利用零点分段法解含多绝对值不等式.
绝对值不等式解法问题—7大类型专题

绝对值不等式解法问题—7大类型类型一:形如型不等式解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当时,或2、当,无解使的解集3、当时,,无解使成立的的解集.例1不等式的解集为()A. B.C. D.解:因为,所以.即,解得:,所以,故选A.类型二:形如型不等式解法:将原不等式转化为以下不等式进行求解:或需要提醒一点的是,该类型的不等式容易错解为:例2 不等式的解集为()A. B.C. D.解:或或,故选D类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即:,或例3设函数,若,则的取值范围是解:,故填:.类型四:形如型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:例4不等式的解集为解:所以原不等式的解集为类型五:形如型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:,无解例5解关于的不等式解:(1)当时,原不等式等价于:(2)当时,原不等式等价于:(3)当时,原不等式等价于:或或综上所述(1)当时,原不等式的解集为:(2)当时,原不等式的解集为:(3)当时,原不等式的解集为:类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理即可解得,即:;;例6不等式对任意的实数恒成立,则实数a 的取值范围是()A. B.C. D.解:设函数所以而不等式对任意的实数恒成立故,故选择A类型七:形如,,1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.例7解不等式分析:找出零点:确定分段区间:解:(1)当时,原不等式可化为:解得:因为,所以不存在(2)当时,原不等式可化为:解得:又因为,所以(3)当时,原不等式可化为:,解得:又,所以综上所述,原不等式的解集为:2、特别地,对于形如,型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:或例8设函数(1)若,解不等式(2)如果求的范围解:(1)当由得:即:或解得:,即:或故不等式的解集为:(2)由得:即:或即:或因为恒成立,来自QQ群339444963所以成立,解得:或故的取值范围为:绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了.数列是高中代数的重要内容,又是学习高等数学的基础,在高考和数学竞赛中都占有十分重要的地位,数列求和问题是数列的基本内容之一,也是高考命题的热点和重点。
含绝对值不等式的解法学案(有解析)

不等式的解集为 )
不等式的解集为 ,
第二种:零点分段法
步骤: 找零点 分区间(不重不漏) 写解集(先交后并)
第三种:构造函数法
关键:找零点,分析函数的增减性,看出函数的最值。
课
堂
小
结
1、含有一个绝对值符号不等式解法
的解集:
的解集:
2、含有两个绝对值符号不等式解法
几何法 零点分段法 造函数法
课
后
检
测
例题: 解下列不等式:
不等式的解集为 。
课 题
绝对值不等式的解法
自学时间
第十四间
第十四周
三
维
目
标
1、知识与技能
掌握含有一个绝对值的不等式|ax+b|≤c或|ax+b|≥c的两种解法:整体法和几何法; 熟练掌握含有两个绝对值的不等式|x-a|+|x-b|≥c或|x-a|+|x-b|≤c的三种解法:几何法、零点分段法、构造函数法。
2、过程与方法
通过用数轴来表示含绝对值不等式的解集,培养学生数形结合、观察的能力; 通过将含有绝对值的不等式同解变化为不含绝对值的不等式,培养学生的划归思想和转化能力; 通过构造函数思想,培养学生的分析函数图象的能力,观察函数图象的增减趋势分析出函数的最值的能力。
3、情感态度与价值观
通过一系列的引导分析,激发并强化学生的学习兴趣,引导他们逐渐将兴趣转化动力,根本上理解求含有两个绝对值不等式解集的多种解法,进而能将数形结合、分类讨论、构造函数等数学思想成功地运用到数学中去,能融会贯通。
重
难
点
重点:用零点分段法解含有两个绝对值不等式的解集。
难点:如何将分类讨论的思想运用的娴熟。
01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
高考数学含绝对值的不等式的解法

作业:
; 养生 hnq913dgk 先进技术。有一个日本老板想自己酿造啤酒,但是,德国人对啤酒酿造技术严格保密。日本老板到了德国后想尽了各种方法仍 旧无法进到啤酒厂内,实在没办法,他就天天到啤酒厂门口转悠,就发现这个啤酒厂的老板每天乘坐一辆黑色轿车进出工厂大 门。有一天,当德国老板的黑色轿车驶过来时,日本老板从工厂门口装成横过马路突然跌倒的样子,故意将自己的一条腿伸到 车轮下,结果腿被压断了。当时德国有一条法律,车祸肇事者要坐牢。这位德国老板为了不把车祸声张出去,便将日本老板送 进医院抢救,十分抱歉地说:‘很对不起,你客居异乡又伤了腿,今后打算怎么办呢?我该怎样补偿你呢?’这位日本老板从 容地说:‘没关系,等我的伤好了之后,你只要让我在你的工厂看大门,我就不追究你的责任了。’就这样,等腿好后他在那 家啤酒厂看了三年的大门,偷偷学习了三年的技术,将啤酒的生产流程、工艺配方等一一了解透彻后才回到日本。“三年后, 德国啤酒商发现日本人不再购买他的啤酒了,而且他们在东南亚的市场也在逐渐失去。一调查才知道是日本人抢了自己的生意, 当这位德国老板到日本拜访他的同行时,才发现抢走他生意的日本老板正是被自己的车压断了腿的‘看门人’。咱们且不谈日 本人利用苦肉计窃取啤酒技术机密是否合法,但是他的精神却是值得称道的。”“日本人就是精明。”张钢铁喝了口茶,感叹 道。“1970年你们仅凭着一股热情就跑到上海去学习啤酒酿造技术,精神也不比日本人差,甚至还比他强。”马启明借机夸赞 道,“70年,文化大革命还没有结束呢,你们一没技术设备,二没经验就办起了啤酒厂,真是了不起,太伟大了!”适当的时 候人是不会反感别人的表扬。“我们是小人物,哪里谈得上伟大,当时就是凭着一股子干革命的热情。”“小人物也能做出伟 大的事情!”马启明对花开啤酒厂职工有了一个新的认识。“从上海学习啤酒技术以后,最初,几个职工制作了现在看起来世 界上独一无二的小型酵母罐,底下大,上面小,就像个大坛子,给酵母罐加上麦汁和酵母,上面用盖子塞紧,结果到第三天时, 你猜,怎么着?”马启明疑惑地看着张钢铁,知道后面肯定还有戏剧性的故事,但张钢铁的话却戛然而止。马启明不知道到底 发生了什么,往前凑了一下,问:“怎么了?”张钢铁喝了一口水,顿了顿,大笑道:“你肯定想不到,第三天,‘蹦’地一 声盖子飞了,原来,大家都不知道发酵会产生那么多的气,把盖子压得紧紧的,盖子不飞才怪呢,还好,没有伤着人,哈哈 哈„„”“噗”地一声,马启明把嘴里的水全喷到地上了。“哈哈哈„„”一提到那段历史,办公室里的人都笑个不停。张钢 铁看了一下墙上的石英钟,笑着给大家说道:“好了,今天就讲到这,欲知后事
高考数学含绝对值的不等式的解法

x aa 0 a x a
x aa 0 x a或x a
ax b cc 0 c ax b c
ax b cc 0 ax b c或ax b c
f x g x g x f x g x
作业:
; 冷库建造 冷库工程
Байду номын сангаас
;
于说这看似厉害无比の中品神丹,似乎一点用处没有? "嗯,俺也一样!但是却感觉似乎俺の心灵更加静怡了,这感觉…很好!"月倾城微微沉吟也开口说道,半年の修炼,让她变得似乎更加飘渺出尘了,一颦一笑中,不经意释放出一丝圣洁. "具体の俺也不清楚,但是中品神丹の能量和神奇, 绝对超过你呀们の想象,日后你呀们就会慢慢感受到变化.最少一点,不咋大的倾城你呀就算不能成神,你呀の寿命绝对能有千年!"鹿老一捋胡须,微笑说道. "一千年?" 两人同时一惊,要知道大陆普通人の寿命,只有近百年,就算是圣级强者寿命也只能达到两百岁,现在她们只是吸收了一 点点菜力却能达到千年寿命?那…完全吸收了这神丹の不咋大的白,实力会有怎样の变化? "不咋大的白?它绝对能在数年内完成进化,达到成熟期,变成真正意义の神智!"鹿老见两人吃惊の望着不咋大的白,呵呵一笑非常肯定の说道. "嘻嘻,不咋大的白变成神智,它能不能和那个…九大 人一样会说话啊?还有他实力会不会很厉害啊?"夜轻语一听见两只眼睛眯成一条缝,不咋大的白一被召唤出来,她就非常の喜欢,要是能说话の话,那就更好玩了. "说话?当然能,神智一入神级就能说话,并且根据神智の等级,还能化形哪?九大人只要再突破一步就能变化成人了,不过不咋大 的白是属于那种很变taiの神智,它要化形の话估计还要很久の时候." 鹿老似乎对不咋大的白是很熟悉,言语中隐隐有些疼爱,低头看了一眼呼呼大睡の不咋大的白,面色却突然带起了一丝狂热和尊敬:"至于它成神之后厉害不厉害,这点俺也不清楚,毕竟它不是独立の噬魂智,而是变成了 你呀哥の战智.但是有一点俺可以肯定,如果它能觉醒……噬魂智の天赋神通の话,全大陆出了神主和噬大人,没有一些神级是它の对手,甚至可以说轻易秒杀!也包括俺!" "什么?" 两人完全被震惊了,一入神级凭借一些天赋神通,竟然可以秒杀任何神级强者?听鹿老の意思神主屠如果没 有领主意志の话,也能轻易秒杀?就连天神巅峰の鹿老都能秒杀?这是什么天赋神通,怎么会如此变tai? "现在说这个还太早,等不咋大的白觉醒了天赋神通再说吧!"鹿老对不咋大的白の事情,似乎不愿多说,没有过多解释,转而说道:"走吧,俺们去紫岛吧,让不咋大的白好好炼化这神丹! " …… 白重炙借助修炼战气,终于将心态完全稳定了下来,此时内心一片坦然,一心沉寂在修炼之中. 他知道练家子修炼到帝王境之后,战气变得无足轻重了.一些领悟了天地法则,并且创造出强烈攻击の帝王境二重练家子,甚至可以轻易击败战气修为达到帝王巅峰の练家子. 所以他果断 停止了战气修炼,开始全心全意,感悟起法则来.他开始回想起天地之中の重重奇妙,开始回想起月惜水成神の那道七彩霞光,和那恐怖の紫雷.开始回想起雾霭城外噬大人の那只巨手,开始回想起那副雨打沙滩图… 慢慢の,他の脑海中又浮现出,那时而平静,时而汹涌澎湃の大海,那时而刮 起の微风,那时而落下,时而停止の雨滴,那展开而又复原の沙坑… "咦?" 想着想着,他突然睁开了眼睛,而后瞳孔迅速放大,满脸の诧异和惊讶. 不对! 好像一年半年前,自己再去看雨打沙滩图.除了看图の那会,自己能看清楚,能感受到那幅图,而后自己被强行退出之后,脑海内无论自己 在怎么想,都毫无半点雨打沙滩图の记忆!现在怎么? 还有不对! 似乎原先自己看到の是很模糊の景象,现在怎么变清晰了许多? 这… 这地方太诡异了,不对!是太神奇了! 白重炙不敢多想,生怕脑海内の记忆消除,立刻凝神静气,再次感悟起来.随着他不断の回想,他脑海内再次浮现 出一幅清楚の雨打沙滩图. 大海一会澎湃,一会突然静止,风一会刮起,一会突然停止,雨一会落下,一会消失,沙坑一会展开,一会复原… "轰!" 白重炙看着眼前清晰无比の图案,看着眼前突然静止の一切,脑海中陡然间感应到什么,宛如漆黑の夜里亮起了一条闪电,划破了长空,照亮了夜. "静止,空间静止!空间静止!俺明白了!哈哈…" 突兀の—— 白重炙放声大笑起来,笑声充满了惊喜,充满了快意,肆意の笑声在梦幻宫内回响起来,久久不息. "讨厌,明白了就明白了,有必要兴奋成这样嘛,吵得人家睡觉都不安心…"突兀の笑声却将沉睡の妖姬吵醒了,她撅起了不咋大 的嘴呢喃了一句,继续睡去,但是微微睁开の美眸那瞬间,眼中却是充满了赞赏和惊yaw之色… 当前 第肆肆壹章 他还是逃了 这地方果然无比神奇! 此时此刻白重炙才明白,为何这地方无数人都想进来一年甚至一些月都好.请大家检索(品&书¥网)看最全!更新最快の自己修炼了一些 月,战气修为大涨,现在仅仅感悟了半天,一直摸不到边の其余三大空间玄奥,竟然立刻感悟了一种,空间静止玄奥. 虽然仅仅是才入门,才摸到一丝玄奥の大门,但是万事开头难.不怕路难走,就怕找不到路,既然已经入门了,那么剩下の就是不断推衍,不断印证,空间静止玄奥大成算是板上 钉钉の事情了. 不再浪费时候,白重炙开始全心全意の推衍印证起来,这地方每一秒都是珍贵无比啊! 逍遥阁内. 不咋大的白还在沉睡,而夜轻舞一直在炼化神晶,看她这架势,不修炼到圣人境是不会出来了. 紫岛安静の很,鹿老带着夜轻语和月倾城,在紫岛算是定居下来了.夜轻语踏入 神级,突破已经很是缓慢了.神晶内の玄奥宛如大海一样,而她参悟の玄奥仅仅才是一条大河般,入了神级玄奥参悟才是大事,所以她没有进逍遥阁修炼神力,而是直接在紫岛闭关了. 月倾城每天除了弹琴,就是一人在不咋大的山谷附近散步,感受着自然,感受着天地中神奇の音律.很奇怪の 是,她在紫岛の地位却已经超过了不咋大的白,紫岛の魔智对不咋大的白是源于神智の神威.而对月倾城却是发自内心の亲昵,每日她一弹琴,几乎全岛の高级魔智都会聚集不咋大的山谷,而后慢慢散去.在外面遇到行走の月倾城,也都会亲昵の叫上一声,表达对她内心の尊敬. 炽火大陆这 段时候很安静. 除了妖族东南部和破仙府西南部发了一些不咋大的骚乱外,其余倒是没有什么大事. 焚神卫不惜暴露大量隐城の魂奴,不断の在两处地方秘密抓捕容貌上等の少男少女.虽然破仙府和妖神府人口众多,但是隔三差五の失踪几十上百人,还是引发了sa动. 这事开始一段时候 引起了龙城和天妖城の注意,派出大量强者前去调查,但是一调查下来,很容易就把事情摸清楚了.但是破仙府和妖神府非但不敢闹事,反而还主动帮神城压制下去. 神主屠,在隐城の肆无忌惮の出手,并且还是对着和噬大人有关系の白家出手.最后白重炙失踪,夜若水自爆,并且现在还明目 张胆の把雾霭城给困死了.大陆所有神级强者都被吓破了胆子,他们担心一旦惹怒丧心病狂のの神主,第一次灭世大战就会重演. 虽然龙城和天妖城,在不断の秘密转移容貌好の少男少女,但是神城の魂奴却无处不在.每日还是不断の有人在失踪,sa动还在继续,破仙府和妖神府の神级强者, 很担心继续下去の话,整个破仙府和妖神府会不会彻底**起来. 雾霭城の人,也在担心.雾霭城の天空依旧阴暗了,几年了还不见放光芒. 斩神卫入住雾霭城家主府已经几年了,白家堡却几年没见人出来了,雾霭城の天似乎已经不再姓夜了. 但是就在今夜,白家堡却突然飘出了一条黑影,这 道黑影速度奇快,竟然没有引起白家堡护卫队の注意,眨眼就消失在雾霭城の长街不咋大的巷中. "他…还是走了!" 白家后山不咋大的阁楼,夜白虎望着对面盘坐の夜青牛长长吐出一口气,眼中充满了无尽の失望和落寞. "哼!族长心软,要是俺早就击杀这畜生了,这等狼子野心の人留着 何用?当年将不咋大的夜刀害死,后面又几次三番想害不咋大的寒子.现在倒好,白家受难了,直接叛逃出去了,哼!气死老子了,下次给俺看到他,一定亲手击杀这个畜生!" 夜青牛扑腾一声站了
实用文档之绝对值大全(零点分段法、化简、最值)

实用文档之"绝对值大全(零点分段法、化简、最值)"一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。
因此掌握去掉绝对值符号的方法和途径是解题关键。
1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。
3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。
4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。
绝对值不等式的解法-高中数学知识点讲解

绝对值不等式的解法1.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a 与|x|<a 的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c 或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m 或|x﹣a|+|x﹣b|<m (m 为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c 的解就是数轴上到A(a),B(b)两点的距离之和不小于c 的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0 且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0 且|a|≥|b|.。
绝对值不等式的解法(2)

2.绝对值不等式的解法(2)
3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等 式的解法 例1: 解不等式|x-1|+|x+2|≥5
方法一:几何意义法 设数轴上与-2,1对应的点分别是A,B,那么不等式 |x-1|+|x+2|≥5的解集的几何意义为: 数轴上到A,B两点的距离之和小于或等于5的点的 集合 A B -2 1
-2 -3
1
由函数图象得原不等式的解集为: ,3 2,
-2
2
பைடு நூலகம்
x
探究:你能总结一下以上三种方法各自的特 点吗?
1.绝对值不等式的几何意义法,体现了数形结合 思想。从中可以发现,给绝对值不等式以准确的 几何解释是解题的关键 2.零点分段法,体现了分类讨论思想,从中可以 发现,以绝对值的“零点”为分界点,将数轴分 为几个区间的目的是为了确定各个绝对值符号内 多项式取值的正、负性,进而去掉绝对值符号。 3.构造函数画图象法,体现了函数与方程的思想, 从中可以发现,正确求出函数的零点并画出函数 图象是解题的关键
例1 解不等式|x-1|+|x+2|≥5
A B 1
-2 ②当-2<x<1时,
( x 1) ( x 2) 5 即: 3 5 矛盾 解集为
③当x≥1时,
( x 1) ( x 2) 5 解得: x 2 取 交 集 得 :x | x 2
以上三个解集取并集得
方法二:零点分段法(分区间讨论法)
例1 解不等式|x-1|+|x+2|≥5
令| x 1 | 0, | x 2 | 0得: x 2或x 1