分析研究显示,内陆江河湖泊受到水深的限制,其温度与盐度分层现象不明显,PFASs与水深没有明显的相关性[101]. PFASs在内陆水体的分布主要与其在水相-固体颗粒的吸附平衡有关. 近来,Chen等[102]将城市水体分为三层(表层—0.1 m)、中间层(1.5—2.5 m)和底层(3—5 m),分别检测了水相和吸附在悬浮颗粒表面的PFASs的浓度,发现水中的总/单个PFAS浓度没有显著差异,表层水体中PFASs (4.1 ng ·L−1)只略低于底层(5.3 ng·L−1),Chen等认为底层水含高浓度固体颗粒,更倾向于聚集形成更大的粒子,携带更大量的PFASs,导致底层水中PFASs的浓度高于表层水. Shao等进一步探究发现,疏水性更强的长链PFCAs 与PFSAs 这一现象更加明显[103]. 上述结果表明,江河湖泊中的PFAS 浓度在垂直方向上基本保持浓度稳定,但由于受到PFASs 在水相和固相中分配平衡的影响,底层水体中的PFASs 浓度略高于表层,特别是对于疏水性较强的长链PFASs.径流被认为是含离子态PFASs 在地表水和地下运输的主要机制[104 − 106],地表径流通常含有高浓度的悬浮颗粒,并且携带了较高浓度的PFASs [107],当进入溪流和河流,由于湍流的快速扰动,这些颗粒可以与重新悬浮的沉积物颗粒混合[108],将PFASs 重新释放入水体,造成水体或沉积物的二次污染. 这被认为是内陆湖泊中PFASs 竖直分布的主要成因,也将是本段内容的讨论重点.颗粒物/沉积物上富集的PFASs 与所在水体中的PFASs 类型基本一致,主要为PFCAs 与PFSAs ,Zhao 等研究了海河表面沉积物中6种全氟烷基物质(PFAS )的含量,结果表明,沉积物中PFASs 的总浓度在0.52—16.33 ng·g −1(dw )之间[109]. 但与水体中PFASs 的组成比例截然不同,颗粒物与沉积物上PFASs 的检出频率和浓度随着碳链的增长而提高[103]. Wang 等在沉积物中测得PFAS 的总浓度范围为0.24—1.9 ng·g −1(dw ),其中长链PFASs (C9—C14 PFCAs )在沉积物中的比例远高于在水中的比例 [110].同时,作为底栖生物的主要活跃区,沉积物中PFASs 的并不是单纯由水相转移而来,生物转化和富集也影响着沉积物中PFASs 的浓度水平[111]. 沉积物中PFASs 总浓度的季节敏感性低于水体样品,Chen 等分别采集了7月和12月的16个表层沉积物样品,在两个不同月份样品中的PFAS 水平在一年内相当稳定[112].K oc 现有研究普遍认为PFASs 主要通过分配作用在悬浮颗粒物/沉积物上富集,经过一定时间达到分配平衡,该过程可以用线性吸附等温式描述[113],吸附能力由式(2)得出:C sed C w K oc K d f oc 式中,是PFASs 在悬浮颗粒物/沉积物的浓度(pmol·kg −1); 是PFASs 在水相中的浓度(pmol·kg −1);沉积物-水中分配系数(L·kg −1);分配系数(L·kg −1); 表示沉积物中的有机碳含量.PFASs 在水-悬浮颗粒物/沉积物中分配的影响因素复杂,主要总结如下:(1)PFASs 结构特征K d K d PFASs 碳链长度、官能团类型和数量等对PFASs 界面分配行为都具有一定的影响. 碳链长度是影响PFAS 界面分配的重要影响因素. Higgins 等发现,PFCAs 及其盐类每增加1个—CF 2—基团,分配系数(lg )提高0.50—0.60个单位,而磺酸盐的lg K d 会增大0.73[113],碳氟链越长在水相中的分配就越少.Lee 等报道了韩国牙山湖中13种全氟化合物在水、底泥和鱼类之间的分配行为,这些PFASs 的分配系数lg 在0.39—1.99之间,与全氟烷基链长度呈正相关性,也与生物累积系数变化趋势一致[114]. 所以,一般来说,悬浮颗粒物/沉积物中常见的PFASs 均为长链,短链的PFASs 分配系数较低,在沉积物中分配较少.此外,PFASs 是一种离子型表面活性剂,结构中含有如羧基、磺酸基等较强极性的亲水基,官能团的种类与数量往往会影响这类有机污染物的溶解度与表面范德华力. 全氟磺酰胺、全氟磺酸盐在沉积物中的吸附能力仍然呈现链长依赖性,但相较相同碳链的全氟羧酸,二者在水中的溶解度更低、K d 值更高,也更易吸附到悬浮颗粒物/沉积物上[115]. Labadie 和Chevreuil 拟合ƒoc 与悬浮颗粒物/沉积物中PFCAs 的关系,长链与短链所得模型拟合斜率有所不同,表明长链与短链PFCAs 的吸附并不是同一种作用力所致,短链PFCAs 在沉积物吸附方面不遵循典型的链长依赖性[116],推测悬浮颗粒物/沉积物中的短链羧酸盐的吸附主要是羧酸基团和带电粒子在沉积物颗粒上的静电相互作用,而不是疏水作用[117].(2)悬浮颗粒物/沉积物组成成分悬浮颗粒物/沉积物各组成成分同样也会影响PFASs 在水-悬浮颗粒物/沉积物上的分配. 不同组分有机物中,芳香性以及分子极性的巨大差异,导致了悬浮颗粒物/沉积物有机质的高度非均质性,对疏水性有机物表现出不同的吸附特征[118]. 其中,Huang 认为可将有机物的吸附分成无机矿物表面、无定形的土壤有机质(软碳)和凝聚态的土壤有机质(硬碳)吸附等3类,前两者以吸附速度较快的分配为主,后者为速度相对较慢的非线性吸附[119].悬浮颗粒物/沉积物表面吸附的有机物疏水部分,会促进PFASs 的吸附. Zhang 等通过研究胡敏酸3 期黄柳青等:地表水中全氟及多氟烷基化合物(PFASs )的污染现状研究进展699700环 境 化 学43 卷等有机质组分对PFOS在悬浮颗粒物/沉积物中吸附量的影响,揭示了PFASs在悬浮颗粒物/沉积物上的主要机制是疏水作用与界面转移过程[120]. Pan等也观察到全氟辛烷磺酸的K d与ƒoc呈正相关(R2=0.961)[121].无机矿物是影响悬浮颗粒物/沉积物中PFASs吸附的另一关键组分. 由于较低的p K a值,PFASs在自然水体的pH值(中性附近)下以阴离子的形式存在,容易吸附在带正电的矿物表面[122]. 其次,离子交换、表面络合和氢键作用可能对PFASs吸附到矿物表面产生重要影响. Gao和Chorover利用红外光谱研究了纳米颗粒赤铁矿(α-Fe)对PFOS的吸附作用机制,发现全氟辛烷磺酸可以通过氢键与赤铁矿相互作用[123 − 124]. 矿物吸附实验的证明:PFOS的单位面积吸附量按照高铁砂 > 高岭石 > 针铁矿的顺序降低[125]. 可见,水体中矿物质的表面电荷或官能团将提供表面吸附位点,而粘土矿物内部孔隙又能额外提供一部分吸附量[126],进而影响PFASs在水-悬浮颗粒物/沉积物分布.(3)水体理化性质pH值 pH可以改变吸附剂的表面电荷,从而影响PFASs的吸附分配. 当pH值低于7.5时,随着pH值升高,分配系数往往降低. 研究表明,水体中的盐浓度会影响PFOS在沉积物中的分配. 自然水体中,PFOA一般以阴离子形态出现. You 等发现,当溶液 pH=8 时,沉积物中 PFOS 的吸附量为120 μg·g−1,约为 pH=7 时的4倍[127]. 在自然水体pH下,PFASs的存在形式稳定,但随着水体酸碱度的变化,沉积物的表面电性改变,从而影响沉积物与 PFASs(阴离子形态)之间的静电作用,对显著影响PFASs在沉积物上的富集吸附.盐度 众多研究表明,盐度的增加会产生“盐析”效应,即通过水体中存在的二价阳离子(Mg2+、Ca2+)架桥,增强阴离子PFAS与正电荷表面(铁氧化物、天然有机物等)之间的吸引作用[128]. 但Higgins等提出,二价阳离子的浓度同时还有可能使得pH值变化,导致某些官能团改变质子化状态,这种趋势随着pH的上升而增强[113]. 而在最近的一项研究中,吸附剂的静电库仑电位随pH和阳离子浓度变化. 由于压缩双电层效应,随着离子强度的增加,PFOS和PFOA在氧化铝表面的吸附减少[129]. 因此,对于大范围复杂的环境,PFASs在环境介质中的分配行为同时受到pH值和盐度浓度的影响[130],因此要兼顾二者考虑其影响结果.温度 吸附过程是自发吸热的,并受熵驱动,所以在一定温度范围内,温度的升高也会促进PFOS在颗粒物腐殖酸上的分配[131].2.3.2 海洋中的PFASs垂直分布特征及成因分析PFASs在海水中的垂直分布呈现表层特点. Zhou等研究发现,随着采样深度增加,中国渤海、黄海近海海域水样中PFASs总浓度呈现下降趋势,表层5—10 m海水与60—70 m处相差近40%[132]. 对比近海地区,开阔海域PFASs的垂直分层同时存在“表层富集”和“深度贫化”[58]. Yamashita等收集了日本海多个深度的水柱样本,发现从表层到底层水的PFOS浓度逐渐下降,表层水中PFOS的浓度为约15 pg·L−1,深度1000 m左右降至 约2 pg·L−1,而在1500 m以下的深度低于检出限[99].最近的研究发现,PFASs可通过海洋表面有机颗粒的垂直沉淀作用[133]或涡流扩散[134]的方式,沿纵向由表层向深海传输,从而形成污染水平沿着深度逐渐下降的趋势.海洋表层有机颗粒的垂直沉降过程对PFASs的向下运输作用与PFASs的结构有关[135],长链PFCAs与PFSAs(PFOS 18%)通过表层有机颗粒的垂直沉降过程向下运输量较少;短链PFASs(C5—C7 PFCAs 7%)在溶液中以稳定的离子形式存在,难以吸附在颗粒上沉降,表层有机质的垂直运输贡献更小;但这一过程却是一些前体(如EtFOSAA 86%)物质向深海运输的主要方式[136] .与表层有机颗粒的垂直沉降过程相比,“涡流扩散”是大多数PFASs向海洋深处扩散的关键途径.过去40年间,从海洋表层向深海累计扩散的600余吨PFASs,集中在100 m以上水层中,而在100 m 以下PFASs浓度快速下降,这一现象与垂直涡流扩散率的变化规律相符[137]:部分学者认为,深海水温分层会影响污染物的垂直涡流扩散:强太阳辐射加热了表层水体,降低了水体密度,阻碍了表层水与深层水之间的混合作用,从而导致污染物在表层水体富集[138]. 在北大西洋,与中间层(365—510 m)和永久温跃层周围的水层(985—1335 m)相比,正是较温暖的表层水中PFOS浓度更高[14]. 除了温度,盐度也是一大重要影响因素. Yeung等在对北冰洋的研究发现,冻结海水之下的盐跃层盐度更高、更温暖,。

海洋科学发展史.

海洋科学发展史.
海洋科学发展史
资环1111
18世纪以前:海洋知识的积累 与早期观测研究 19~20世纪中叶:海洋科学的奠 基与形成 20世纪中叶至今:现代海洋科 学时期
2
海洋知识的积累与早期观测研究
公元前,古希腊时期:泰勒斯认为大地浮在海上;亚 里士多德作《动物志》中描述和记载了爱琴海的 170余 种动物。 15~16世纪,地理大发现时代:意大利人哥伦布四度 横渡大西洋到达南美洲;葡萄牙人伽马从大西洋绕过好 望角经印度洋到达印度;葡萄牙人麦哲伦完成人类首次 环球旅行。 1768~1779,英国库克船长3次海洋探险:首次完成环 南极航行,并最早对其进行科学考察,取得第一批关于 大洋深度,表层水温,海流及珊瑚礁等资料。
• 英国“挑战者”号1872~1876年环球航行考察,在三大洋和南极 海域的几百个站位进行多学科综合观测,后继研究又获得大量成果 ,使海洋学从地理学中分离出来,此次考察被认为是现代海洋学研 究的开始,并引起海洋考察热潮。 • 德国“流星”号1925~1927年南大西洋调查, 因计划周密、仪器 新颖、成果丰硕而倍受重视,且测量仪器不断改进。 • 大规模海洋调查,不仅积累了大量资料,而且也观测到许多新的 海洋现象,还为观测方法本身的革新准备了条件。 • 19世纪40~50年代,英国人福布斯《欧洲海的自然史》、美国人 莫里《海洋自然地理学》、达尔文《物种起源》分别被誉为海洋生 态学、近代海洋学和进化论的经典著作。
返回
9
现代海洋科学时期
全面认识和近期高速发展
• 专门研究机构建立、专职研究人员增多;国际合 作加强。 • 各国政府对海洋科学研究的投资大幅度增加,研 究船的数量成倍增长。 • 研究仪器设备更先进,回声测深仪,电磁海流计, 地层剖面仪,计算机,遥感技术,深潜器。 • 研究成果超出历史的总和,大量科研论著面世, 很多领域都获得突出的进展与成果。

英汉海洋科学名词

英汉海洋科学名词

abiological removal 非生物转移abiotic zone 无生命带abrasion platform 海蚀台地absolute salinity 绝对盐度abundance 丰度abyssal circulation 深渊环流abyssal clay 深海粘土abyssal fauna 深渊动物abyssal hill 深海丘陵abyssal plain 深海平原abyssal zone 深渊带abyssopelagic organism 大洋深渊水层生物abyssopelagic plankton 深渊浮游生物abyssopelagic zone 深渊层accessory mark 副轮accretionary prism 增生楔accumulation 堆积作用acoustic remote sensing 声遥感acoustical oceanography 声学海洋学active continental margin 主动大陆边缘aerial remote sensing observation 航空遥感观测African Plate 非洲板块afternoon effect 午后效应Agassiz trawl 阿氏拖网age composition 年龄组成aggregated distribution 集聚分布ahermatypic coral 非造礁珊瑚air gun 气枪air lifting 气举air-born substances 气源物质airborne infrared radiometer 机载红外辐射计air-sea boundary process 海-气边界过程air-sea interaction 海-气相互作用air-sea interface 海-气界面air-tight 气密albedo of sea 海洋反照率"algal chemistry, phycochemistry " 藻类化学algal reef 藻礁alkalinity 碱度allochthonous population 外来种群allopatry 异域分布"alternating current, rectilinear current " 往复流ambient sea noise 海洋环境噪声amphi-boreal distribution 北方两洋分布amphidromic point 无潮点"amphidromic system, amphidrome " 旋转潮波系统amphi-Pacific distribution 太平洋两岸分布anadromic fish 溯河鱼anaerobic zone 厌氧带anaerobiosis 厌氧生活analytical chemistry of sea water 海水分析化学"anchor ice, ground ice " 锚冰anchorage area 锚泊地anchored structure 锚泊结构anomalous sea level 异常水位anoxic basin 缺氧海盆anoxic event 缺氧事件anoxic water 缺氧水"Antarctic Bottom Water, AABW " 南极底层水Antarctic Circumpolar Current 南极绕极流Antarctic Circumpolar Water Mass 南极绕极水团Antarctic Plate 南极洲板块anthropogenic hydrocarbon 人源烃anthropogenic input 人源输入antifouling 防污着aphotic zone 无光带"apparent oxygen utilization, AOU " 表观耗氧量aquaculture 水产养殖aquaculture 水产栽培aquafarm 水产养殖场aquanaut work 潜水作业aquaranch 水中牧场aquatic community 水生群落aquatic ecosystem 水生生态系archipelago 群岛Arctic Ocean 北冰洋"Arctic Water, North Polar Water " 北极水arc-trench-basin system 沟弧盆系armor block 护面块体armored diving 铠装潜水artificial island 人工岛artificial sea water 人工海水aseismic ridge 无震海岭assemblage 组合assimilation efficiency 同化效率assimilation number 同化数association 群聚astronomical tide 天文潮"Atlantic Equatorial Undercurrent, Lomonosov Current " 大西洋赤道潜流Atlantic Ocean 大西洋Atlantic-type coastline 大西洋型岸线Atlantic-type continental margin 大西洋型大陆边缘atmospheric input 大气输入atmospheric sea salt 大气海盐atmospheric transport 大气输送atoll 环礁auricularia larva 耳状幼体Australia-Antarctic Rise 澳大利亚-南极海隆autecology 个体生态学authigenic sediment 自生沉积autoinhibitory substance 自体抑制物质autotroph 自养生物auxotroph 营养缺陷生物average heavy swell 中狂涌average height of the heighest one-tenth wave 1/10 [大波平均]波高average height of the heighest one-third wave 1/3 [大波平均]波高average moderate swell 中中涌axially symmetric marine gravimeter 轴对称式海洋重力仪azimuth correction 方位改正back-arc 弧后back-arc basin 弧后盆地back-arc spreading 弧后扩张backshore 后滨bacterial film 细菌膜bacterial slime 细菌粘膜bacterioneuston 漂游细菌barbor boat 港作船baroclinic ocean 斜压海洋barophilic bacteria 喜压细菌barotropic ocean 正压海洋barrier 沙坝barrier island 沙坝岛barrier reef 堡礁baseline study 基线研究batch culture 一次性培养bathyal fauna 深海动物bathyal zone 深海带bathymetry 水深测量bathypelagic organism 大洋深层生物bathypelagic plankton 深层浮游生物bathypelagic zone 深层beach 海滩beach berm 滩肩beach cusp 滩角beach cycle 海滩旋回beach face 滩面beach nourishment 人工育滩beach profile 海滩剖面beach ridge 滩脊beach rock 海滩岩beam trawl 桁拖网bench 岩滩Benioff zone 贝尼奥夫带benthic community 底栖生物群落benthic division 海底区benthic-pelagic coupling 海底-水层耦合benthology 底栖生物学benthos 底栖生物berth 泊位bioadhesion 生物粘着bioassay 生物测试"biochemical oxygen demand, BOD " 生化需氧量biodegradation 生物降解biodeterioration 生物污染bioerosion 生物侵蚀biofacy 生物相biofouling 生物污着biogenic sediment 生物沉积biogenous hydrocarbon 生源烃biogenous silica 生源硅石biological detritus 生物碎屑biological input 生物输入biological noise 生物噪声biological oceanography 生物海洋学biological purification 生物净化biological removal 生物转移biological scavenging 生物清除bioluminescence 生物发光biomass 生物量bionics 仿生学biosphere 生物圈biota 生物区系biotope 生活小区bioturbation 生物扰动biozone 生物带bipinnaria larva 羽腕幼体bipolarity 两极同源bird-foot delta 鸟足[形]三角洲Bohai Coastal Current 渤海沿岸流Bohai Sea 渤海boomerang sediment corer 自返式沉积物取芯器borate alkalinity 硼酸[盐]碱度"borer, boring organism " 钻孔生物bottom current 底层流bottom friction layer 底摩擦层bottom grab 表层取样器bottom reflection 海底声反射bottom reverberation 海底混响bottom scattering 海底散射bottom water 底层水bottom wave 底波bottom-supported platform 坐底式平台boundary flux 界面通量box corer 箱式取样器box model 箱式模型brackish water species 半咸水种brash ice 碎冰"breaker, surf " 碎波breakwater 防波堤brine 卤水"brown clay, red clay " 褐粘土bubble effect 气泡效应buoyant mat 浮力沉垫burrowing organism 穴居生物caballing [混合]增密caisson 沉箱calcareous ooze 钙质软泥"calcite compensation depth, CCD " 方解石补偿深度calcite dissolution index 方解石溶解指数calm sea 无浪capillary wave 毛细波carbon assimilation 碳同化作用carbon cycle 碳循环carbon dioxide system in sea water 海水二氧化碳系统carbonate alkalinity 碳酸[盐]碱度"carbonate critical depth, CCRD " 碳酸盐极限深度carbonate cycle 碳酸盐旋回carbonate system in sea water 海水碳酸盐系统carcinology 甲壳动物学carnivore 食肉动物catastrophe 灾变catch 渔获量catchability coefficient 可捕系数cathodic protection 阴极防护cellar connection 井口装置Central Indian Ridge 印度洋中脊central rift 中央裂谷central water 中央水chain of volcanoes 火山链"Changjiang Diluted Water, Changjiang River Plume " 长江冲淡水characteristic species 特征种chemical diagenesis 化学成岩作用chemical form 化学形态chemical oceanography 化学海洋学"chemical oxygen demand, COD " 化学需氧量chemical scavenging 化学清除chemical speciation 化学形态分析chemical speciation models 化学形态模型chemical species 化学形式chemical weathering 化学风化作用chemo-autotroph 化能自养生物chemostatic culture 恒化培养"chemotaxis, chemotaxy " 趋化性chemotrophy 化能营养"China Classification Society, ZC " 中国船级社chlorinity 氯度chlorinity ratio 氯度比值chlorosity 氯量chronostratigraphy 年代地层学ciguatoxic fish 西加毒鱼类circumpacific volcanic belt 环太平洋火山带clay 粘土"closed season, prohibited season " 禁渔期cnoidal wave 椭圆余弦波coast of emergence 上升海岸coast of submergence 下沉海岸"coastal current, littoral current " 沿岸流coastal dune 海岸沙丘coastal engineering 海岸工程coastal terrace 海岸阶地coastal water 沿岸水coastal zone 海岸带coastline 海岸线coastline effect 海岸效应coccolith ooze 颗石软泥cofferdam 围堰cold current 寒流cold eddy 冷涡cold water species 冷水种cold water sphere 冷水圈cold water tongue 冷水舌collision zone 碰撞带commensalism 共栖commensalism 偏利共生common species 习见种community 群落community ecology 群落生态学compensation current 补偿流compensation depth 补偿深度compliant structure 顺应式结构composite breakwater 混合式防波堤compound shoreline 复合滨线compound tide 复合潮conchology 贝类学"conductivity-temperature-depth system, CTD " 温盐深仪confused sea 暴涛confused swell 暴涌conservative constituents of sea water 海水保守成分constancy of composition of sea water 海水成分恒定性constituent day 分潮日constituent hour 分潮时constructive boundary 建设性板块边界consumer 消费者continental accretion 大陆增生continental drift 大陆漂移continental margin 大陆边缘continental rise 大陆隆continental shelf 大陆架continental shelf break 大陆架坡折continental slope 大陆坡continental terrace 大陆阶地"continuous cultivation, continuous culture " 连续培养continuous model 连续模型contour current 等深流contourite 等深流沉积[岩]contrast in water 水中对比度contrast transmission in water 水中对比度传输controlled ecosystem experiment 控制生态系实验convective mixing 对流混合conventional diving 常规潜水convergent boundary 会聚边界conversion efficiency 转换效率"copepodite, copepodid larva " 桡足幼体coprophagy 食粪动物coral reef 珊瑚礁coral reef coast 珊湖礁海岸corrosion in sea water 海水腐蚀cosmogenous sediment 宇宙沉积cosmopolitan 世界[广布]种cotidal chart 同潮图countercurrent 逆流crane barge 起重船critical depth 临界深度crop 收获cross-coupling effect 交叉耦合效应current meter 海流计current pattern 流型cuspate bar 尖角坝cuspate delta 尖[形]三角洲cyphonautes larva 苔藓虫幼体cypris larva 腺介幼体Dalmatian coastline 达尔马提亚岸线datum of chart 海图基准面day-night observation 连续观测deck unit 甲板装置deep current 深层流"deep scattering layer, DSL " 深海散射层deep sea fan 深海扇deep sea propagation 深海传播deep sea sand 深海砂deep sea sediment 深海沉积deep sea sound channel 深海声道deep water 深层水deep water wave 深水波delta 三角洲demersal fish 底层鱼类density current 密度流density current 异重流density-dependent mortality 密度制约死亡率deposit feeder 食底泥动物descriptive oceanography 描述海洋学destructive boundary 破坏性板块边界detached breakwater 岛式防波堤detached wharf 岛式码头detritus feeder 食碎屑动物diagonal wave 斜向浪diatom ooze 硅藻软泥"dicycle, dicycly " 双周期"diel vertical migration, diurnal vertical migration " 昼夜垂直移动dilution cycle 稀释旋回directional wave spectrum 方向波谱dissolution cycle 溶解旋回"dissolved inorganic carbon, DIC " 溶解无机碳"dissolved organic carbon, DOC " 溶解有机碳"dissolved organic matter, DOM " 溶解有机物"dissolved organic nitrogen, DON " 溶解有机氮"dissolved organic phosphorus, DOP " 溶解有机磷dissolved oxygen 溶解氧disturbing acceleration 干扰加速度diurnal inequality 日不等[现象]diurnal tide 全日潮diver 潜水员divergent boundary 离散边界diversity 多样性diving suit 潜水服dock 船坞dominant species 优势种"Donghai Coastal Current, East China Sea Coastal Current " 东海沿岸流"Donghai Sea, East China Sea " 东海Doppler current meter 多普勒海流计double diffusion 双扩散double ebb 双低潮double flood 双高潮downwelling 下降流dredge 底栖生物刮底网dredger 挖泥船dredging engineering 疏浚工程drift current 漂流drift ice 流冰drifting buoy 漂流浮标drill conductor 隔水套管drilling vessel 钻探船dry diving 干式潜水duration-limited spectrum 有限风时谱dynamic method 动力方法dynamic positioning 动力定位dynamical oceanography 动力海洋学East African Rift Zone 东非裂谷带East Pacific Rise 东太平洋海隆"ebb, ebb tide " 落潮echinopluteus larva 海胆幼体echo ranging 回声测距echosounder 测深仪ecological barrier 生态障碍ecosystem 生态系edge wave 边缘波efflux 输出通量Ekman depth 埃克曼深度Ekman layer 埃克曼层Ekman pumping 埃克曼抽吸Ekman spiral 埃克曼螺旋Ekman transport 埃克曼输送El Nino ( 西) 厄尔尼诺electrodialysis 电渗析electromagnetic vibration exciter 电磁振荡震源elliptical trochoidal wave 椭圆余摆线波embayed coast 港湾海岸endemic population 地方种群endemic species 地方种endolithion 石内生物endopelos 泥内生物endopsammon 沙内生物energy flow 能流"engineering oceanology, engineering oceanography " 海洋工程水文enhancement 增殖entrainment 卷吸environmental load 环境荷载Eotvos effect 厄特沃什效应ephyra larva 碟状幼体epibenthic sledge 底表撬网epifauna 底表动物epilithion 石面生物epipelagic organism 大洋上层生物epipelagic zone 上层epipelos 泥面生物epiphyte 附生植物epiplankton 上层浮游生物epipsammon 沙面生物Equatorial Countercurrent 赤道逆流Equatorial Current 赤道流"Equatorial Undercurrent, EUC " 赤道潜流equilibrium profile 平衡剖面equilibrium tide 平衡潮equinoctial tide 分点潮equivalent duration 等效风时equivalent fetch 等效风区estuarine chemistry 河口化学estuary 河口湾estuary improvement 河口治理euphotic layer 真光层Eurasian Plate 欧亚板块eurybaric organism 广压性生物eurybathic organism 广深性生物euryhaline species 广盐种euryphagous animal 广食性动物"eurythermal species, eurythermic species " 广温种eustasy 全球性海面升降eutrophic water 富营养水eutrophication 富营养化[作用]euxinic environment 静海环境event deposit 事件沉积exclusive economic zone 专属经济区exogenous organic matter 外源有机物"expendable bathythermograph, XBT " 投弃式温深计exploitative engineering of offshore petroleum/gas reservoir 海上油气开发工程exploratory engineering of offshore petroleum/gas reservoir 海上油气勘探explosive energy source 炸药震源exposed waters 开阔海域failure probability 破坏概率fan delta 扇[形]三角洲fast ice 固定冰fatigue break 疲劳断裂fault coast 断层海岸feather angle 羽角feathering 羽状移动fecal pellet 粪粒fecundity 生殖力feeding migration 索饵洄游fertility 肥力fetch 风区fetch-limited spectrum 有限风区谱fictitious body 假想天体"filter feeder, suspension feeder " 滤食性动物finestructure 细结构fiord 峡湾fish finder 鱼探仪fish resources 鱼类资源fisheries oceanography 渔业海洋学fishery management 渔业管理fishery resources 渔业资源fishing effort 捕捞能力fishing intensity 捕捞强度fishing mortality coefficient 渔捞死亡系数fishing season 渔期fixed oceanographic station 定点观测站fixed structure 固定式结构flare boom 火炬臂"flat coast, low coast " 低平海岸floating breakwater 浮式防波堤floating hose 浮式软管floating structure 浮式结构floating-type wharf 浮式码头floe ice 浮冰"flood, flood tide " 涨潮food chain 食物链food organism 饵料生物food pyramid 食物金字塔food web 食物网foraminiferal ooze 有孔虫软泥fore-arc 弧前fore-arc basin 弧前盆地forerunner 先行涌foreshore 前滨fouling organism 污着生物foundation bed 基床foundation capability 地基承载能力fracture zone 破裂带freshwater plume 淡水舌frictional depth 摩擦深度"fringing reef, shore reef " 岸礁fully developed sea 充分成长风浪gas exploder 气爆震源gateway 峡口general circulation 总环流geographical barrier 地理障碍geological oceanography 地质海洋学"geomagnetic electrokinetograph, GEK " 电磁海流计geostrophic current 地转流geotechnical test 土工试验glacial effect 冰川效应globigerina ooze 抱球虫软泥Gondwana 冈瓦纳古陆gravitational tide 引力潮gravity corer 重力取芯器gravity platform 重力式平台gravity wave 重力波gravity-type structure 重力式结构grazing angle 掠射角groin 丁坝gross primary production 毛初级生产量growth efficiency 生长效率growth overfishing 生长型捕捞过度Gulf Stream 湾流"gulf, bay " 海湾guyed-tower platform 拉索塔平台guyot 平顶海山gyre 流涡habitat 生境"hadal fauna, ultra-abyssal fauna " 超深渊动物"hadal zone, ultra-abyssal zone " 超深渊带half-tide level 半潮面halmyrolysis 海解作用halobiont 盐生生物halocline 盐跃层halophile organism 适盐生物harbor accommodation 港口设施harbor entrance 口门harbor hinterland 港口腹地harbor land area 港口陆域harbor siltation 港口淤积harbour basin 港池harbour site 港址Hardy continuous plankton recorder 哈迪浮游生物记录器harmonic analysis of tide 潮汐调和分析harmonic constant of tide 潮汐调和常数hatchability 孵化率"headland, cape " 岬角heave 垂荡"hekistoplankton, ultraplankton " 超微型浮游生物helium-nitrogen-oxygen saturation diving 氦-氮-氧饱和潜水helium-oxygen diving 氦-氧潜水hemipelagic deposit 半远洋沉积"herbivore, grazer " 食植动物hermatypic coral 造礁珊瑚heterogeneity 异质性heterotroph 异养生物high energy marine environment 海洋高能环境high sea 狂浪"high water, HW " 高潮"highest astronomical tide, HAT " 最高天文潮位holophytic nutrition 全植型营养holoplankton 终生浮游生物homogeneity 同质性homogeneous layer 均匀层horizontal distribution 平面分布hot spot 热点hot spring 海底热泉"Huanghai Coastal Current, Yellow Sea Coastal Current " 黄海沿岸流"Huanghai Cold Water Mass, Yellow Sea Cold Water Mass " 黄海冷水团"Huanghai Sea, Yellow Sea " 黄海"Huanghai Warm Current, Yellow Sea Warm Current " 黄海暖流humification 腐殖化[作用]hummocked ice 堆积冰hydraulic model test 水力模型试验hydraulic piston corer 液压活塞取芯器hydrobiology 水生生物学hydrobiont 水生生物hydrodynamic noise 流体动力噪声hydrothermal circulation 热液循环hydrothermal process 热液过程ice cover 冰盖ice edge 冰缘线ice field 冰原ice period 冰期ice rind 冰壳ice shelf 冰架ice thickness 冰厚iceberg 冰山ichthyology 鱼类学implosive source 聚爆式震源in situ density 现场密度in situ measurement 现场测定in situ salinometer 现场盐度计in situ specific volume 现场比容in situ temperature 现场温度incident wave 入射波"incubation, hatching " 孵化Indian Ocean 印度洋Indian Plate 印度洋板块indicator species 指示种infauna 底内动物influx 输入通量inshore 内滨instanteneous mortality rate 瞬间死亡率interface exchange process 界面交换过程intermediate water 中层水internal tide 内潮internal wave 内波interstitial fauna 间隙动物"interstitial water, pore water " 间隙水intertidal zone 潮间带"Intertropical Convergence Zone, Equatorial " 赤道辐合带intraplate volcanism 板内火山活动inversion layer 逆置层in-vivo fluorescence technique 活体荧光技术ion-exchange membrane 离子交换膜irregular wave 不规则波island 岛island arc 岛弧island shelf 岛架island slope 岛坡isohaline 等盐线isotherm 等温线jacket pile-driven platform 导管架桩基平台jack-up platform 自升式平台jetty 突堤jetty 导堤juvenile 幼年个体Kelvin wave 开尔文波key species 关键种knuckle joint 万向接头Knudsen's burette 克努森滴定管Knudsen's pipette 克努森移液管Knudsen's tables 克努森表Kuroshio 黑潮lag effect 滞后效应lagoon 湖lamellibranchia larva 瓣鳃类幼体land and sea breezes 海陆风land fabrication 陆上预制land-origin ice 陆源冰larva 幼体lateral reflection 侧反射launching 下水Laurasia 劳亚古陆law of the sea 海洋法lead lane 冰间水道level bottom community 平底生物群落level ice 平整冰life support system 生命支持系统light acclimation 光驯化light adaptation 光适性light and dark bottle technique 黑白瓶法light boat 灯船light house 灯塔light saturation 光饱和Lloyd's Register of Shipping 劳埃德船级社long heavy swell 长狂涌long low swell 长轻涌long moderate swell 长中涌long-crested wave 长峰波Longhurst-Hardy plankton recorder 朗-哈浮游生物记录器longshore current 顺岸流"longshore drift, littoral drift " 沿岸泥沙流"low water, LW " 低潮"lowest astronomical tide, LAT " 最低天文潮位luminous organism 发光生物lunar tide 太阴潮lunar tide interval 太阴潮间隙lysis 溶菌lysocline 溶跃层macrobenthos 大型底栖生物macrofauna 大型动物macroplankton 大型浮游生物magnetic lineation 磁条带magnetic quiet zone 磁场平静带main thermocline 主[温]跃层major constituents of sea water 海水主要成分malacology 软体动物学"manganese nodule, ferromanganese nodule " 锰结核mangrove coast 红树林海岸mangrove swamp 红树林沼泽manifold system 管汇系统mantle bulge 地幔隆起mantle convection 地幔对流mantle plume 地幔柱marginal basin 边缘盆地marginal sea 边缘海marginal-type wharf 顺岸码头mariculture 海产养殖mariculture 海产栽培marine accident 海损事故marine acoustics 海洋声学marine aerosol 海洋气溶胶marine bio-acoustics 海洋生物声学marine biochemical resource 海洋生化资源marine biochemistry 海洋生物化学marine biogeochemistry 海洋生物地球化学marine biological noise 海洋生物噪声marine biology 海洋生物学marine chemical resource 海洋化学资源marine chemistry 海洋化学"marine climate, ocean climate " 海洋气候marine climatology 海洋气候学marine contamination 海洋玷污marine corrosion 海洋腐蚀marine detritus 海洋碎屑marine ecology 海洋生态学marine ecosystem 海洋生态系marine element geochemistry 海洋元素地球化学marine engineering geology 海洋工程地质marine environment 海洋环境marine environmental assessment 海洋环境评价marine environmental capacity 海洋环境容量marine environmental chemistry 海洋环境化学"marine environmental forecasting, marine " 海洋环境预报marine environmental monitoring 海洋环境监测marine environmental protection 海洋环境保护marine environmental quality 海洋环境质量marine environmental sciences 海洋环境科学marine erosion 海蚀作用marine geochemistry 海洋地球化学marine geology 海洋地质学marine geomagnetic anomaly 海洋地磁异常marine geomagnetic survey 海洋地磁调查marine geomorphology 海洋地貌学marine geophysical survey 海洋地球物理调查marine geophysics 海洋地球物理学marine gravimeter 海洋重力仪marine gravity anomaly 海洋重力异常marine gravity survey 海洋重力调查marine heat flow survey 海洋地热流调查marine humus 海洋腐殖质"marine hydrography, marine hydrology " 海洋水文学marine installation 海上安装沉放marine isotope chemistry 海洋同位素化学marine meteorology 海洋气象学marine microorganism 海洋微生物marine natural hydrocarbon 海洋天然烃marine natural product 海洋天然产物marine natural product chemistry 海洋天然产物化学marine organic chemistry 海洋有机化学marine organic geochemistry 海洋有机地球化学marine pharmacognosy 海洋生药学marine photochemistry 海洋光化学marine physical chemistry 海洋物理化学marine physics 海洋物理学marine policy 海洋政策marine pollutants 海洋污染物marine pollution 海洋污染marine pressure hydrophone 海洋压力水听器marine reflection seismic survey 海洋反射地震调查marine refraction seismic survey 海洋折射地震调查marine resource chemistry 海洋资源化学marine resources 海洋资源marine salvage 海难救助"marine sciences, ocean sciences " 海洋科学marine sedimentology 海洋沉积学marine seismic profiler 海洋地震剖面仪marine seismic streamer 海洋地震漂浮电缆marine seismic survey 海洋地震调查marine seismograph 海洋地震仪marine stratigraphy 海洋地层学marine technology 海洋技术marine towage 海上拖运marine wide-angle reflection seismic survey 海洋广角反射地震调查maritime air mass 海洋气团marking 标记marsh organism 沼泽生物mass balance 质量平衡mass budget 质量收支mass transfer 质量转移"mean sea level, MSL " 平均海平面"mechanical bathythermograph, MBT " 机械式温深计medical security for diving 潜水医务保障megafauna 巨型动物megalopa larva 大眼幼体megaplankton 巨型浮游生物meiobenthos 小型底栖生物meiofauna 小型动物"meroplankton, transitory plankton " 阶段性浮游生物mesocosm 中型实验生态系mesopelagic fish 中层鱼类mesopelagic organism 大洋中层生物mesopelagic zone 中层mesoplankton 中型浮游生物mesopsammon 沙间生物mesoscale eddy 中尺度涡meteorological tide 气象潮microbenthos 微型底栖生物microbivore 食微生物者microcolony 小菌落microcontinent 微大陆microcosm 小型实验生态系microdistribution 微分布microecosystem 微生态系microfauna 微型动物microfouling 微生物污着microhabitat 微生境micronutrients 微量营养物microplankton 小型浮游生物microstructure 微结构Mid-Atlantic Ridge 大西洋中脊mid-ocean ridge 洋中脊mid-ocean ridge basalt 洋中脊玄武岩midwater trawl 中层拖网migratory fish 洄游鱼类minimum duration 最小风时minimum fetch 最小风区minor elements of sea water 海水微量元素mirage 蜃景mixed layer sound channel 混合层声道"mixed layer, mixing layer " 混合层mixed tide 混合潮mixotroph 混合营养生物mobile platform 移动式平台moderate sea 中浪module 模块"monocycle, monocycly " 单周期monophagy 单食性monsoon current 季风海流moored data buoy 锚定资料浮标mooring facilities 系泊设施mooring force 系泊力mortality 死亡率mound-type breakwater 斜坡式防波堤mud 泥muddy coast 泥质海岸multibeam echosounder 多波束测深仪multi-point mooring 多点系泊multistage flash distillation 多级闪急蒸馏multistage separator 多级分离器mysis larva 糠虾期幼体N/P ratio 氮磷比[值]"Nanhai Coastal Current, South China Sea Coastal Current " 南海沿岸流"Nanhai Sea, South China Sea " 南海"Nanhai Warm Current, South China Sea Warm Current " 南海暖流nannoplankton 微型浮游生物nauplius larva 无节幼体navigation channel 航道navigation equipment 导航设备neap tide 小潮nearshore zone 近滨带nectochaeta larva 疣足幼体nektobenthos 游泳底栖生物nekton 游泳生物nepheloid 雾状层neritic organism 近海生物neritic sediment 浅海沉积neritic zone 浅海带neritic zone 近海区net plankton 网采浮游生物net primary production 净初级生产量net primary productivity 净初级生产力neurotoxin 神经毒素niche 生态位Ninety East Ridge 东经90度洋中脊Niskin water sampler 尼斯金采水器nitrogen cycle 氮循环nitrogen-oxygen diving 氮-氧潜水no swell 无涌non-conservative constituents of sea water 海水非保守成分nonharmonic constant of tide 潮汐非调和常数non-saturation diving 非饱和潜水Norpac net 北太浮游生物网North American Plate 北美洲板块"North Atlantic Deep Water, NADW " 北大西洋深层水not fully developed sea 未充分成长风浪nursing ground 育幼场nutrient depletion 营养[盐]耗竭nutrients in sea water 海水营养盐obduction plate 仰冲板块obduction zone 仰冲带oblique haul 斜拖observation platform 观测平台ocean 洋ocean basin 洋盆ocean bottom seismograph 海底地震仪ocean circulation 大洋环流ocean color scanner 海色扫描仪ocean current 海流ocean current energy 海流能ocean energy conversion 海洋能转换ocean energy resources 海洋能源ocean engineering 海洋工程ocean exploitation 海洋开发ocean management 海洋管理ocean observation technology 海洋观测技术"ocean optics, marine optics " 海洋光学ocean power generation 海洋能发电ocean salinity energy 海洋盐差能ocean thermal energy 海洋温差能ocean wave 海浪ocean wave spectrum 海浪谱ocean-atmosphere heat exchange 海气热交换oceanic crust 洋壳oceanic front 海洋锋oceanic optical remote sensing 海洋光学遥感oceanic plate 大洋板块oceanic sound scatterer 海洋声散射体oceanic tholeiite 大洋拉斑玄武岩oceanic troposphere 大洋对流层oceanic turbulence 海洋湍流oceanic zone 大洋区oceanization 大洋化作用"oceanographic survey, oceanographic investigation " 海洋调查"oceanography, oceanology " 海洋学offshore 外滨offshore bar 滨外坝offshore engineering 近海工程offshore loading and unloading system 海上装卸油系统offshore oil-gas flowline 海上输油气管线offshore platform 近海平台offshore storage unit 海上贮油装置oil fence [围]油栅oil-gas-water treating system 油气水处理系统oligohaline species 寡盐种oligostenohaline species 低狭盐种oligotaxic ocean 少种型大洋oligotrophic water 贫营养水omnivore 杂食动物ooze 软泥ophiopluteus larva 长腕幼体opportunistic species 机会种optimum catch 最适渔获量organic coating layer 有机覆盖层overfishing 捕捞过度overlying water 上覆水overpopulation 种群过密overtide 倍潮overwintering 越冬oxide film 氧化膜oxygen maximum layer 氧最大层oxygen minimum layer 氧最小层oxygen partial pressure 氧分压Oyashio 亲潮oyster reef 牡蛎礁"Pacific Equatorial Undercurrent, Cromwell Current " 太平洋赤道潜流Pacific Ocean 太平洋Pacific Plate 太平洋板块Pacific-type coastline 太平洋型岸线Pacific-type continental margin 太平洋型大陆边缘pack ice 浮冰群paleoceanography 古海洋学paleocurrent 古海流paleodepth 古深度paleomagnetic stratigraphy 古地磁地层学paleoproductivity 古生产力paleosalinity 古盐度Pangaea 泛大陆Panthalassa 泛大洋parallel dike 顺坝parasitism 寄生"particulate inorganic carbon, PIC " 颗粒无机碳particulate matter in sea water 海水颗粒物"particulate organic carbon, POC " 颗粒有机碳"particulate organic matter, POM " 颗粒有机物"particulate organic nitrogen, PON " 颗粒有机氮"particulate organic phosphorus, POP " 颗粒有机磷passive continental margin 被动大陆边缘patch reef 点礁patchiness 斑块分布pediveliger larva 具足面盘幼体pelagic deposit 远洋沉积pelagic division 水层区pelagic egg 浮性卵pelagic fish 上层鱼类pelagic organism 水层生物pelagic organism 大洋生物pelagic phase 浮性生活期peleotemperature 古温度peninsula 半岛periphyton 周丛生物permanent thermocline 永久性温跃层phaeophytin 脱镁叶绿素phosphorus cycle 磷循环photo-autotroph 光能自养生物photobacteria 发光细菌photochemical transformation 光化学转化photophilous organism 适光生物photosynthetic activity 光合活性"phototaxis, phototaxy " 趋光性phycology 藻类学phyllosoma larva 叶状幼体physical oceanography 物理海洋学phytoplankton 浮游植物pile group 群桩pile-driving barge 打桩船pilidium larva 帽状幼体pipe-laying ship 敷管船piston corer 活塞取芯器pitch 纵摇planktobacteria 浮游细菌plankton 浮游生物plankton equivalent 浮游生物当量plankton indicator 浮游生物指示器plankton net 浮游生物网plankton pump 浮游生物泵plankton recorder 浮游生物记录器"planktonology, planktology " 浮游生物学planula larva 浮浪幼体plate 板块plate boundary 板块边界plate collision 板块碰撞plate convergence 板块会聚plate tectonics 板块构造学pleuston 漂浮生物plunging breaker 卷碎波poikilotherm 变温动物Poincare wave 庞加莱波polar ice 极地冰pollutant 污染物polymetal crust 多金属结壳polymorphism 多态现象polyphagy 复食性polystenohaline species 高狭盐种polytaxic ocean 多种型大洋population 种群population dynamics 种群动态population ecology 种群生态学porcellana larva 磁蟹幼体porosity 孔隙度"port engineering, harbor engineering " 港口工程post-larva 稚期practical salinity 实用盐度practical salinity scale 1978 1978 实用盐标precipitous sea 怒涛predation 捕食[现象]predator 捕食者preformed nutrients 原存营养盐pressure-relief tank 减压舱pressurized compartment 加压舱prey 猎物primary production 初级生产量primary productivity 初级生产力producer 生产者。

渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价

渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价

DOI: 10.16562/j.cnki.0256-1492.2021020101渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价

雷雁翔1,2,3,何磊2,3,王玉敏1,张朋朋1,张斌1,胡蕾1,吴治国1,叶思源2,31. 山东省物化探勘查院,济南 2500132. 中国地质调查局滨海湿地生物地质重点实验室,青岛海洋地质研究所,青岛 2662373. 青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室,青岛 266237

摘要:对海岸带滨海湿地土壤或沉积物中碳通量的定量评估是国内外碳循环研究的热点,但目前对碳通量评估涉及地面以下的土壤或沉积物深度大多不超过1 m(最多3 m),少有对更深更长时间尺度(如千年尺度)的沉积物中碳通量进行评估研究。对2016年在渤海湾西岸老黄河三角洲沉积区获取的BHZK13钻孔(长32.68 m)开展AMS14C测年和光释光(OSL)测

年、粒度、有孔虫、总碳(TC)和有机碳(OC)浓度、主量元素(含营养元素)和原位密度等参数进行分析测试。结果显示,渤海湾西岸老黄河三角洲沉积区自晚更新世晚期以来,沉积环境自下而上可划分出7个沉积单元,分别对应MIS5期的潮坪相(U1)、泛滥平原相(U2)、河道相(U3)、全新世的潮坪—浅海相(U4)、一期黄河三角洲(5 500~3 600 cal.aBP)(U5)、改造层(3 600 cal.aBP~700 BC)(U6)、二期黄河三角洲(700 BC—11 AD)(U7)。沉积速率在U5前缘相中最大(1.99 cm/a),在U1沉积环境中最小(0.014 cm/a)。相应地,有机碳埋藏通量在U5前缘相最大(134.56 g/(m2·a)),而

最小值(0.16 g/(m2·a))出现在U3环境中。沉积速率是有机碳埋藏通量的主控因素,TC和OC与各营养元素都呈极显著

的相关性。虽然老黄河三角洲沉积物中有机碳含量较低,但由于沉积速率相对较快,使得老黄河三角洲沉积体也是较好的有机碳贮库。关键词:有机碳;沉积速率;埋藏通量;黄河三角洲中图分类号:P736.21 文献标识码:A

南海北部白垩纪-渐新世早期沉积环境演变及构造控制

南海北部白垩纪-渐新世早期沉积环境演变及构造控制
2 构 造 -地 层 关 系
基于钻井地层分析,并结合横穿盆地的地震— 地质解释剖面分析(图 2,图 3),南 海北部晚白垩 世—渐新 世 早 期 形 成 的 主 要 不 整 合 面 有 Tg、 T80 (37~40Ma) 和 T70 (30~32Ma)。 沉 积 地 层 在 2 个盆地中 的 发 育 既 有 共 性, 彼 此 间 也 存 在 着 差 异 性,发育时间有早、晚的差别,发育范围存在广泛 和局限之分。珠江口盆地新生代基底以中生代中酸 性岩 浆 岩 (以 花 岗 岩 为 主, 还 有 安 山 岩、 流 纹 岩
国家科技重大专项 (编号:2016ZX05026-003-008),中海油综合科研项目 “南海东部大中型天然气田勘探潜力与突破方向” 以及国 家自 然 科 学 基 金 项 目 (编 号: 42076066, 92055203) 联 合 资 助。 [Cofunded by the NationalScience and Technology MajorProjects (No2016ZX05026-003-008), ComprehensivescientificresearchprojectofChinaNationalOffshoreOilCorporationandtheNationalNaturalScience FoundationofChinaundercontract(Nos.42076066,92055203)]
南海北部白垩纪—渐新世早期沉积环境演变及构造控制
吴 哲 1 张 丽 丽 1 朱 伟 林 2 邵 磊 2 杨 学 奇 1
1中海石油 (中国) 有限公司深圳分公司,广东深圳 518054 2同济大学 海洋地质国家重点实验室,上海 200092
摘 要 南海北部珠江口—琼东南盆地白垩系—下渐新统记录了华南大陆边缘从主动陆缘向被动陆缘的转 换过程。基于盆地构造 -地层、单井 相、 地 震 相 等 特 征 的 综 合 分 析, 结 合 南 海 中 南 部 的 沉 积 环 境 和 区 域 构 造 演

南大洋古环流研究方法综述

南大洋古环流研究方法综述

南大洋古环流研究方法综述唐灵刚;韩喜彬;赵建如;许冬;边叶萍;葛倩【摘要】南大洋海洋环流系统由南极底层水 AABW、南极绕极流 ACC、南极表层水 AASW、绕极深层水CDW 组成,它们在全球气候调节中扮演重要角色.随着科考技术的进步,有关南大洋古环流研究越来越多,研究主要集中在温度、盐度、流向和影响作用等方面.研究侧重内容不同所采取的手段和方法也有差别,南大洋古环流研究方法包括古生物法、地球化学法、数值模拟、沉积法、实测资料等.本文就这些研究方法做一简单综述,以期强调南大洋在全球大洋历史中的作用.%The circulation system of Southern Ocean is composed of the Antarctic Bottom Water (AABW),the Antarctic Circumpolar Current (AAC),the Antarctic Surface Water(AASW)and the Circumpolar Deep Water(CDW)an important role in global climate change.With the development of science and technology,there has been more and more interests in ancient circulation of the Southern O-cean and some researching methodsappeared.Focusing on different research content,different research methods will be taken,including simulationmethod,paleobiogeography,paleo -temperature,sediment, fossil and geochemistry.In this paper,some researching methods of ancient circulation in the Southern Ocean were simply reviewed,in order to emphasize the importance of the Southern Ocean in the history of global ocean.【期刊名称】《海洋开发与管理》【年(卷),期】2016(033)002【总页数】8页(P48-55)【关键词】南大洋;古环流;古温度;古生物;地球化学;数值模拟【作者】唐灵刚;韩喜彬;赵建如;许冬;边叶萍;葛倩【作者单位】国家海洋局海底科学重点实验室杭州 310012;国家海洋局第二海洋研究所杭州 310012;国家海洋局海底科学重点实验室杭州 310012;国家海洋局第二海洋研究所杭州 310012;国家海洋局海底科学重点实验室杭州 310012;国家海洋局第二海洋研究所杭州 310012;国家海洋局海底科学重点实验室杭州 310012;国家海洋局第二海洋研究所杭州 310012;国家海洋局海底科学重点实验室杭州310012;国家海洋局第二海洋研究所杭州 310012;国家海洋局海底科学重点实验室杭州 310012;国家海洋局第二海洋研究所杭州 310012【正文语种】中文【中图分类】P7南大洋是由南太平洋、南大西洋、南印度洋及南极大陆周围的威德尔海(Weddell Sea)、罗斯海(Ross Sea)、阿蒙森海(Amundsen Sea)、别林斯高晋海(Bellingshausen Sea)等边缘海组成的一片环绕南极大陆的独特水域。

新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据

新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据

DOI: 10.16562/ki.0256-1492.2021071202新西兰Hikurangi 俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr 同位素证据孔丽茹,罗敏,陈多福上海深渊科学工程技术研究中心,上海海洋大学海洋科学学院,上海 201306摘要:俯冲带是地球上地质活动最活跃的地带之一,对地球表面和内部的演化具有重要意义。

俯冲带慢滑移事件作为一种重要的断层滑动方式在近十几年才逐渐被地球物理学家所认识。

浅源慢滑移可以使浅部断层发生破裂至海底,引发大规模海啸。

了解孔隙流体来源和俯冲带沉积物成岩作用有助于认识慢滑移事件的成因机制。

以国际大洋发现计划(IODP )375航次在新西兰Hikurangi 俯冲板块钻探站位(U1520)和变形前缘逆冲断层钻探站位(U1518)为研究对象,对两个站位沉积物孔隙流体的SO 42-、Ca 2+、Mg 2+和Sr 2+浓度以及放射性Sr 同位素(87Sr/86Sr )进行了分析。

结果显示两个站位Ca 2+与Mg 2+浓度、Sr 2+浓度与87Sr/86Sr 呈负相关关系是由于火山灰蚀变作用导致的。

两个站位浅层0~14.3和0~37.3 mbsf 沉积物孔隙水中的Ca 2+、Mg 2+浓度同时降低,表明发生了自生碳酸盐沉淀。

同时,俯冲板块U1520站位的岩性单元IV (509.82~848.45 mbsf )Mg 2+浓度随深度减小,Ca 2+、Sr 2+浓度则增加,但87Sr/86Sr 基本保持不变,显示了碳酸盐重结晶作用。

在其下部以火山碎屑岩为主的岩性单元V (848.45~1 016.24 mbsf )沉积物孔隙水的SO 42-、Ca 2+、Mg 2+浓度均趋近海水值,这可能是由于海水在渗透性较好的火山碎屑岩中发生横向流动导致。

因此,推测俯冲板片的岩性和成岩作用是高度的不均一,容易促使俯冲板片进入俯冲带后形成特殊的应力场和异常的流体压力,进而可能与Hikurangi 俯冲带频发的慢滑移事件有关。

电缆细菌及其介导的生电硫氧化eSOx过程研究进展

电缆细菌及其介导的生电硫氧化eSOx过程研究进展

电缆细菌及其介导的生电硫氧化(e-SOx)过程研究进展赵秀梅工杨茂华*穆廷桢2刘金龙3邢建民2**I华北制药股份有限公司石家庄0500152中国科学院过程工程研究所绿色过程与工程院重点实验室北京1001903河北科技大学生物与工程学院石家庄050018摘要在白然环境中,微生物参与的硫化物氧化过程是地球硫元素循环的重要组成部分,然而在多数情况下,硫化物形成于海滨等沉积物下层,而氧气等电子受体位于表层,微生物如何解决其所需的电子供体和受体不在同•空间位置的问题尚不清楚。

近期研究发现,电缆细菌通过生电硫氧化(Electrogenic sulfur oxidation, e-SOx)过程将空间分离的硫氧化反应和氧气还原反应耦合起来,完美地解决了上述问题。

本文总结了近十年有关电缆细菌及其介导的牛.电硫氧化过程的研究进展,重点从电缆细菌牛.存环境、生电硫氧化生态学意义、电缆细菌的鉴定与分类、生理特征、导电结构和机制等方面进行了总结。

发现普遍存在于海滨沉积物、淡水沉积物、水生植物根际等环境的生电硫氧化过程可以显著影响硫、铁、碳、钙、氮、磷等元素的循环,解除硫化物毒性,强化有机污染物降解。

目前已鉴定出的所有电缆细菌均属于Candidatus Eleclrolhrix属或CandidaMs Eleclronema属。

电缆细菌通过嵌入细胞膜的高导电纤维传导电子,而且已经进化出高度故障安全的内部导电网络。

建议今后继续开展电缆细菌的遗传和代谢多样性、导电结构、多细胞之间能量分配机制以及导电纤维的仿生学应用开发等方面研究,为将来应用于生物能源、生物电子和生物修复等领域提供理论和思路。

关键词生电硫氧化;电缆细菌;元素循环;长距离生物电子传递;生物导电材料Advances in research on cable bacteria and their mediated electrogenic sulfur oxidation (e-SOx)ZHAO Xiumei*, YANG Maohua2**, MU Tingzhen2, LIU Jinlong3& XING Jianmin2**1North China Phannaceutical Gmup Co. LTD、Shijiazhuang 050015, China2Key Laboratory of Green Process and Engineering. Institute of Process Engineering. Chinese Academy of Sciences, Beijing 10()190, China3School of Biology and Engineering, Hebei University^ of Science and Technology, Shijiazhuang 050018, ChinaAbstract In the natural environment, the process of sulfide oxidation participated by microorganisms is an important part of the earth's sulfur cycle. However, in most cases, sulfide is formed in the lower layer of sediments such as seashore, while the electron acceptors such as oxygen are located in the surface layer. How to solve the problem that the electron donors and receptors needed by microorganisms are not clear in the same spatial position. Recently, it has been found that cable bacteria can couple the sulfur oxidation reaction and oxygen reduction reaction through the process of electrogenic sulfur oxidation (e-SOx), which perfectly solves the above problems. In this paper the research progress of cable bacteria and its mediated e-SOx process in recent ten years are summarized, focusing on the living environment of cable bacteria, ecological significance of e-SOx, identification and classification of cable bacteria, physiological characteristics, conductive structure and mechanism. The process of e-SOx, which widely exists in coastal sediments, freshwater sediments and aquatic plant rhizosphere and so on, can significantly affect the cycle of sulfur, iron, carbon, calcium, nitrogen, phosphorus and other elements, relieve (he toxicity of sulfide and strengthen the degradation of organic pollutants. At presenl, all the cable bacteria found belong to Candidatus electrotherix or Candidatus electronema. Cable bacteria conduct elections through highlyconductive fibers embedded in cell membranes and have evolved highly fail safe internal conductive networks. It is suggested that the research on the genetic and metabolic diversity, conductive structure, energy distributionmechanism between cells and the application of conductive fibers should be continued in the future, so as to provide theory and ideas for the future application in bioenergy, bioelectronics and bioremediation.Keywords e-SO x; cable bacteria; element cycle: long distance bioelectionic transfer; bio-conductive materials 硫氧化过程是地球硫兀索循环的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 安哥拉和海角盆地的细菌群落呈显著不同(ʃ-LIBSHUFF 检验,P=0.008)其中黄杆菌的T-RFLP图谱明显不同(图 5b) • 这些差异与海角盆地的叶绿素a含量,以及沉积物颗粒大 小不同有关,表明环境因子似乎影响南大西洋东部深海沉 积物的细菌群落。但是,需要在这个分析中采取空间参数 考虑,以增强我们关于该群落变化的环境或空间效应的解 释。
• 为了获得更多关于空间结构的信息量,我们分析了遗传 多样性和地理距离之间的相对关系。 基于距离衰减关系 的16S rRNA基因和TRFs表明南大西洋和其他所有的站点 都非常低(0.003〜0.07)(表3) • 这表明是由于庞大群体的高扩散率和低灭绝率造成的。 • 但是对16S rRNA基因序列的曼特尔(Mantel)测试显示, 环境和地理都(r =0.008,P=0.006和r=0.024, P=0.001)对南大西洋的细菌多样性有影响。
材用 FastDNA SPIN Kit for Soil提取总DNA
PCR扩增(引物对GM3/GM4) NhomakorabeaPCR纯化试剂盒纯化
连接转化(引物M13 F和M13 R)
用TOPO TA克隆试剂盒进行测序
系统发育和序列分析
• 序列导入ARB软件包,在ARB软件包中对数据采用最大似 然算法构建系统发育树。 • 统计工具ʃ - LIBSHUFF应用于遗传距离模型,以确定库组 成的差异是否是由于偶然或生物效应,并且被Monte Carlo 排列评估和进一步校正多重比较。
• 统计工具SONS被用在16S rRNA基因全长序列来进行丰 富度的估计。
末端限制性片段长度多态性
• 末端限制性片段长度多态性分析包括三到五个表层沉积物 样品( 0-2厘米),分别在每个区域的几个核心,如海角, 安哥拉和几内亚I-III (图1 ,表2) 。
统计分析
• 非度量多维标度(NMDS)和相似性(ANOSIM)的分 析,运用到 PAST程序中。 • 简单和部分的曼特尔试验(Mantel tests)是用来确定遗 传,空间和环境的距离模型之间的显著性和相关系数。 • 地理距离和环境差异性(温度,盐度,pH值,Eh,TOC, 叶绿素a和颗粒大小,表1)都被用来解释遗传差异性。以 确定基因与地理距离的线性模型之间的关系强度。
深海微生物地理模型依赖于微生物的扩散能力。一 个可能的限制微生物扩散的因素是鲸脊。
• 我们调查了南大西洋东部三大盆地中的细菌群落来研究深 海表层沉积物中细菌群落的多样性和生物地理学。 • 在南大西洋东部,海角盆地与安哥拉和几内亚盆地之间通 过鲸脊形成一个屏障阻挡了水下大约3000米处向北和向 南的水流。 • 海角盆地是受来自南极的绕极深层水控制,安哥拉和几内 亚盆地的最深处都充满了从北极起源来的北大西洋深层水。 • 值得注意的是,鲸脊已被证明用于一些囊虾总目的甲壳类 扩散的屏障,但不知道该物理屏障是否也影响微生物的传 播。
结果与讨论
南大西洋沉积物中细菌生物量盆地和17个门的安哥拉和几内亚盆地(图1 ) 。 • 前面描述的深海和浅层沉积物中也发现了大量的多样性, 这可能和存在一个微弱与平衡的竞争有关 。 • 在98 %的序列同源性基础上结合总丰富度估计(表2)和 稀疏度曲线(补充图S1)得出,海角,安哥拉和几内亚盆 地表层沉积物中包含了相等的细菌丰度在0.05的显着著性 水平上。 • 分析预测表明,南大西洋沉积物中细菌的丰度比南极沉积 物中的低但比北极沉积物中的高。
细菌多样性比较
• 目前盆地的种系型主要属于Gammaproteobacteria、 Deltaproteobacteria和绿屈绕菌纲(Chloroflexi)。 • Chloroflexi 的一个主要群体被限制在安哥拉和几内亚盆 地沉积物中。 • ʃ-LIBSHUFF分析揭示了安哥拉和几内亚盆地以及海角和 几内亚盆地(使用0.0012的最小P值)之间没有显著差异。 • 因此,常见的种系型主宰这些盆地的群落。
对于0-1200km处的T- RFLP分析结果显示,环境和地理两个因 素都有影响,(environment r=0.636, P<0.001,geography r=0.651,P<0.001) (Table 2) (Figure 6b).但是在(1200–3500 km)的中间距离处环境因素比任何地理因素影响都大(r = 0.278 , P = 0.009) ,
• 虽然检测到某些群体在深海沉积物中具有高扩散率,但TRFLP和16S rRNA分析表明了深海微生物的扩散存在障碍。 • 我们的研究表明环境和地理这两个因素的影响对于大尺度 的效果为好,如对土壤微生物群落(Fierer和杰克逊, 2006)。 • 虽然小尺寸,高扩散率,庞大的种群规模和微生物的低灭 绝率表明地理障碍对微生物多样性的影响很低,但我们的 研究表明,在深海沉积物中微生物的分布被限制在中等尺 度(10-3000km)和大尺度(> 3000km)。
16S核糖体RNA基因的细菌多样性
• 深海沉积物细菌群落主要是一些变形菌,分别占海角,安哥拉和几内亚盆地全部序列 的64 %, 58%和63 %。
39种系型,均为已知种,这些菌主要是嗜冷微生物
以Gammaproteobacteria为例
77种系型,很大一部分来自培养品种,这些群体中包含 有一部分细菌的 16S rRNA基因序列只来源于其他深海 或永久寒冷的海洋生境 α -,β-和Deltaproteobacteria变形菌纲占库中所有序列的为18〜23%。其他种类的 序列丰度超过5%(图2)
南大西洋深海表层沉积物细菌 多样性和生物地理学研究
研究背景
• 微生物群落的生物地理格局有两个传统的解释,即环境异 质性和历史因素。 • 环境条件长期以来被认为对微生物地理学有强大的影响力。 几项研究已经表明空间距离(历史因素)会影响微生物的 多样性。 • 在海洋生境比如深海,表层沉积物中的微生物可以随着洋 流而扩散。由较大的底栖生物的活动以及近底洋流共同影 响沉积物 - 水界面交换的生物灌溉作用导致了颗粒的分散 因此微生物得以扩散。 • 影响微生物扩散的障碍可能是物理的(地形)或其他条件 (温度,pH值或静水压力)
生物地理学:环境和历史因素
• 在南大西洋东部约3000米深处的鲸脊把海角盆地与安哥 拉和几内亚盆地分隔开,并导致了这些盆地的深层水团不 同。
• 根据16S rRNA基因库和T-RFLP种系型分析表明,微生物 的扩散可能不会被鲸脊或不同水团影响。 • 根据南大西洋和太平洋,南极和北极海洋沉积物(补充表 S1)中常见的种系型表明,一些微生物有效地分散在一个 巨大的距离,因此是世界性分布的。
相关文档
最新文档