信号处理与数据分析 邱天爽作业答案(Part2)
信号处理与数据分析 邱天爽第11章作业答案

于是
Pxz ( z ) Pxx ( z ) 0.82 (1 0.6 z 1 )(1 0.6 z ) 0.82 1 0.3 z 1 1 0.3 z 1 2 G ( z )G ( z ) 1 (1 0.6 z )(1 0.6 z ) 1 0.6 z 1 1 0.6 z
Pxx ( s) Pss ( s) Pvv ( s)
其中:
1 1 5 2s 2 G ( s) 2 2 G ( s) 1 s 4s 1 s2 4 s 2
G (s)
2( 2.5 s ) 2( 2.5 s ) , G (s) (1 s )(2 s ) (1 s )(2 s )
2.(书稿 11.18)设系统模型为 x( n 1) 0.6x (n ) w (n ) ,观测方程为 z( n) x( n) v( n) ,其中 w( n) 为方差
2 w 0.82 的白噪声, v(n) 为方差 v2 1 的白噪声, v(n) 与 x ( n ) 互不相关。试求其离散维纳滤波器。
可以得到白化滤波器为
H w ( s) 1 (1 s )(2 s ) G (s) 2( 2.5 s)
又因为 Psx ( s ) Pss ( s ) ,因此可以得到
Psx ( s) Pss ( s ) 1 / (1 s)(1 s) 0.822 0.115 G (s) G (s) 2( 2.5 s) / (1 s)(2 s) 1 s 2.5 s
解:
由给定系统模型知 x n 是一阶广义平稳马尔可夫信号或 AR(1)信号,此信号可用白噪声 n 激励传递函数为
H ( z) 1 线性系统的输出产生。因此 z 0.6
《数字信号处理》复习思考题、习题(二)答案.doc

一、思考题1、C2、C3、D4、A5、D6、B7、D8、B9、C 10、A 11、C 12、C 13、A 14、A 15、B 16、C 17、A 18、C二、概念填空题1、(1)付氏级数(2) hd (n)(理想的单位脉冲响应)(3) R N(n)(N点矩形窗或N点矩形序列)(4) h (n)(单位脉冲响应)(5)吉布斯(6)波动(不平稳)(7)衰减(最小衰减)2、(8)(9)三角窗、汉宁窗、哈明窗、布莱克曼窗(10)过渡带(11)衰减3、(12)时(13) h (n)(数字滤波器单位脉冲响应)(14) h a(t)(模拟滤波器冲激响应)(15)频谱混叠(16 )折叠频率(兀/T)4、(17)偶对称(奇对称)(18)奇对称(偶对称)(19)〃二堕二1! (20)线性相位特性25、(21)时(22)窗函数(23)有限长(24)逼近6、(25)某种优化逼近方法(26)逼近(27)频率响应(28)最优三、判断说明题1、判断:正确简述:按照频率采样滤波器结构的推导,上述说法是正确的,这正是频率采样结构的一个优点。
但对于不同的频响形状,N个并联一阶节的支路增益H (k)不同。
2、判断:一致简述:由于对模拟滤波器而言,因果稳定系统传递函数H a(s)的极点均在S平面的左半平面,只要转换关系满足使S平面的左半平面转换到Z平面的单位圆内,就保证了转换后数字滤波器系统函数H (z) 的极点全部在Z平面的单位圆内,从而保证了系统的因果稳定性。
3、判断:不对简述:正确的表述应为:IIR滤波器只能采用递归型结构实现;FIR 滤波器一般采用非递归型结构实现,但也可使结构中含有递归支路。
就是说滤波器结构与特性没有必然的联系。
4、判断:一致简述:由于对模拟域而言,其频率轴就是S平面的虚轴j。
轴,而对数字域来说,其频率轴是z平面的单位圆,因此两者是一致的。
四、计算应用题1、解:1)容易将H (z)写成级联型的标准形式如下:)二(2 + 3广)(3-2广 + 广)H(Z一(4 —广)(1 + 0.9广—0.81厂2)0.5+ 3-2广+疽—— ________ z ______ * ___________________________________1 + 0.9/—0.81厂2显见,该系统的级联结构由一个直接II型一阶节和一个直接II型二阶节级联而成,因此容易画出该系统的级联型结构图如图A-1所示。
5_离散傅里叶变换与快速傅里叶变换

6 X (k ) X * (( N k )) N RN (k ), 若 x(n) imagenary
2016/6/2 大连理工大学 26
• 【满足圆周共轭对称性的序列】
2016/6/2
大连理工大学
27
• 【圆周卷积和性质】
– 若: DFT x1(n) X1(k ), DFT x2 (n) X 2 (k )
* * 2 DFT x (( n )) R ( n ) X (k ) N N 1 * 3 DFTRe x(n) X ep (k ) X (( k )) X (( N k )) N RN ( k ) N 2 1 * 4 DFT jIm x(n) X op (k ) X (( k )) X (( N k )) N RN ( k ) N 2 5 X (k ) X * (( N k )) N RN (k ), 若 x(n) real
( n) 和 a k 分别表示周期性信号和频谱。 –定义新符号: x
–定义矩形序列符号 RN (n) 和
RN (k )
为
1, 0 n N 1 1, 0 k N 1 RN (n) 或 RN (k ) 0, 其它 n 0, 其它 k
( n) 和 a k –有限长序列 x(n) 和 ak 可以认为是周期性序列 x 的一个周期。
谱或系统的频率响应也是数字化的。 –实际应用中的信号总是有限时宽的、且为非周期的。希 望信号频谱也是有限频宽、且非周期的。 –考察前面介绍的4种傅里叶级数或傅里叶变换,没有任
何一种能够满足这种需求。
–因此,发展新的傅里叶变换方法以适应数字信号处理实 际应用的要求称为数字信号处理理论的一个重要任务。 –这就为DFT的发展提供了需求和动力。
信号处理与数据分析 邱天爽作业答案第四章

号恢复 y(t ) 的采样周期 T 的范围。 解: y(t ) 利用傅里叶变换的性质,我们可以得到:
Y ( j)=X 1 ( j)X 2 ( j)
因此 Y ( j )=0, 1000 。这说明 y(t ) 的奈奎斯特采样频率为 2 1000 2000 ,采样周期最多维
2 2000 10 3 sec,因此采样周期 T 必须满足 T 103 sec,才能从采样信号中恢复 y(t ) 。
1 X ( j)=75X ( j) ,因此 0 的最大值为 50 。 T
3.( 书 稿 4.15) 设 x1 ( t ) 和 x2 ( t ) 均 为 带 限 信 号 , 它 们 的 频 谱 满 足 X 1 ( j) 0, | | 1000 ,
X 2 ( j) 0, | | 2000 。若 y (t ) x1 (t ) x2 (t ) ,对 y(t ) 进行单位冲激序列采样,试给出保证能从采样后信
sin(4000 t ) x (t ) t (3)
2
,因此采样频率至少为 2(4000 ) 8000 。
4000
,因此采样频率至少为 2(4000 ) 8000 。
4000
(3) x(t ) 对应的 X ( j) 可以看作两个举行脉冲的卷积,且两脉冲均在 至少为 2(8000 ) 16000 。
100
100
通过冲击序列采样的结果为:
G ( j)= 1 X ( j( ks )) T
其中 T 2 / s 1 / 75 ,因此 G(j) 如下图所示
250
100
100
250
ቤተ መጻሕፍቲ ባይዱ
很显然,当不存在频谱交叠时,即 50 , G ( j)=
信号处理-习题(答案)【方案】.doc

数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
信号处理与数据分析 邱天爽作业答案第二章(Part2)

3.
出 A 的值。 解:我们知道 H ( j)
1 j 1 j 1 2 1 2 1 ,因此 A 1 。
X (e j )
n 0
x ne
j n
n
1 2
n 1
e j n 1 2
n 1
n 1
eቤተ መጻሕፍቲ ባይዱ j n
1 1 1 e j j 2 1 1 2 e 1 1 2 e j 0.75e j 1.25 cos 3e j 5 4cos
1.
(书稿 2.22)计算下列各式的离散时间傅里叶变换:
1 (1) x ( n) 2
n 1
u ( n 1) ;
1 (2) x ( n) 2
| n 1|
;
(3) x(n) (n 1) (n 1)
解:
(1) x(n) 的离散时间变换为:
X (e j )
n
x(n)e
j n
因此,
FT x(n) X (e j )
由本题(1)可知:
FT x (n) X (e j )
所以,
FT x (n) X (e j )
如若为实信号则有: X (e j )=X (e j ) (书稿 2.31) 一因果稳定 LTI 系统的频率响应为: H j 1 j 。试证明 H j A ,并求
* (2) x ( n)
解: (1)因为
X (e j )
n
x(n)e
j n
我们可以写成:
X (e j )
信号分析与处理课程习题2参考解答-2010(共5篇)

信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。
信号处理与数据分析第十章作业答案(A).邱天爽.

习题10.5试说明周期图谱估计方法。
解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。
当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。
周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。
此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。
习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。
偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。
由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(b) 画出 x(t ) 和 h(t ) 的图形如下图所示: 1
1
h(t)
0
α
卷积后的图形如下图所示:
1
0
所以
1
α 1+α
t ,0 t 1 1,1 t y (t ) 1 t , t (1 ) 0, otherwise
1.(P24,课后习题 1.5(a,c,e) )试确定下列系统的(1)记忆性; (2) 时不变性; (3)线性; (4)因果性; (5)稳定性。 (a) y(t) x(t -2) + x(1- t) (c) y(t) sin 2t x(t) (e) y(n) (n 1) x(n)
x ( n ) u( n ), h( n ) e 3nu( n ) , n 8,8 ,
y( n )
x( n)
h( n)
的卷积运算,其中
并绘出计算结果的波形图。
解: clear all m=0; for n=-8:1:8 m=m+1; if n<0 x(m)=0; h(m)=0; else x(m)=1; h(m)=exp(-3*n); end end y=conv(x,h); m=-(length(y)-1)/2:(length(y)-1)/2; figure,stem(m,y)
...1/18
-2
1/6 1/2 -1 0 1 2 3 4
...
n
3.(P24,课后习题 1.8)设
1, 0 t 1 x(t ) , 0, 其余 t
h(t ) x (t / ) ,
(1) 计算并画出卷积 y(t ) x(t ) h(t ) 则 ?
解:
y t (2 ) 若 d() 仅含有 3 个不连续点, dt
T g t g (t 2) + g (1 t) x t 2 t0 + x 1 t t0 =x(t 2 t0 ) + x(1 t t0 )
又: y(t t0 ) x t t0 2 + x 1 t t0 =x(t t0 2) + x 1 t +t0 显然: T g t y(t t0 ) ,故为时变系统。
对于 n 0 ,则有
y ( n)
pn3n ( ) n 1 ( ) p ( ) n 1 1 2 3 3 p 0 3 1 3
因此:
3n ,n 0 y (n) 2 ( 1 ), n 0 2
2.(P24,课后习题 1.7)计算卷积并画出结果曲线
1 x ( n) u ( n 1), h( n) u ( n 1) 3
-n
解:利用定义可知,
y ( n) x ( n) h( n)
k
x ( k ) h( n k )
1 ( ) k u ( k 1)u ( n k 1) k 3
1.4
1.2
1
0.8
0.6
0.4
0.2
0 -20
-15
-10
-5
0
5
10
15
20
同理可以得到当 1 与 1 0 时的结果,这里不再详细给出。 (b)通过 y(t ) 的图形可以看出, 需要保证 1 。
d y (t ) 在 0, ,1, 1 处不连续,为保证有三个连续点, dt
4.( P24,课后习题 1.19,对 n 的范围进行了限制,必须利用 MATLAB 编程并画图) 试 利 用 MATLAB 编 程 实 现
又注:对于 T g t ,信号先经过系统再做时移; y (t t0 ) ,信号先做时移动再经过系统。
如果还不理解,做题可以这样判断:只要信号 x(t) 中 t 的系数不为 1, 则该系统必定为时变系
统,如本题中 x(1- t) , t 的系数为-1,不是 1,时变系统。此外,若信号 x(t) 的系数含有 t,该 系统也为时变系统,如 sin 2t x(t) ,系数为 sin 2t 含有 t,为时变系统。这是我做题自己积 累的经验,大家选择性使用。
k
( 3)
1
1
1
k
u ( n k 1)
k 1
( 3 ) u (n k 1)
k
用 p 代替 k -1 则,
1 y ( n ) ( ) p 1 u ( n p ) p0 3
对于 n 0 ,则有
1 1 1 1 y ( n ) ( ) p 1 1 3 3 2 p 0 1 3
解: (a)记忆,时变,线性,非因果性,稳定性; (c)无记忆,时变,线性,因果性,稳定性; (e)无记忆,时变,线性,因果性,不稳定性; 备注:本题中关于时变与时不变系统的判定,错误率较高,故特以(a)为例,时变性质解答如下: 设: g t x(t t0 ) ,且有 T x t x(t 2) + x(1 t) ,则:
(a)画出 x(t ) 和 h(t ) 的图形如下图所示: 0 1
利用该图形,得到 y(t ) x(t ) h(t ) 如图所示:
因此,
t ,0 t , t 1 y (t ) 1 t ,1 t (1 ) 0, otherwise