边坡位移自动化监测解决方案
边坡监测解决方案

边坡监测解决方案
《边坡监测解决方案》
边坡是地质灾害中常见的一种,对周围环境和人们的生命财产安全都有很大的威胁。
为了及时发现边坡变形和滑坡等问题,需要对边坡进行监测,并采取相应的解决方案。
针对边坡监测,目前比较常用的方法包括传统的地质勘察、现场观测、遥感监测和无人机监测等。
这些方法各有优劣,但无论采用何种监测手段,对边坡的变形、位移等情况进行监测都至关重要。
一旦发现边坡有变形趋势,就需要及时采取解决方案。
常见的解决方案包括加固处理、植被覆盖、边坡整治等。
加固处理可以采用钢筋混凝土支撑、挡土墙、护坡网等方式,以增强边坡的稳定性;植被覆盖则可以通过植树种草的方式,增加边坡的抗滑性;边坡整治则可以对边坡进行重新设计和施工,以消除边坡的潜在危险。
除了以上的解决方案,边坡监测解决方案中还可以采用数字化技术。
通过安装传感器和监测设备,可以实现对边坡的远程监测和实时数据传输,从而及时发现边坡的变形情况。
而且,结合人工智能和大数据分析,还可以对监测数据进行分析和预测,为边坡的管理和应对提供科学依据。
综上所述,《边坡监测解决方案》是一个综合性的问题,需要结合传统的勘察方法和现代的数字技术,以及科学的解决方案,
来保障边坡的稳定和人们的生命财产安全。
希望相关领域的科研人员和管理者能够加强对边坡的监测和治理,从而减少地质灾害带来的损失。
边坡水平位移监测方案

边坡水平位移监测方案一、方案概述随着城市建设的不断发展,边坡工程的安全性成为社会关注的焦点。
为了及时发现和预测边坡的水平位移情况,本文设计了一套边坡水平位移监测方案。
二、方案内容1.监测仪器选择为了准确监测边坡的水平位移,我们选择了三种仪器进行监测:全站仪、倾斜仪和应变计。
全站仪可以实现高精度的水平角度测量,倾斜仪可以获取坡面的倾斜情况,应变计则用于测量边坡的变形情况。
2.监测点布设根据边坡的特点和监测要求,我们选定了合适的监测点位置。
监测点应覆盖边坡的整个水平长度,并且均匀分布在边坡的关键位置,包括坡顶、坡脚和中部等。
3.监测频率与时长为了获得准确的边坡位移数据,监测频率与时长是至关重要的。
我们建议每日进行一次全站仪的水平角度测量,每周进行一次倾斜仪的坡面倾斜测量,每月进行一次应变计的边坡变形测量。
监测时长应覆盖整个施工周期,并持续一段时间以获取较为准确的数据。
4.数据处理与分析获取到的监测数据需要进行有效的处理与分析,以便进行边坡的稳定性评估。
我们建议使用专业软件进行数据的录入、存储和处理,通过数据的时序变化分析、趋势预测等手段,判断边坡是否存在水平位移风险,并进行相应的处理和预警。
三、方案实施1.准备工作在实施监测方案之前,需要进行充分的准备工作。
包括确定监测仪器的型号与数量,选择合适的监测点位置,布置监测设备,并确保设备正常运行。
2.实施监测按照预定的监测频率和时长,对边坡进行水平位移监测。
保证监测数据的准确性和完整性,并及时处理设备故障或数据异常情况。
3.数据上报与分析监测数据的处理与分析是评估边坡稳定性的关键。
将获取到的监测数据上报至相关部门,并进行专业的数据分析与评估。
根据分析结果,制定相应的措施,确保边坡的安全与稳定。
四、方案评估与优化在实施监测方案的过程中,需要不断进行方案评估与优化。
根据实际情况,及时调整监测频率、监测点布设等参数,提高监测数据的准确性和可靠性。
五、总结本文设计的边坡水平位移监测方案,通过选择合适的监测仪器、布设监测点,并合理确定监测频率与时长,能够准确获取边坡水平位移数据,并进行有效的数据处理与分析。
挡墙及边坡位移监测方案

挡墙及边坡位移监测方案一、引言在现代建筑工程中,挡墙和边坡的稳定性一直是一个重要的问题。
为了确保工程的安全性,及早发现和处理潜在的问题,位移监测方案成为必不可少的部分。
本文将介绍一种挡墙及边坡位移监测方案,旨在帮助工程师提前预警并采取相应的措施,以确保施工过程的安全性和顺利进行。
二、监测目标与参数1. 监测目标:本方案主要针对挡墙及边坡的位移进行监测,以及相关参数的测量。
2. 监测参数:- 垂直位移:用来测量挡墙及边坡在垂直方向的位移变化,包括上下、前后和左右的位移。
- 水平位移:用来测量挡墙及边坡在水平方向的位移变化,包括左右和前后的位移。
- 倾斜度:用来测量挡墙及边坡的倾斜度,以判断其稳定性。
- 水平位移速率:用来测量挡墙及边坡在水平方向的位移变化速率,以及前后的速率。
- 环境参数:包括温度、湿度和风速等环境因素,以分析其对位移变化的影响。
三、监测方案1. 选择合适的监测设备:- 垂直位移监测:可以使用测深仪、水准仪或全站仪等设备,对挡墙和边坡进行垂直位移的实时监测。
- 水平位移监测:可以使用位移传感器、测距仪或GPS等设备,对挡墙和边坡进行水平位移的实时监测。
- 倾斜度监测:可以使用倾斜仪或测斜仪等设备,对挡墙和边坡的倾斜度进行实时监测。
- 环境参数监测:可以使用气象站设备,对温度、湿度和风速等环境参数进行实时监测。
2. 安装监测设备:- 垂直位移监测:将测深仪、水准仪或全站仪等设备安装在挡墙及边坡的关键位置,并进行校准,以确保测量的准确性。
- 水平位移监测:根据实际需要,在挡墙及边坡上设置位移传感器、测距仪或GPS等设备,并进行连接和定位。
- 倾斜度监测:安装倾斜仪或测斜仪等设备在挡墙及边坡的重要位置,保证监测的可靠性。
- 环境参数监测:安装气象站设备,以获取挡墙及边坡所处环境的参数信息。
3. 数据采集与处理:- 定时采集:设置合适的采样间隔,定时采集垂直位移、水平位移、倾斜度和环境参数等数据。
边坡安全自动化监测解决方案

1边坡监测的重要性边坡的安全与否关乎国家与百姓利益和安全,边坡出现安全隐患将造成人民财产的巨大损失,为确保边坡能够更好的发挥社会效益与经济效益,边坡的安全管理工作非常重要,必须对边坡的安全进行实时监测,随时掌控边坡的实时动态,同时也为边坡的维护提供有效依据,保障边坡的安全,就是保障国家与人民的安全。
2边坡安全监测系统边坡安全监测系统主要有以下几部分组成:1、数据感知部分:各监测指标各类型智能传感器;2、数据采集部分:自动化采集系统;3、数据传输部分:有线/无线;4、控制分析部分:监控中心软件,数据显示平台系统功能:1、实现对边坡重要数据的实时采集、传输、计算、分析;2、直观显示各项监测数据,监测数据的历史变化过程及当前状态;3、一旦出现紧急情况,系统能及时发出预警信息;4、可实现安全监测信息的多级共享;5、可实现安全预警信息的发布。
边坡监测内容与设备选择,表面位移监测:GPS接收机、静力水准仪;内部位移监测:固定测斜仪、多点位移计;渗流量监测:渗压计、土壤墒情仪;降雨量监测:雨量计;裂缝监测:测缝计;支护结构监测:应变计、钢筋计、土压力计。
3边坡安全监测仪器设备ELT-15X型斜坡倾斜仪(智能)VWP型振弦式渗压计(智能)VWD-J型振弦式测缝计(智能)GN-1B型固定式测斜仪(智能)MCU-32自动测量单元GDA1602(4)单点采集模块南京葛南实业有限公司创建于1998年,是专业从事岩土工程安全监测仪器及系统的研发、生产、销售、服务的高科技型企业。
公司智能振弦式传感器及自动化采集系统在国内处于领先水准,产品出口16个国家和地区,应用在2000多个水电站、大型桥梁及军事工程。
公司始终注重新技术的研发投入和应用转化,致力于向客户提供承载最新技术、精准优质的仪器设备。
公司现有产品十五大类二百多个品种:应变、应力、水位、压力、位移、温度、倾斜、沉降、标定设备、电缆及附件、测量仪表、自动测量单元、单点采集模块、水雨情监测、软件及云平台。
边坡在线监测解决方案

边坡在线监测解决方案
《边坡在线监测解决方案》
边坡是指山体边缘的斜坡部分,是地质灾害的高发区之一。
边坡的稳定性直接关系到附近居民和道路的安全,因此对边坡进行监测和预警显得尤为重要。
传统的边坡监测往往依靠人工巡视和定期测量,但是这种方法存在着监测频率低、监测范围狭窄、无法实时监测等问题。
因此,边坡在线监测解决方案应运而生。
边坡在线监测解决方案是通过在边坡上部和底部部署传感器,实时监测边坡变形、渗流等情况,将数据传输至监测中心进行分析和处理的一种解决方法。
这种方案具有监测频率高、范围广、实时监测等优点,能够为地质灾害预防和治理提供重要数据支撑。
其中,边坡在线监测解决方案的关键技术包括传感器技术、数据传输技术和数据分析技术。
传感器技术能够准确测量边坡的变形、渗流等情况,数据传输技术能够将监测数据传输至监测中心,数据分析技术能够对监测数据进行处理和分析,提供预警和预测。
在实际应用中,边坡在线监测解决方案已经取得了良好效果。
通过实时监测边坡的变形情况,可以提早发现边坡的不稳定情况,为地质灾害的预防提供及时预警。
同时,通过对监测数据的分析,可以为边坡的治理提供科学依据,降低地质灾害的发生概率。
总的来说,边坡在线监测解决方案是一种有效的地质灾害预防和治理手段,其应用将为我们提供更多的安全保障。
未来,随着技术的不断进步,相信边坡在线监测解决方案将会更加完善和智能化。
边坡位移自动化监测解决方案

边坡位移自动化监测解决方案边坡位移自动化监测解决方案是指采用现代传感技术和监测设备对边坡进行实时监测和预警,旨在保障边坡的稳定性和安全性。
该解决方案结合了传统边坡监测手段和现代信息技术手段,实现了对边坡位移的精确测量、数据实时传输和智能分析。
1.传感器选择与布设:选择合适的传感器对边坡进行位移、倾斜、应力等相关参数的监测。
常见的传感器有全站仪、测距仪、应变计、倾斜传感器等,并合理布设在边坡上以实现全方位监测。
2.数据采集与传输:采用现场数据采集器对传感器采集的数据进行集中处理和存储,并通过有线或无线网络将监测数据传输给监测中心。
数据传输可以选择实时传输或定期上传,以满足监测需求。
3.数据库建立与管理:建立边坡位移监测的数据库,用于存储和管理监测数据。
数据库应具备良好的数据结构和查询功能,以便对数据进行统计分析和后期处理。
4.数据分析与预警系统:通过对实时监测数据进行实时分析,可以掌握边坡的变形趋势和变形速率。
利用传感器数据分析软件可以实现对边坡位移的趋势预测和预警,一旦超过预警值,即可及时采取措施防止边坡灾害的发生。
5.监测报告与决策支持:自动化监测系统能够生成边坡位移监测报告,对边坡的变形情况进行定期汇报和分析。
报告可用于决策者的决策支持,提供重要的参考意见。
1.高精度监测:自动化监测系统能够实现对边坡位移的高精度测量,精确度能够达到毫米级。
相比传统手动测量方法,大大提高了监测数据的准确性和可靠性。
2.实时预警:自动化监测系统可以实时采集和传输数据,及时发现边坡变形的异常情况,并通过预警系统发出警报,为采取防灾措施提供决策支持。
3.智能分析:自动化监测系统具备智能分析功能,能够通过对监测数据的分析,实现对边坡变形趋势的预测,提前发现潜在的边坡灾害隐患,为灾害预防提供重要依据。
4.降低人力成本:自动化监测系统能够实现对边坡的长期、连续监测,减少人力资源的投入和成本,提高工作效率。
总之,边坡位移自动化监测解决方案通过采用现代传感技术和监测设备,实现对边坡位移的实时监测和预警,可以提高边坡的稳定性和安全性,为防止边坡灾害提供重要的技术支持。
边坡水平位移监测方案

边坡水平位移监测方案一、概述边坡是指山体或河岸等地表的倾斜面,由于地质条件、自然力和人类活动等因素,边坡会存在一定程度的变形和位移。
为了及时监测边坡的水平位移,采取有效的监测方案对于保障人民生命财产安全具有重要意义。
本文将提出一种边坡水平位移监测方案,以实现准确、及时地监测边坡的水平位移情况。
二、监测设备选择1. 激光测距仪:激光测距仪是一种高精度测量设备,可以通过测量入射激光的反射光信号来确定目标物体的距离。
在边坡监测中,激光测距仪可以用于测量边坡不同位置的水平位移。
2. 光纤传感器:光纤传感器是一种基于光学原理的传感器,可以通过测量光信号的变化来实现对物体位移的监测。
在边坡监测中,可以将光纤传感器埋设在边坡内部,通过监测传感器与边坡之间的相对位移来判断边坡的水平位移情况。
3. GNSS定位系统:GNSS定位系统是一种全球导航卫星系统,可以通过接收多颗卫星信号来实现对地面点位的定位。
在边坡监测中,可以利用GNSS定位系统对边坡不同位置的水平位移进行定量测量。
三、监测方法1. 建立监测点网格:在边坡上设置一定数量的监测点,并形成一个网格状的监测点布局。
每个监测点上安装相应的监测设备,包括激光测距仪、光纤传感器或GNSS接收机。
2. 监测设备的安装与调试:根据监测点的布局,在每个监测点上安装相应的监测设备,并进行必要的调试工作,确保监测设备的正常工作。
3. 数据采集与传输:通过激光测距仪、光纤传感器或GNSS接收机等监测设备,定期采集边坡各监测点的水平位移数据。
采集到的数据通过数据传输设备,如无线通信设备或有线连接设备,传输到数据中心进行存储和分析。
4. 数据处理与分析:对采集到的数据进行处理和分析,包括数据的校正、去噪和趋势分析等。
通过对数据的分析,可以及时发现边坡的水平位移异常情况,并采取相应的措施进行处理。
5. 预警与应急响应:基于数据的分析结果,及时发布边坡水平位移的预警信息,并启动相应的应急响应措施。
上海司南GNSS自动化边坡在线监测方案

上海司南GNSS自动化边坡在线监测方案随着城市建设的不断发展,高速公路、铁路、隧道等工程的建设也越来越多。
而边坡是这些工程中常见的一种形式,其稳定性对于交通安全和城市发展至关重要。
为了及时发现并解决边坡稳定性问题,上海司南GNSS自动化边坡在线监测方案应运而生。
上海司南GNSS自动化边坡在线监测方案基于GNSS技术,结合现代信息技术和云计算技术,实现边坡的实时、连续、全面监测。
该方案的主要原理是通过在边坡上设置GNSS测量点,即测站,实时监测边坡的位移变化。
测站采集到的数据通过无线传输到数据中心,并进行实时处理和分析,生成监测报告和预警信息。
1.高精度测量:采用高精度GNSS测量仪器和技术,可以实现毫米级的位移测量,并能准确反映边坡的变形情况。
2.实时监测:测站采集的数据通过无线传输到数据中心,可以实时查看和分析边坡的位移变化,并进行预警。
3.连续性监测:测站24小时不间断地工作,可以对边坡的位移进行全天候监测,及时发现问题。
4.全面性监测:通过在边坡不同位置设置测站,可以实现对整个边坡的位移变化进行全面监测,帮助工程师全面了解边坡的稳定性。
5.高效的数据处理:数据中心采用云计算技术,可以快速处理大量的数据,并生成监测报告和预警信息。
6. 用户友好性:监测报告和预警信息可以通过Web界面呈现,工程师可以通过浏览器随时随地访问,方便快捷。
在使用上海司南GNSS自动化边坡在线监测方案进行边坡监测时,需要以下步骤:1.建立测站:根据边坡的具体情况,在边坡上设置GNSS测站。
2.数据采集:测站采集边坡的位移数据,并通过无线传输到数据中心。
3.数据处理:数据中心对采集到的数据进行实时处理和分析,生成监测报告和预警信息。
4. 结果展示:监测报告和预警信息通过Web界面呈现,工程师可以随时随地访问。
5.预警处理:当监测系统检测到边坡位移超过安全范围时,会发出预警信息。
工程师根据预警信息采取相应的措施,确保边坡的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边坡位移自动化监测报价编制单位:上海岩联工程技术有限公司编制时间:2018年6月深层水平位移监测1、固定式测斜仪的用途固定式测斜仪是一种高精度传感器,广泛适用于测量土石坝、面板坝、边坡、路基、基坑、岩体滑坡等结构物的水平或垂直位移、垂直沉降及滑坡,该仪器配合测斜管可反复使用,并可方便实现倾斜测量的自动化。
2、结构组成固定式测斜仪由安装卡板、数据电缆、连接杆、测杆、导向轮等组成。
3、工作原理测斜仪是通过测量测斜管轴线与铅垂线之间夹角变化量(r),来计算水平位移的工程监测仪器。
通常情况下,由多支固定式测斜仪串联装在测斜管内,通过装在每个高程上的倾斜传感器,测量出被测结构物的倾斜角度,以此将结构物的变形曲线描述出来。
4、技术参数表:(除非特别注明,以下均为室温(25℃)环境下的典型值。
)项目测试条件最小值典型值最大值单位工作参数电源电压直流8 24 30静态工作电流VCC=8.00V 25 30 mA 工作温度-40 +85 ℃性能参数测试范围双轴±15 度分辨力0.001 度准确度-12°~ +12°±0.02 度-15°~ +15°±0.05 ±0.1 度重复性±0.003 度零点温度漂移(3-40~+85 ℃±0.002 度/℃灵敏度温度漂移-40~+85 ℃±0.013 %/℃其他参数防水等级探头水深 100米IP685、产品特点轻便、操作简单、智能化高;全固态,不易损坏,日常维护简单;高分辨率、便携式、宽量程,性能稳定;可以和电脑通讯,把测量数据转存到电脑上进行分析。
6、安装示意图7、安装主要尺寸8、安装方法8.1测斜管的安装先将测斜管装上管底盖,用螺丝或胶固定。
测斜管与测斜管之间用管接头连接,测斜管与管接头之间必须用螺丝固定后涂胶填缝密封。
测斜管在安装中应注意导槽的方向,导槽方向必须与设计要求的方向一致。
安装时将装好接头的测斜管依次逐节放入钻孔中,直至连接到设计深度的孔底。
当确认测斜管安装完好后既可进行回填,回填一般用膨润土球或原土沙。
回填时每填至3~5 米时要进行一次注水,注水是为了使膨润土球或原土沙遇水后与孔壁结合的牢固,以此方法直至孔口。
露在地表上的测斜管应注意做好保护,盖上管盖防止物体落入。
测斜管地表管口段应浇注混凝土,做成混凝土墩台以保护管口及其转角的稳定性。
墩台上应设置测绘标点。
安装完成后的测斜管应先用模拟测斜仪试放,试放时测斜管互成180度的两个导向槽都应从下到上试放到,保证模拟测斜仪在测斜管导槽内能从上到下或从下到上都很平稳顺畅通过,以此作为测斜管安装完好的标志。
8.2仪器的安装在安装前,须对测斜管进行测量,最好用活动测斜仪进行测量,这即可探一下测斜管安装的好坏,同时可绘制出测斜管的管形图,以使传感器就位后测值不至于超过其满量程限度。
在安装前还要检查孔口架是否就位固定好,以及测管是否做好十字导槽的“A+”轴向和“A-”轴向的永久标记。
固定测斜仪从生产厂家出厂时是散件包装的,首先应检查测斜仪的导向轮是否转动灵活,扭簧是否有力。
检查传感器部件是否工作正常(以铅垂线为基准倾向高端导向轮一侧读数增大,倾向另一侧读数减小 ),按设计高程截取连接连接杆并将固定测斜仪用钢丝绳首尾相连,确认完好后以备安装。
如在测孔内只安装一套仪器,只要把固定测斜仪头部与钢丝绳连接即可。
在安装时要根据被测体需要观测的偏移方向,先将传感器和轮架导轮的正方向(高轮方向)对准测斜管的“A+” 轴向的导槽内,缓缓滑入测管内,理顺仪器电缆,每放一段深度用自锁扎带把电缆同吊装钢丝绳缠在一起,不要扎在固定测斜仪的部件上。
当放到设计高程后把最后吊装钢丝绳固定在孔口装置的横轴上用锁扣锁紧,将电缆按设计走向埋设。
串联安装两套以上固定测斜仪时安装方法基本相同,固定测斜仪是用钢丝绳首尾相连, 组装时应按施工图纸要求的数量装成一个个测量单元,检查确认完好后以备吊装。
吊装是按一个个测量单元的顺序放入测斜管内,每个测量单元之间的连接用连接杆连接,连接一定要牢靠,各个测量单元的所有导向轮方向必须一致。
需要注意的是每套固定测斜仪要按顺序作好编号记录,逐个装入时电缆要逐个理顺一起用自锁扎带同钢丝绳缠在一起,所有电缆要松弛不能拉紧,将最后的连接杆缚在孔口装置的横轴上用锁扣锁紧。
下放完成后应核查仪器高程是否准确,并拉动吊装连接杆用读数仪检查传感器的工作是否正常,随后记录稳定的初始读数。
如发现问题可取出仪器重新安装。
最后孔口应设保护设施。
观测电缆按规定走向固定埋设。
9、注意事项●电缆折弯半径要大于30mm;●传感器不宜长时间处于-20度以下工作环境中;●导轮不能承受过大的轴向力;●导轮轴承和弹簧属于易耗部件,测量后应冲洗干净;●传感器连接头不能自行拆装,需要联系厂家咨询;●使用时轻拿轻放,避免撞击;●运输过程避免强酸碱盐,以免腐蚀;●电缆使用时避开尖锐物品,避免损伤;●更换弹簧需要将销钉敲出,更换轮架要将中心转轴旋出。
10、常见故障排除●测量过程中,若出现位移量无变化,请检查传感器连接器是否连接正常,SIM卡是否续费。
●传感器使用中出现测量不准确,请确认导轮和弹簧是否出现松动,是否需要更换。
表面位移监测1、系统结构组成与功能整个监测系统可分为:GNSS数据采集单元(也叫传感器系统,包含设备的安装平台、物理防护、供电及避雷子系统)、数据通讯单元、数据处理与控制单元,以上各个部分为一个有机的整体。
1.1 GNSS变形监测硬件部分的结构和功能1)传感器系统:传感器系统即GNSS监测单元,目的是利用GNSS技术来反应被监测物体的实时三维变化情况。
2)数据通讯子系统:GNSS天线到GNSS主机由同轴电缆通讯;GNSS主机及其它传感器与控制中心通讯采用有线或无线的通讯方式。
3)数据处理和控制系统:包含数据自动化采集模块、精密解算模块、数据库管理模块、数据分析预警发布模块。
实现自动接收并处理工作站系统采集的数据,并对原始数据和处理后数据进行显示和在线评估及预警。
4)避雷系统:主要作用是为了保护设备的安全,避免雷电造成的经济损失和人员伤亡。
分为防直击雷和防感应雷两个部分,防直击雷主要是运用避雷针防感应雷主要是使用浪涌保护器。
5)预警系统:该单元主要指软件单元解算的数据超过某一现值,或者监控系统发生突变时以短信的方式或者在监控服务器上显示出预警信息。
1.2 GNSS变形监测软件部分的结构和功能1)数据采集工作站软件:完成数据采集、传输和本地存储的工作;2)数据处理服务器软件:完成数据接收、控制、数据处理、数据显示、数据评估及预警等工作;3)数据存储:完成数据存储和管理工作,以供以后对监测点进行更精确的分析。
2、GNSS监测适用范围GNSS自动化变形监测系统适用于边坡体地表的三维位移监测,尤其适合于地形条件复杂、起伏大的边坡监测,在矿区地表沉降观测、采场或排土场边坡滑坡监测、大坝位移监测、地质滑坡监测、大桥结构健康检测广泛应用并取得很好的效益。
随着GNSS接收机发展很快,GNSS定位精度可达毫米级。
3、技术应用案例4、该系统的主要优点①该系统是全自动化监测系统,节省大量的人力、财力和物力;②不受气候条件的限制,能在大风、大雾、暴风雨等恶劣天气条件下全天候进行工作;③监测点和参考点之间无需通视;④能够直接测定监测点的三维坐标值;⑤自动化程度高,能够进行实时动态监测;⑥不同监测点可以进行同步测量;⑦避免人工读数和记录引起的人为误差;⑧每天可进行24小时连续监测;⑨可以准确记录失事事件时间,使之与外部因素相关联,比如降雨、地震、人工建造活动;⑩连续监测能快速检测到临界变化,能在事态恶化之前采取处理措施;自动化监测系统可以按程序步骤监测限定阀值、变化速率,从而能在超出预定极限值时自动报警;11通过该系统的子模块------视频监控系统可以实时的观测边坡区域的现实场景,能够在该区域出现突变时第一时间掌握现场情况,为决策者制定决策提供可靠的依据以便及时采取相关救援或者其他措施;5、基本功能和指标1)可对GNSS原始数据进行实时差分处理,数据更新率可达1Hz、5Hz、10Hz、20Hz;2)可根据系统参数设置,对不同的监测站的实时差分结果进行Kalman滤波,达到不同的动态要求和精度要求;3)最多可同时处理多个基站和32个监测站的数据;4)输入接口协议:RS232、CAN、TCP/IP;5)输出接口协议:TCP/IP;6)实时显示基线的变化情况,点位的移动情况等,软件包括如下视图:实时数据视图、实时网图、趋势图、卫星视图、三维视图、数据管理;7)原始数据、解算结果的自动保存功能,可根据用户需求进行设置;8)对监测站、基站接收机的远程设置功能,软件上有各个GNSS接收机的独立监控模块,可以向GNSS接收机发送用户更改参数的命令(如采样间隔、高度截止角等);9)系统完备性监测功能,可对整个系统的健康状况进行监测,包括软件和硬件,比如,一旦某个监测站出现死机现象,软件马上会通过数据信号触发的方式实现接收机自动重启;10)每个监控站的监控范围可根据用户设置,相应的精度可从1毫米到1厘米(根据解算时段的长短);11)回放功能。
回放功能分为两个层次:原始数据层,软件记录原始数据后,可以任意截取其中部分数据,并根据原始数据重新解算并回放的功能;历史状态层,即根据所选择的时段,对系统的实际工作状态进行回放;12)实时的数据采集的延迟不大于1秒;13)可以调整各个监测站的位置更新率;14)15)第三方软件接口,用COM组件的方式实现,可实现远程查询、管理、报警;16)报警功能,报警项可根据用户要求设定,可通过短信、电子邮件等方式进行报警。
17)权限管理:一般用户只能浏览数据,系统管理员才可能对一些参数进行设置;18)数据分析功能:根据用户要求,对监控点进行频域和时域分析;19)可靠性:7×24小时持续可靠工作。
6、监测点的选择及GNSS设备安装监测点的选择分为边坡地区监测点的选择和参考点的选择。
对边坡监测点的选择和参考点的选择具有不同的要求。
6.1参考站建设6.1.1参考点的选择参考点是变形监测的基础,必须保证坚固和稳定。
参考站要求建立在地基稳定的地点,同时GNSS参考站场地应满足以下要求:1)场地稳固,年平均下沉和位移小于3mm;2)视野开阔,视场内障碍物的高度不宜超过15°;3)远离大功率无线电发射源(如电视台,电台,微波站等),其距离不小于200m,远离高压输电线和微波无线电传送通道,其距离不得小于50m;4)尽量靠近数据传输网络;5)天线蹲的高度不低于2米;6)观测标志应远离震动源。
6.1.2参考站基建本案中基准站采用钢制观测墩,建设要求:1)钢制观测墩立杆镀锌厚度400克/平方米,然后表面喷塑;2)观测墩立杆底部不喷塑以保证可靠接地;3)观测墩立杆喷塑颜色RAL9001;4)焊缝均匀牢固,不虚焊、加焊;5)焊渣要清理,锐边倒钝;6)钢制观测墩立杆表面热镀锌后喷塑处理。