九年级上册数学公式法,因式分解法解一元二次方程巩固巩固练习题及答案详细解析
人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

21.2 解一元二次方程 21.2.3 因式分解法一、单项选择题1. 一元二次方程x 2-x +=0的根是( ) A ., B .x 1=2,x 2=-2 C .x 1=x 2= D .x 1=x 2=2. 方程3x 2=0与方程3x 2=3x 的解( )A .都是x=0B .有一个相同的解x=0C .都不相同D .无法确定3.解方程(x +5)2-3(x +5)=0,较为简便的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法4.方程x(x -4)=32-8x 的解是( )A .x =-8B .x 1=4,x 2=-8C .x 1=-4,x 2=8D .x 1=2,x 2=-85. 一个三角形的两边长为3和6,第三边的边长是方程(x-3)(x-4)=0的根,则这个三角形的周长( )A .13B .11或13C .11D .11和136、要使4452-+-x x x 的值为0,x 的值为( )A .4或1B .4C .1D .-4或-114112x =21=2x -12-127、已知x2-5xy+6y2=0,那么x与y的关系是()A.2x=y或3x=y B.2x=y或3y=xC.x=2y或x=3y D.x=2y或y=3x8、已知(a2+b2)2-2(a2+b2)+1=0,则a2+b2的值为()A.0 B.-1 C.1 D.±1二、填空题9.方程(x-1)(x+2)=2(x+2)的根是__________.10.如果代数式3x2-6的值为21,那么x的值为__________.11.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是______.12. 一元二次方程x(x-1)=0的解是__________.13. 一元二次方程x2-3x=0的根是__________.14. 方程(x+1)(3x-2)=0的根是15. 请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程:16. 已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一根为0,则m=y=17. 若2x2+9xy-5y2=0,则x三、解答题18. 用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.19. 如果方程x2+mx-2m=0的一个根为-1,求方程x2-6mx =0的根.20. 用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,求m的值.21. 若m是关于x的方程x2+nx+m=0的根,切m≠0,则m+n的值是多少?22. 有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4cm,大正方形的面积比小正方形面积的2倍少32cm2,求这两个正方形的边长.23. 阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ①,那么原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原 方程的解为x 1=2,x 2= -2,x 3=5,x 4= -5解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想。
人教版九年级上册数学第二十一章 一元二次方程单元练习题附详细解析学生版

人教版九年级上册数学第二十一章一元二次方程单元练习题附详细解析一、单选题1.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A.a<2 B.a>2C.a<2且a≠1D.a<-22.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007B.2005C.﹣2007D.40103.一元二次方程x2-kx-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.用配方法解方程时,原方程应变形为()A.B.C.D.5.方程-x2+3x=1用公式法求解,先确定a,b,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-16.下列方程中,有两个不相等实数根的是().A.x2-4x+4=0B.x2+3x-1=0C.x2+x+1=0D.x2-2x+3=07.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是()A.k>-1或k≠0B.k≥-1C.k≤-1或k≠0D.k≥-1且k≠08.参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为()A.12x(x−1)=10B.x(x−1)=10C.12x(x+1)=10D.2x(x−1)=109.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−x)(20−x)=32×20−570B.32x+2×20x=32×20−570C.32x+2×20x−2x2=570D.(32−2x)(20−x)=57010.直角三角形两条直角边的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.7二、填空题11.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为。
九年级上第02讲 一元二次方程的解法(公式法、因式分解法)讲义+练习

因式分解法解一元二次方程.
【知识导图】
1、观察一元二次方程 ,结合我们上节课学的知识解此方程.
2、思考这个一元二次方程还有没有其它的解法?
3、今天我们学习一元二次方程另外的解法:公式法、因式分解法.
1、形成表象,提出问题
用配方法解下列一元二次方程:
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,
x2﹣3x+2=0,
(x﹣1)(x﹣2)=0,
x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2,
一元二次方程的解法
(配方法和因式分解法)
适用学科
初中数学
适用年级
初三
适用区域
人教版区域
课时时长(分钟)
120
知识点
1、根的判别式;
2、公式法解一元二次方程;
3、因式分解法解方程.
教学目标
1、掌握公式法解一元二次方程的方法.
2、掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.
教学重点
能根据题目的要求及特点用恰当的方法求解方程.
我们仍以方程x2=4为例.
移项,得x2-4=0,
对x2-4分解因式,得(x+2)(x-2)=0.
我们知道:
∴x+2=0,x-2=0.
即x1=-2,x2=2.
人教版九年级数学上册因式分解法解一元二次方程练习题

因式分解法解一元二次方程1、方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-82、下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A .x =21B .x =2C .x =1D .x =-13、方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 4、方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对5、方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=56、已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .117、用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12;(6)3x 2+2x -1=0;(7)10x 2-x -3=0;(8)(x -1)2-4(x -1)-21=0.(9)x 2-4x +3=0; (10)x 2-2x -3=0; (11)(2t +3)2=3(2t +3);8、解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;9、已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.10、已知x 2+3x +5的值为9,试求3x 2+9x -2的值.综合训练题一、填空:1.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m时为一元二次方程。
(必考题)初中九年级数学上册第二十一章《一元二次方程》经典练习卷(答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+=B 解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.4.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050D 解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D 解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x ==A 解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1,故选:A.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.8.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=x2=,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8 B.3,4 C.4,3 D.4,8D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.10.已知方程2202030x x+-=的根分别为a和b,则代数式2a a2020ab++的值为()A.0 B.2020 C.1 D.-2020A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)249【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或 解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.14.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.16.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0 解析:6【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值.【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6,即m 2﹣5m ﹣6=0.∴(m ﹣6)(m +1)=0,解得m 1=6,m 2=﹣1.∵m =x 2+y 2≥0,∴x 2+y 2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.17.三角形两边长分别为3和5,第三边满足方程x2-6x+8=0,则这个三角形的形状是__________.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x1=4,x2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.18.若a是方程210++=的根,则代数式2x x2020a a--的值是________.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.解析:(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.解析:(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.25.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.解析:(1)54m ≤;(2)0m = 【分析】 (1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.解析:(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.解析:(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△,方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
北师大版九年级数学上册2.4 用因式分解法求解一元二次方程 同步练习(含参考答案)

2.4 用因式分解法求解一元二次方程一、选择题1.方程(x-2)(x+3)=0的解是( )A.x=2 B.x=-3C.x1=-2,x2=3 D.x1=2,x2=-32.方程x2-5x=0的解是( )A.x1=0,x2=-5 B.x=5C.x1=0,x2=5 D.x=03.方程(x+1)(x-2)=x+1的解是( )A.x=2 B.x=3C.x1=-1,x2=2 D.x1=-1,x2=34.在解方程(x+2)(x-2)=5时,甲同学说:由于5=1×5,可令x+2=1,x-2=5,解得x1=-1,x2=7;乙同学说:应把方程右边化为0,得x2-9=0,再分解因式,得(x+3)(x-3)=0,解得x1=-3,x2=3.对于甲、乙两名同学的做法,下列判断正确的是( )A.甲的错误,乙的正确B.甲的正确,乙的错误C.两人的都正确D.两人的都错误二、填空题5.一元二次方程7x2=2x的解为____________.6.一元二次方程x(x-1)=x的解是__________.7.若关于x的一元二次方程x2+bx+c=0的两根分别为-2和6,则x2+bx+c分解因式的结果是______________.8.已知一等腰三角形的底边长和腰长分别是方程x2-3x=4(x-3)的两个实数根,则该等腰三角形的周长是__________.9.已知(x2+4x-5)0=x2-4x+5,则x=________.三、解答题10.解下列方程:(1)4x2-225=0;(2)5x2+20x+20=0;(3)(2x-1)2=3x(2x-1);(4)4(x-3)2-25(x-2)2=0;(5)2(t-1)2+t=1;(6)2(x-3)2=x2-9;(7)(2x+1)2+4(2x+1)=-4.11.请选择适当的方法解下列方程:(1)(2x+3)2-25=0;(2)x2+2x-224=0;(3)2x(x-3)=x-3;(4)2x2+4x=-1.12.已知一个等腰三角形的三边长都满足方程(x-3)(x+3)=10(x-3),求这个等腰三角形的周长.13.阅读下列材料:(1)将x2+2x-35分解因式,我们可以按下面的方法解答:解:步骤:①竖分二次项与常数项:x2=x·x,-35=(-5)×(+7).②交叉相乘,验中项:7x-5x=2x.③横向写出两因式:x2+2x-35=(x+7)(x-5).我们将这种用十字交叉相乘分解因式的方法叫做十字相乘法.(2)根据乘法原理:若ab=0,则a=0或b=0.试用上述方法和原理解下列方程:①x2-10x+21=0;②x2+2x=8;③x2-5x-6=0.14 阅读例题,解答问题.例:解方程x2-|x|-2=0.解:当x≥0时,原方程变形得x2-x-2=0,解得x=-1(不合题意,舍去)或x=2;当x<0时,原方程变形得x2+x-2=0,解得x=1(不合题意,舍去)或x=-2. 综上所述,原方程的解是x1=2,x2=-2.依照上述解法解方程:x2-|x-1|-1=0.1.[答案] D 2.[答案] C3.[解析] D 由原方程移项,得 (x +1)(x -2)-(x +1)=0, ∴(x +1)(x -2-1)=0, ∴x +1=0或x -3=0, 解得x 1=-1,x 2=3. 故选D .4.[解析] A (x +2)(x -2)=5.整理,得x 2-9=0.分解因式,得(x +3)(x -3)=0,则x +3=0或x -3=0,解得x 1=-3,x 2=3.所以甲的错误,乙的正确.故选A .5.[答案] x 1=0,x 2=27[解析] 移项,得7x 2-2x =0, 左边分解因式,得x(7x -2)=0, ∴x =0或7x -2=0, ∴x 1=0,x 2=27.故答案为:x 1=0,x 2=27.6.[答案] x 1=0,x 2=2[解析] 原方程变形,得x(x -1)-x =0,x(x -2)=0,∴x 1=0,x 2=2. 7.[答案] (x -6)(x +2) 8.[答案] 10或11 9.[答案] 2[解析] 依题意知x 2-4x +5=1,x 2-4x +4=0,(x -2)2=0,解得x 1=x 2=2.当x =2时,x 2+4x -5≠0,所以x =2符合题意.10.解:(1)利用平方差公式分解因式,得(2x +15)(2x -15)=0, ∴2x +15=0或2x -15=0, ∴x 1=-7.5,x 2=7.5.(2)方程两边同除以5,得x 2+4x +4=0,写成平方形式,得(x +2)2=0,∴x +2=0, ∴x 1=x 2=-2.(3)(2x -1)(-x -1)=0, ∴x 1=12,x 2=-1.(4)[2(x -3)+5(x -2)][2(x -3)-5(x -2)]=0, (7x -16)(4-3x)=0,∴x 1=167,x 2=43.(5)2(t -1)2+(t -1)=0, (t -1)(2t -1)=0, ∴t -1=0或2t -1=0, ∴t 1=1,t 2=12.(6)右边分解因式,得2(x -3)2=(x +3)(x -3).移项,得2(x -3)2-(x +3)(x -3)=0.提公因式,得(x -3)[2(x -3)-(x +3)]=0.∴x -3=0或2(x -3)-(x +3)=0. 解得x 1=3,x 2=9.(7)(2x +1)2+4(2x +1)+4=0, (2x +1+2)2=0,∴x 1=x 2=-32.11.解:(1)(2x +3)2-25=0, 2x +3=±5, 解得x 1=1,x 2=-4. (2)x 2+2x -224=0, x +1=±15,解得x 1=14,x 2=-16. (3)2x(x -3)=x -3, 2x(x -3)-(x -3)=0, (x -3)(2x -1)=0, 解得x 1=3,x 2=12.(4)2x 2+4x =-1,即2x 2+4x +1=0, a =2,b =4,c =1,b 2-4ac =42-4×2×1=8>0,则x =-4±82×2,∴x 1=-1+22,x 2=-1-22.12.解:由(x -3)(x +3)=10(x -3), 得(x -3)(x -7)=0,∴x 1=3,x 2=7.(1)当腰长为3,底边长为7时,3+3<7,不能构成三角形; (2)当腰长为7,底边长为3时,周长l =7+7+3=17; (3)当三角形为边长为3的等边三角形时,周长l =3×3=9; (4)当三角形为边长为7的等边三角形时,周长l =7×3=21. 所以这个等腰三角形的周长为9,17或21. 13.解:①分解因式,得(x -3)(x -7)=0, ∴x -3=0或x -7=0,∴x 1=3,x 2=7. ②整理,得x 2+2x -8=0, 分解因式,得(x -2)(x +4)=0, ∴x -2=0或x +4=0, ∴x 1=2,x 2=-4.③分解因式,得(x -6)(x +1)=0, ∴x -6=0或x +1=0,∴x 1=6,x 2=-1.14 解:当x -1≥0,即x ≥1时,原方程变形得x 2-x =0,即x(x -1)=0, 解得x =0(不合题意,舍去)或x =1;当x -1<0,即x <1时,原方程变形得x 2+x -2=0,即(x -1)(x +2)=0, 解得x =1(不合题意,舍去)或x =-2. 综上所述,原方程的解是x 1=1,x 2=-2.。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(答案解析)

一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 2.关于x 的一元二次方程x 2﹣4x +2n =0无实数根,则一次函数y =(2﹣n )x +n 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 3.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( )A .12B .6或12C .8D .6 4.为美化家园环境,提升城市形象,我市近几年大力开展“五城联创”活动,2020年被评为国家文明城 市,推动了当地旅游产业的发展,2020年我市某景区旅游收入达到10亿元,预计到2022年该景区旅游收入将达到14.4亿元,则我市2021、2022年旅游收入的平均增长率为( )A .4.4%B .12%C .20%D .24%5.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,则4353x x x +-+的值为( )A .3B .4C .5D .6 6.方程220x x -=的根是( ) A .120x x == B .122x x == C .120,2x x == D .120,2x x ==- 7.某企业通过改革,生产效率得到了很大的提高,该企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3390万元.若设月平均增长率是x ,那么可列出的方程是( )A .1000(1+x )2=3390B .1000+1000(1+x )+1000(1+x )2=3390C .1000(1+2x )=3390D .1000+1000(1+x )+1000(1+2x )=33908.关于x 的一元二次方程2430x x -+=的实数根有( )A .0个B .1个C .2个D .3个9.已知a 是方程2210x x --=的一个根,则代数式224a a -+的值应在( ) A .4和5之间 B .3和4之间 C .2和3之间 D .1和2之间 10.在疫情期间,口罩的需求量急剧上升.某口罩生产企业四月份生产了口罩200000只, 如果要在第二季度总共生产728000只口罩,设生产口罩月平均增长的百分率为x ,则可根据题意列出的方程是( )A .()22000001+728000x =B .()32000001+728000x =C .()()22000001+2000001+728000x x +=D .()()2200000+2000001+2000001+728000x x +=11.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有( )个; ①方程220x x --=是倍根方程;②若()()20x mx n -+=是倍根方程,则22450m mn n ++=;③若p 、q 满足2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,则必有229b ac =.A .1B .2C .3D .4 12.关于x 的方程2690kx x -+=有实数根,k 的取值范围是( ) A .1k <且0k ≠ B .1k < C .1k 且0k ≠ D .1k 二、填空题13.若实数a 、b (a ≠b )满足2850a a -+=,2850b b -+=,则+a b 的值_______. 14.若关于x 的一元二次方程()22367120m x x m m -++-+=有一个根是0,那么m 的值为______.15.已知2x =是方程220x bx +-=的一个根,则方程的另一个根为____.16.关于x 的一元二次方程2(3)10k x x -++=有实数根,则k 的最大整数值为________.17.用换元法解方程221x x -﹣21x x -=1,设y =21x x-,那么原方程可以化为关于y 的整式方程为_____.18.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.19.关于x 的方程21090x x ++=的实数根为______.20.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 _________%.三、解答题21.解方程:24120x x --=.22.用适当的方法求解下列方程:(1)2210x x --=;(2)2(4)5(4)x x +=+.23.用适当的方法解下列方程:(1)3x 2+x =0;(2)x 2﹣x ﹣2=0.24.阅读材料:若22228160x xy y y -+-+=,求x ,y 的值.解:∵22228160x xy y y -+-+=∴()()22228160x xy yy y -++-+= ∴()()2240x y y -+-=∴()20x y -=,()240y -= ∴4,4y x ==根据上述材料,解答下列问题:(1)2222210m mn n n -+-+=,求2m n +的值;(2)6a b -=,24130ab c c +-+=,求a b c ++的值.25.若关于x 的方程(3)(2)x x p --=有两个不相等的实数根,求p 的取值范围. 26.解下列方程:(1)24830x x --=; (2)2(3)5(3)x x +=+.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围.【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B .【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.C解析:C【分析】由一元二次方程根的情况可以求出n 的范围,并可得到一次函数中参数的范围,从而得到问题解答.【详解】解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(2n )=16﹣8n <0,解得:n >2,∵一次函数y =(2﹣n )x +n 中,k =2﹣n <0,b =n >0,∴该一次函数图象在第一、二、四象限,故选:C .【点睛】本题考查一次函数的综合应用,熟练掌握一元二次方程根判别式的计算和应用、一次函数的图象与性质是解题关键.3.D解析:D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=,(x-6)(x-2)=0,∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2,∴菱形面积为162=62⨯⨯, 故选:D .【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 4.C解析:C【分析】利用一元二次方程的平均增长率列方程求解即可.【详解】解:设平均增长率为x ,根据题意,得102(1)x +=14.4,解得x=0.2或x=-2.2(舍去),所以x=0.2即平均增长率为20%,故选C.【点睛】本题考查了一元二次方程的平均增长率问题,熟练掌握解题模型是解题的关键.5.D解析:D【分析】先求得x 2=x+1,再代入4353x x x +-+即可得出答案.【详解】解:∵x 2-x-1=0,∴x 2=x+1,∴4353x x x +-+=(x+1)2+x(x+1)-5x+3=x 2+2x+1+x²+x-5x+3=2x 2-2x+4=2(x+1)-2x+4=2x+2-2x+4=6,故选:D .【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.6.C解析:C【分析】本题可用因式分解法,提取x 后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x .【详解】解:∵x 2-2x=0∴x (x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C .【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用7.B解析:B【分析】月平均增长的百分率是x ,则该超市二月份的营业额为1000(1+x )万元,三月份的营业额为1000(1+x )2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长的百分率是x ,则该超市二月份的营业额为1000(1+x )万元,三月份的营业额为1000(1+x )2万元,依题意,得1000+1000(1+x )+1000(1+x )2=3990.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:一元二次方程2430x x -+=的根的判别式为:b 2-4ac=(-4)2-4×3×1=4>0,所以,方程有两个不相等的实数根,故选:C .【点睛】本题考查了一元二次方程根的判别式,求出根的判别式的值是解题关键.9.A解析:A【分析】先依据一元二次方程的定义得到a 式的取值范围.【详解】解:∵a 是方程2210x x --=的一个根,∴2210a a --=,即221a a -=,∴原式=22(2)2a a -=+∵459, ∴23<<,∴425<+<,即224a a -+的值在4和5之间,故选:A .【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.10.D解析:D【分析】根据题意生产口罩月平均增长的百分率为x ,四月份生产了口罩200000只,第二季度总共生产728000只口罩,由此列出方程即可.【详解】解:设生产口罩月平均增长的百分率为x ,四月份生产了口罩200000只,∴五月份生产了口罩()2000001x +只,∴六月份生产了口罩()22000001+x 只, 又在第二季度四、五、六3个月总共生产了728000只口罩, ∴列式为:()()2200000+2000001+2000001+728000x x +=.故选:D .【点睛】此题考查一元二次方程的实际应用问题,属于增长率问题,根据题意列出等式是解决本题的关键.11.C解析:C【分析】①求出方程的解,再判断是否为倍根方程;②根据倍根方程和其中一个根,可求出另一个根,进而得到m 、n 之间的关系,而m 、n 之间的关系正好适合;③当p ,q 满足2pq =,则()()2310px x q px x q ++=++=,求出两个根,再根据2pq =代入可得两个根之间的关系,进而判断是否为倍根方程;④用求根公式求出两个根,当122x x =,或122x x =时,进一步化简,得出关系式,进行判断即可.【详解】解:①解方程220x x --=(x-2)(x+1)=0,∴x-2=0或x+1=0,解得,12x =,21x =-,得,122x x ≠,∴方程220x x --=不是倍根方程;故①不正确;②若()()20x mx n -+=是倍根方程,12x =,因此21x =或24x =,当21x =时,0m n +=,当24x =时,40m n +=,()()224540m mn n m n m n ∴++=++=,故②正确;③∵pq=2,则:()()2310px x q px x q ++=++=, 11x p∴=-,2x q =-, 2122x q x p ∴=-=-=, 因此是倍根方程,故③正确;④方程20ax bx c ++=的根为:1x =2x =,若122x x =2=,20-=,02b a+∴=,0b ∴+=,b ∴=-,()2294b ac b ∴-=,229b ac ∴=.若122x x =2=,20=,02b a-+∴=,0b ∴-+=,b ∴=,()2294b b ac ∴=-,229b ac ∴=.故④正确,∴正确的有:②③④共3个.故选:C .【点睛】本题考查一元二次方程的求根公式,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.12.D解析:D【分析】分两种情况:k =0时,是一元一次方程,有实数根;k 不等于0时,是一元二次方程,若有实数根,则根的判别式△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.【详解】解:0k =时,是一元一次方程,有实数根;k 不等于0时,是一元二次方程,根据题意,△0,∴△224(6)490b ac k =-=--⨯,解得1k ,故选:D .【点睛】本题考查了一元二次方程的定义及根与判别式的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题13.8【分析】直接用一元二次方程的韦达定理进行求解即可;【详解】∵a 是的解b 是的解∴ab 是方程的两个解∴故答案为:8【点睛】本题考查了一元二次方程的韦达定理正确理解公式的应用是解题的关键解析:8【分析】直接用一元二次方程的韦达定理进行求解即可 12b x x a +=-、12c x x a= ; 【详解】∵ a 是 2850a a -+= 的解,b 是2850b b -+=的解,∴ a 、b 是方程2850x x -+=的两个解, ∴ 881a b -+=-= , 故答案为:8.【点睛】 本题考查了一元二次方程的韦达定理,正确理解公式的应用是解题的关键.14.4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0再解关于m 的方程然后根据一元二次方程的定义确定满足条件的m 的值【详解】解:把x=0代入(m-3)x2+6x+m解析:4【分析】先把x=0代入(m-3)x 2+6x+m 2-7m+12=0得m 2-7m+12=0,再解关于m 的方程,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x=0代入(m-3)x 2+6x+m 2-7m+12=0得m 2-7m+12=0,解得m 1=4,m 2=3,∵m-3≠0,即:m≠3∴m 的值为4.故答案为:4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.15.【分析】利用一元二次方程的根与系数的关系定理中的两根之积计算即可【详解】设方程的另一个根为x ∵是方程的一个根∴根据根与系数关系定理得2x=-2解得x=-1故答案为:x=-1【点睛】本题考查了已知一元解析:1x =-.【分析】利用一元二次方程的根与系数的关系定理中的两根之积,计算即可.【详解】设方程220x bx +-=的另一个根为x ,∵2x =是方程220x bx +-=的一个根,∴根据根与系数关系定理,得 2x=-2,解得x=-1,故答案为:x=-1.【点睛】本题考查了已知一元二次方程的一个根求另一个根,熟练运用一元二次方程根与系数的关系定理,选择合适的计算方式是解题的关键.16.2【分析】由方程有实数根得到根的判别式的值大于等于0求出不等式的解集得到k 的范围即可确定出k 的最大整数值【详解】∵x 的一元二次方程有实数根∴∴∵∴∴k 的最大整数值为2故答案为:2【点睛】本题考查了一 解析:2【分析】由方程有实数根,得到根的判别式的值大于等于0,求出不等式的解集得到k 的范围,即可确定出k 的最大整数值.【详解】∵x 的一元二次方程有实数根,∴0∆≥,∴14(3)0k ∆=--≥,134k ≤, ∵30k -≠,∴3k ≠,∴k 的最大整数值为2.故答案为:2.【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.17.y2+y ﹣2=0【分析】可根据方程特点设y =则原方程可化为﹣y =1化成整式方程即可【详解】解:方程﹣=1若设y =把设y =代入方程得:﹣y =1方程两边同乘y 整理得y2+y ﹣2=0故答案为:y2+y ﹣2解析:y 2+y ﹣2=0【分析】可根据方程特点设y =21x x-,则原方程可化为2y ﹣y =1,化成整式方程即可. 【详解】 解:方程221x x -﹣21x x-=1, 若设y =21x x-, 把设y =21x x-代入方程得:2y ﹣y =1, 方程两边同乘y ,整理得y 2+y ﹣2=0.故答案为:y 2+y ﹣2=0.【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.18.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.【分析】利用因式分解法解方程【详解】解:(x+1)(x+9)=0∴x+1=0x+9=0∴故答案为:【点睛】此题考查解一元二次方程掌握解方程的方法:直接开平方法公式法配方法因式分解法根据每个一元二次方解析:11x =-,29x =-【分析】利用因式分解法解方程.【详解】解:21090x x ++=(x+1)(x+9)=0∴x+1=0,x+9=0,∴11x =-,29x =-.故答案为: 11x =-,29x =-.【点睛】此题考查解一元二次方程,掌握解方程的方法:直接开平方法、公式法、配方法、因式分解法,根据每个一元二次方程的特点选用恰当的解法是解题的关键.20.10%【分析】设平均每年下降的百分率是x 利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量列出方程解答即可【详解】设平均每年下降的百分率是x 解得x1=01=10x2=19(舍去)答:平均每解析:10%【分析】设平均每年下降的百分率是x ,利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量,列出方程解答即可.【详解】设平均每年下降的百分率是x ,250(1)40.5x -=,解得x 1=0.1=10%,x 2=1.9(舍去),答:平均每年下降的百分率是10%,故答案为:10%.【点睛】此题考查一元二次方程的实际应用—增长率问题,正确理解题意并掌握增长率问题计算公式是解题的关键.三、解答题21.122,6x x =-=.【分析】利用因式分解法求解即可.【详解】∵24120x x --=,∴(x 2)(6)0x +-=,∴122,6x x =-=,故原方程的根为122,6x x =-=.【点睛】本题考查了一元二次方程的解法,灵活选择因式分解法是解题的关键.22.(1)11x =21x =-2)14x =-,21x =【分析】(1)用公式法解方程即可;(2)用因式分解法解方程即可.【详解】解:(1)这里1a =,2b =-,1c =-∵()()224241180b ac -=--⨯⨯-=>,∴2121x ±==⨯即11x =+21x =-(2)∵()()2454x x +=+,∴()()24540x x +-+=, 则()()410x x +-=,∴40x +=或10x -=,解得14x =-,21x =.【点睛】本题考查了一元二次方程的解法,解题关键是根据方程的特点选择恰当的解法解方程. 23.(1)x 1=0,x 2=﹣13;(2)x 1=2,x 2=﹣1 【分析】(1)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)3x 2+x =0,x (3x+1)=0,x =0或3x+1=0,x 1=0,x 2=﹣13; (2)x 2﹣x ﹣2=0,(x ﹣2)(x+1)=0,x ﹣2=0或x+1=0,x 1=2,x 2=﹣1.【点睛】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键;24.(1)23m n +=;(2)2a b c ++=.【分析】(1)将方程2222210m mn n n -+-+=的左边分组配方,再根据偶次方的非负性,可求得mn 、的值,最后代入2m n +即可解题; (2)由6a b -=整理得,6+a b =,代入已知等式中,利用完全平方公式化简,最后由偶次方的非负性解题即可【详解】解:(1)∵2222210m mn n n -+-+=∴()()2222210m mn nn n -++-+= ∴()()2210m n n -+-=∴()20m n -=,()210n -= ∴1n =,1m n ==∴22113m n +=⨯+=;(2)∵6a b -=,∴6a b =+∵24130ab c c +-+=2(6)4130b b c c ∴++-+=∴22(69)(44)0b b c c +++-+=∴()()22320b c ++-= ∴()230b +=,()220c -= ∴3b =-,2c =∴()633a =+-=∴()3322a b c ++=+-+=.本题考查配方法的应用,涉及完全平方公式化简、偶次方的非负性,是重要考点,难度较易,掌握相关知识是解题关键.25.14p >- 【分析】根据根的判别式大于0列不等式即可.【详解】解:(3)(2)x x p --=,化简得,2560x x p -+-=,∵关于x 的方程(3)(2)x x p --=有两个不相等的实数根,∴()2425460b ac p -=-->, 解得,14p >-. 【点睛】 本题考查了一元二次方程根的判别式,解题关键是熟知一元二次方程有两个不相等的实数根时,判别式大于0.26.(1)121,1x x =+=;(2)123,2x x =-= 【分析】(1)根据配方法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)移项,得2483x x -=.方程两边都除以4,得2324x x -=. 方程两边都加1,得232114x x -+=+. 配方,得27(1)4x -=.开平方,得12x -=±.1x ∴=+,121,1x x ∴=+=. (2)移项,得(2(3)5(3)0x x +-+=.(3)(35)0x x ∴++-=, (3)(2)0x x ∴+-=, 123,2x x ∴=-=.【点睛】本题考查了解一元二次方程,熟练掌握解方程的方法是解题关键.。