七年级上册数学几何作图(讲义及答案)
(人教版)七年级上册数学期末复习:第4章《几何图形初步》解答题专练(含答案)

第4章《几何图形初步》解答题专题训练1.(2019秋•越秀区期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.2.(2019秋•龙岗区校级期末)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).3.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF与∠ACE的度数.4.(2019秋•肇庆期末)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图∠,若∠AOC=30°,求∠DOE的度数.(2)在图∠中,若∠AOC=a,求∠DOE的度数(用含a的代数式表示).(3)将图∠中的∠DOC绕顶点O顺时针旋转至图∠的位置,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.5.(2019秋•封开县期末)如图,∠AOB=90°,OE、OF分别平分∠BOC、∠AOB,如果∠EOF=60°.(1)求∠BOE的度数;(2)求∠AOC的度数.6.(2019秋•黄埔区期末)如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON=80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).7.(2019秋•斗门区期末)如图,O为直线AB上的一点,∠AOC=48°24′,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)OE是∠BOC的平分线吗?为什么?8.(2019秋•白云区期末)如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD =∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.9.(2019秋•光明区期末)填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,∠AOC所以∠COD=12因为OE是∠BOC的平分线,所以∠COE=12所以∠DOE=∠COD+=12(∠AOC+∠BOC)=12∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+=°10.(2019秋•潮阳区期末)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的体积.11.(2019秋•海珠区期末)如图,有一个长方形纸条ABCD,点P,Q是线段CD上的两个动点,且点P始终在点Q左侧,在AB上有一点O,连结PO、QO,以PO,QO为折痕翻折纸条,使点A、点B、点C、点D分别落在点A′、点B′、点C′、点D′上.(1)当∠POA=20°时,∠A'OA=°.(2)当A′O与B′O重合时,∠POQ=°.(3)当∠B′OA′=30°时,求∠POQ的度数.12.(2019秋•番禺区期末)如图,点D是线段AB上的任意一点(不与点A和B重合),C是线段AD的中点,AB=4cm.(1)若D是线段AB的中点,求线段CD的长度.(2)在图中作线段DB的中点E,当点D在线段AB上从左向右移动时,试探究线段CE长度的变化情况.13.(2019秋•潮阳区期末)已知:如图,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度数.(2)在(1)的条件下(图2),射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,OP平分∠EOD,OQ 平分∠AOF,求∠POQ的度数.14.(2019秋•云浮期末)如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.15.(2019秋•顺德区期末)已知线段m、n.(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.16.(2019秋•顺德区期末)如图,Rt∠ABC中,∠C=90°,AC=15,面积为150.(1)尺规作图:作∠C的平分线交AB于点D;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D到两条直角边的距离.17.(2019秋•惠城区期末)如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.18.(2019秋•东莞市期末)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)若∠AOC=50°,求∠COE和∠BOE的度数;(2)猜想:OE是否平分∠BOC?请直接写出你猜想的结论;(3)与∠COD互余的角有:.19.(2019秋•南海区期末)两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm,高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?20.(2019秋•揭西县期末)如图,OC是∠AOB的平分线,∠COD=3∠BOD,∠BOD=20°,求∠COD、∠BOC、∠AOD 的度数.21.(2019秋•南海区期末)已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD (1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为.(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC<180°),试求出∠MON的大小.22.(2019秋•罗湖区期末)如图,一渔船在海上点E开始绕点O航行,开始时E点在O点的北偏东43°40′,然后∠COB.绕O点航行到C,测得∠COE=2∠AOE继续绕行,最后到达D点且OD=3海里,∠COD=12(1)求∠BOC的度数;(2)说明渔船最后到达的D点在什么位置.23.(2019秋•怀集县期末)如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.则(1)∠AOC的补角是;(2)∠AOC的余角是;(3)∠COF的补角是;(4)∠EOF的余角是.24.(2019秋•香洲区期末)如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=;(2)先化简,再求值:(2a2﹣5b)﹣3(a2﹣b).25.(2019秋•中山市期末)直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.26.(2019秋•香洲区期末)已知点O为直线AB上一点,将一个直角三角板COD的直角顶点放在点O处,并使OC边始终在直线AB的上方,OE平分∠BOC.(1)如图1,若∠DOE=70°,则∠AOC=°;(2)如图1,若∠DOE=α,求∠AOC的度数;(用含α的式子表示)(3)如图2,在(2)的条件下,若在∠AOC的内部有一条射线OF,(∠AOF﹣∠DOE),试确定∠AOF与∠DOE之间的数量关系,并说明理由.满足∠BOE=1227.(2019秋•福田区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?28.(2019秋•惠城区校级期末)如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)∠∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.∠三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?29.(2019秋•南山区期末)如图所示,已知线段AB,点P是线段AB外一点.(1)按要求画图,保留作图痕迹;∠作射线P A,作直线PB;∠延长线段AB至点C,使得AC=2AB,再反向延长AC至点D,使得AD=AC.(2)若(1)中的线段AB=2cm,求出线段BD的长度.30.(2019秋•盘龙区期末)如图,线段AB=8,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;BC,求AE的长.(2)若在线段AB上有一点E,CE=1431.(2019秋•普宁市期末)如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.32.(2019秋•福田区校级期末)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.参考答案与试题解析一.解答题(共32小题)1.【解答】解:(1)如图,AC =9,BC =6,则AB =AC =BC =9+6=15, ∠AM =2MC ,BN =2NC .∠MC =13AC =3,NC =13BC =2, ∠MN =MC +NC =3+2=5,答:MN 的长为5;(2)由(1)得,MN ═MC +NC =13AC +13BC =13AB , 若MN =5时,AB =3MN =15,答:AB 的长为15.2.【解答】解:(1)∠OM 平分∠AOB ,ON 平分∠COD∠∠AOB =2∠MOB =30°,∠COD =2∠NOD =20°∠∠AOD =∠AOB +∠BOC +∠COD =30°+25°+20°=75°(2)∠∠AOD =75°,∠MON =55°,∠∠AOM +∠DON =∠AOD ﹣∠MON =20°,∠∠BOM +∠CON =∠AOM +∠DON =20°,∠∠BOC =∠MON ﹣(∠BOM +∠CON )=55°﹣20°=35°,(3)∠OM 平分∠AOB ,ON 平分∠COD ,∠∠AOM =∠BOM =12∠AOB ,∠CON =∠DON =12∠COD , ∠∠BOC =∠MON ﹣∠BOM ﹣∠CON=∠MON −12∠AOB −12∠COD =∠MON −12(∠AOB +∠COD ) =∠MON −12(∠AOD ﹣∠BOC )=β−12(α﹣∠BOC ) =β−12α+12∠BOC , ∠∠BOC =2β﹣α.3.【解答】解:(1)如图1,∠∠ACB =90°,∠BCE =40°, ∠∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =70°,∠∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°;故答案为:20°;(2)如图1,∠∠ACB =90°,∠BCE =α°,∠∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α,又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =90°−12α,∠∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∠∠BCE =150°,∠∠BCD =30°,∠CF 平分∠BCD ,∠∠BCF =12∠BCD =15°, ∠∠ACF =90°﹣∠BCF =75°,∠ACD =90°﹣∠BCD =60°,∠∠ACE =180°﹣∠ACD =120°.4.【解答】解:(1)由已知得∠BOC =180°﹣∠AOC =150°,又∠∠COD 是直角,OE 平分∠BOC ,∠∠DOE =∠COD −12∠BOC =90°−12×150°=15°; (2)由(1)知∠DOE =∠COD −12∠BOC , ∠∠DOE =90°−12(180°﹣∠AOC )=12∠AOC =12α;(3)设∠AOC =α,则∠BOC =180°﹣α,∠OE 平分∠BOC ,∠∠COE =12×(180°﹣α)=90°−12α, ∠BOD =90°﹣(180°﹣α)=α﹣90°,∠∠COE =2∠DOB ,∠90°−1α=2(α﹣90°),2解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.5.【解答】解:(1)∠∠AOB=90°,OF平分∠AOB,∠AOB=45°∠∠BOF=12又∠∠EOF=60°,∠∠BOE=60°﹣45°=15°;(2)∠OE平分∠BOC,∠∠BOC=2∠BOE=30°.∠∠AOC=∠AOB+∠BOC=120°.6.【解答】解:(1)∠∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∠∠BOM+∠CON=80°﹣40°=40°,∠OM平分∠AOB,ON平分∠COD,∠∠AOM=∠BOM,∠DON=∠CON,∠∠AOM+∠DON=40°,∠∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∠∠AOD=x°,∠MON=80°,∠∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∠∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∠∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.7.【解答】解:(1)∠∠AOC=48°24′,OD平分AOC,∠AOC=24°12′,∠∠1=∠2=12∠∠BOD=180°﹣∠1=180°﹣24°12′=155°48′;(2)OE是∠BOC的平分线.理由如下:∠∠DOE=∠2+∠3=90°,∠2=24°12′,∠∠3=90°﹣24°12′=65°48′,∠∠BOD=∠DOE+∠4=155°48′,∠∠4=155°48′﹣90°=65°48′,∠∠3=∠4=65°48′,∠OE是∠BOC的平分线.8.【解答】解:(1)∠∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∠∠AOC=∠BOD,∠∠AOD=120°,∠AOB=75°,∠∠AOC=∠BOD=120°﹣75°=45°,∠∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为:30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为:50;(3)不变;∠∠COD=∠AOB=75°,∠AOC=∠BOD,∠∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.9.【解答】解:故答案为:∠BOC,∠COE,90,∠AOD,∠DOE,155.10.【解答】解:(1)∠AB=x,若AD=4x,AN=3x,∠长方形DEFG的周长为2(x+2x)=6x,长方形ABMN的周长为2(x+3x)=8x;(2)依题意得8x﹣6x=8,解得:x=4,原长方体的容积为x•2x•3x=6x3,将x=4代入,可得体积6x3=384.故原长方体的体积是384.11.【解答】解:(1)根据折叠可知:OP平分∠A′OA∠∠A′OA=2∠POA=40°;故答案为40°;(2)当A′O与B′O重合时,∠AOA′+∠BOB′=180°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′=1(∠AOA′+∠BOB′)2=90°,故答案为90°;(3)当∠B′OA′=30°时,∠AOA′+∠BOB′=180°﹣∠B′OA′=150°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′+∠B′OA′=1(∠AOA′+∠BOB′)+∠B′OA′2=75°+30°=105°.当B'在A'左侧时,∠AOP+∠A′OP+∠BOQ+∠B′OQ﹣∠B′OA′=180°,即2∠A ′OP +2∠B ′OQ ﹣30°=180°,解得∠A ′OP +∠B ′OQ =105°,∠∠POQ =∠POA ′+∠QOB ′﹣∠B ′OA ′=105°﹣30°=75°.答:∠POQ 的度数为105°或75°.12.【解答】解:(1)∠AB =4,点D 在线段AB 上,点D 是线段AB 的中点, ∠AD =12AB =12×4=2, ∠点C 是线段AD 的中点, ∠CD =12AD =12×2=1;(2)因为点D 在线段AB 上,点C 是线段AD 的中点,点E 是线段BD 的中点, ∠CD =12AD ,DE =12BD ,∠CE =CD +DE =12AD +12BD =12(AD +BD )=12AB ,∠AB =4,∠CE =2,∠线段CE 长度不变.13.【解答】解:(1)当OB 、OC 运动到如图1的位置时,∠∠AOC +∠BOD =100°,∠∠AOC +∠COD +∠BOC =100°∠AOD +∠BOC =100°∠∠∠AOB +∠COD =40°,∠∠AOD ﹣∠BOC =40°∠∠+∠得2∠AOD =140°∠∠AOD =70°.∠∠BOC =30°答:∠AOD 的度数为70°.(2)在(1)的条件下(图2),∠射线OM 、ON 分别为∠AOB 、∠COD 的平分线,∠∠CON =12∠COD ,∠BOM =12∠AOB ∠∠MON =∠CON +∠BOM +∠BOC=12(∠AOB +∠COD )+∠BOC=12×40°+30°=50°.答:∠MON 的度数为50°.(3)在(1)的条件下(图3),OE 、OF 是∠AOD 外部的两条射线,∠EOB=∠COF=90°,∠OP平分∠EOD,OQ平分∠AOF,∠EOD∠∠POD=12∠AOF∠AOQ=12∠∠POQ=∠AOD+∠POD+∠AOQ(∠EOD+∠AOF)=70°+12=70°+1(∠EOB﹣∠BOD+∠COF﹣∠AOC)2[(90°+90°﹣(∠BOD+∠AOC)]=70°+12×100°=70°+90°−12=110°.答:∠POQ的度数为110°.14.【解答】解:(1)∠∠AOC=90°,∠BOD=90°,∠BOC=60°,∠∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;(2)设∠COD=x°,则∠BOC=100°﹣x°,∠∠AOC=110°,∠∠AOB=110°﹣(100°﹣x°)=x°+10°,∠∠AOD=∠BOC+70°,∠100°+10°+x°=100°﹣x°+70°,解得:x=30即,∠COD=30°;(3)当α=45°时,∠AOD与∠BOC互余;理由是:要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,∠∠AOB+∠BOC+∠COD+∠BOC=90°,即∠AOC+∠BOD=90°,∠∠AOC=∠BOD=α,∠∠AOC=∠BOD=45°,即α=45°,∠当α=45°时,∠AOD与∠BOC互余.15.【解答】解:(1)如图所示,线段AB即为所求;(2)如图,∠点O 是AB 的中点,∠AO =12AB =12(m +n ), 又∠AC =m ,∠OC =AC ﹣AO =m −12(m +n )=12m −12n , ∠当m =5,n =3时,OC =52−32=1.16.【解答】解:如图所示,(1)CD 即为所求作的∠C 的平分线交AB 于点D ;(2)在(1)的条件下,作DE ∠BC ,DF ∠AC 于点E 和F ,∠DE =DF ,∠∠C =90°,AC =15,面积为150,∠BC =20,∠S ∠ADC +S ∠BDC =S ∠ABC12AC •DF +12BC •DE =150 15DF +20DE =300DE =DF∠DE =607点D 到两条直角边的距离为607.17.【解答】解:(1)∠OE 平分∠BOC ,∠∠COE =∠BOE ,∠∠COD +∠COE =∠DOE =90°,∠∠COD +∠BOE =90°,与∠COD 互余的角有∠BOE 、∠COE ;故答案为:∠BOE 、∠COE ;(2)∠OE 平分∠BOC ,∠∠COE=∠BOE=30°,∠∠AOE=180°﹣30°=150°;(3)证明:∠OE是∠BOC的平分线,∠∠COE=∠BOE,∠∠DOE=90°,∠∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∠∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.18.【解答】解:(1)∠OD平分∠AOC,∠AOC=50°,∠∠COD=∠AOD=12∠AOC=12×50°=25°,∠∠DOE=90°.∠∠COE=∠DOE﹣∠COD=90°﹣25°=65°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣25°﹣90°=65°;(2)结论:OE平分∠BOC.理由:设∠AOC=2α,∠OD平分∠AOC,∠AOC=2α,∠∠AOD=∠COD=12∠AOC=α,又∠∠DOE=90°,∠∠COE=∠DOE﹣∠COD=90°﹣α,又∠∠BOE=180°﹣∠DOE﹣∠AOD=180°﹣90°﹣α=90°﹣α,∠∠COE=∠BOE,即OE平分∠BOC;(3)与∠COD互余的角有:∠COE、∠BOE.故答案为:∠COE、∠BOE.19.【解答】解:设倒完以后,第一个容器中的水面离容器口有xcm,则:π×42×(20﹣x)=π×62×8,解得:x=2,答:第一个容器中的水面离容器口有2 cm.20.【解答】解:∠∠BOD=20°,∠COD=3∠BOD,∠∠COD=60°,∠BOC=23∠COD,∠∠BOC=60°×23=40°,又∠OC是∠AOB的平分线,∠∠AOB=2∠BOC=2×40°=80°,∠∠AOD=∠AOB+∠BOD=80°+20°=100°.21.【解答】解:(1)如图1,∠∠AOB =90°,∠COD =20°,OM 平分∠AOC ,ON 平分∠BOD ∠∠DON +∠COM =12(∠BOD +∠AOC )=12(90°﹣20°)=35°, ∠∠MON =∠DON +∠COM +∠COD =35°+20°=55°,故答案为:55°.(2)能,如图1,∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD ,∠∠MON =∠NOD +∠DOC +∠MOC ,=12∠BOD +12∠AOC +20°,=12(∠BOD +∠AOC )+20°, =12(90°﹣20°)+20°,=55°.故答案为:55°,(3)∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD , ∠∠MON =∠NOD +∠DOC ﹣∠MOC ,=12∠BOD +20°−12∠AOC , =12(90°+∠AOD )+20°−12(∠AOD +20°), =45°+12∠AOD +20°−12∠AOD ﹣10° =55°.22.【解答】解:(1)E点在O点的北偏东43°40′,即∠BOE=43°40′,∠AOE=90°﹣43°40′=46°20′∠∠COE=2∠AOE=2×46°20′=92°40′,∠∠BOC=∠COE﹣∠BOE=92°40′﹣43°40′=49°,∠COB.(2)∠∠COD=12×49°=24°30′,∠∠COD=12∠∠BOD=∠BOC+∠COD=49°+24°30′=73°30′,∠OD=3海里,即:D点在O点的北偏西73°30′且距离O点3海里的位置.23.【解答】解:根据题意和图示可知:(1)∠AOC+∠BOC=180°,故答案为:∠COB;(2)∠3=∠4,∠AOC+∠3=90°,故答案为:∠3、∠4;(3)∠∠3=∠4,∠∠COF的补角是∠AOE,故答案为:∠AOE;(4)∠∠EOF+∠4=90°,∠∠4是∠EOF的余角,∠∠3=∠4,∠∠3也是∠EOF的余角,∠∠EOF的余角是∠3、∠4,故答案为:∠3、∠4.24.【解答】解:(1))∠纸盒中相对两个面上的数互为相反数,∠观察图形可知,a=﹣1,b=3.故答案为:a=﹣1,b=3;(2)原式=2a2﹣5b﹣3a2+3b=﹣a2﹣2b当a=﹣1,b=3时原式=﹣(﹣1)2﹣2×3=﹣7.25.【解答】解:(1)∠OC平分∠BOF,OE平分∠COB.∠∠BOE=∠EOC=1∠BOC,∠BOC=∠COF,2∠∠COF=2∠BOE,∠∠EOF=3∠BOE=90°,∠∠BOE=30°,(2)∠∠BOE+∠AOE=180°∠∠BOE的补角为∠AOE;∠∠EOC+∠DOE=180°,∠BOE=∠EOC,∠∠BOE+∠DOE=180°,因此∠∠BOE的补角为∠DOE;答:∠BOE的补角有∠AOE和∠DOE;26.【解答】解:(1)∠∠DOE=70°,∠COD=90°∠∠COE=90°﹣70°=20°,∠OE平分∠BOC.∠∠COE=∠BOE=20°∠∠AOC=180°﹣2∠COE=140°,故答案为:140.(2)解:∠DOE=α,∠COD=90°∠∠COE=90°﹣α,∠OE平分∠BOC∠∠BOC=2∠COE=180°﹣2α,∠∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(3)∠AOF+∠DOE=180°,∠∠BOE=1(∠AOF﹣∠DOE),2∠2∠BOE=∠AOF﹣∠DOE,∠∠BOC=∠AOF﹣∠DOE,∠180°﹣∠AOC=∠AOF﹣∠DOE,∠∠DOE=α,∠AOC=2α,∠∠AOC=2∠DOE,∠180°﹣2∠DOE=∠AOF﹣∠DOE,∠∠AOF+∠DOE=180°,即∠AOF与∠DOE互补.27.【解答】解:(1)OB是∠AOC的平分线,∠∠BOC=∠AOB=50°;∠OD是∠COE的平分线,∠∠COD=∠DOE=30°,∠∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∠∠AOC=2∠AOB=100°,∠∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∠OD是∠COE的平分线,∠COE=30°.∠∠COD=1228.【解答】解:(1)∠∠ACD=∠ECB=90°,∠DCE=35°,∠∠ACB=180°﹣35°=145°.∠∠ACD=∠ECB=90°,∠ACB=140°,∠∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∠∠ACE+∠ECD+∠DCB+∠ECD=180.∠∠ACE+∠ECD+∠DCB=∠ACB,∠∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)∠当∠ACB是∠DCE的4倍,∠设∠ACB=4x,∠DCE=x,∠∠ACB+∠DCE=180°,∠4x+x=180°解得:x=36°,∠α=90°﹣36°=54°;∠设当∠DCE=21°时,转动了t秒,∠∠BCD+∠DCE=90°,∠3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.29.【解答】解:(1)射线P A,直线PB、线段AC、AD为所作;(2)∠AC=2AB=2×2=4cm,∠AD=AC=4cm,∠BD=AD+AB=4+2=6(cm).30.【解答】解:(1)∠AB=8,C是AB的中点,∠AC=BC=4,∠D是BC的中点,∠CD=12BC=2,∠AD=AC+CD=6;(2)∠BC=4,CE=14BC,∠CE=14×4=1,当E在C的左边时,AE=AC﹣CE=4﹣1=3;当E在C的右边时,AE=AC+CE=4+1=5.∠AE的长为3或5.31.【解答】解:(1)若∠COE=40°,∠∠COD=90°,∠∠EOD=90°﹣40°=50°,∠OE平分∠AOD,∠∠AOD=2∠EOD=100°,∠∠BOD=180°﹣100°=80°;(2)∠∠COE=α,∠∠EOD=90﹣α,∠OE平分∠AOD,∠∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∠∠BOD=180°﹣(180﹣2α)=2α;(3)如图2,∠BOD+2∠COE=360°,理由是:设∠BOD=β,则∠AOD=180°﹣β,∠OE平分∠AOD,∠∠EOD=12∠AOD=180°−β2=90°−12β,∠∠COD=90°,∠∠COE =90°+(90°−12β)=180°−12β, 即∠BOD +2∠COE =360°.故答案为:80°.32.【解答】解:(1)∠∠ABC =54°, ∠∠A ′BC =∠ABC =54°,∠∠A ′BD =180°﹣∠ABC ﹣∠A ′BC =180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD ′=72°, ∠∠2=12∠DBD ′=12×72°=36°,∠ABD ′=108°, ∠∠1=12∠ABD ′=12×108°=54°, ∠∠CBE =∠1+∠2=90°.。
北师大版七年级上册数学1.3 截一个几何体(解析版)

1.3 截一个几何体一、单选题1.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是A.B.C.D.【答案】D【解析】【分析】根据圆柱体的截面图形可得.【详解】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到C选项的形状,不能得到三角形的形状,故选D.【点睛】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.2.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线【答案】B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B.【点睛】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.3.用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆柱B.球体C.圆锥D.以上都有可能【答案】A【解析】【分析】根据圆柱、球体、圆锥的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【详解】解:A、用一个平面去截一个圆柱,得到的图形可能是四边形,故A选项符合题意;B、用一个平面去截一个球体,得到的图形可能是圆,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项不符合题意;D、因为A选项符合题意,故D选项不合题意;故选A.【点睛】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形【答案】B【解析】分析:此题实质是垂直圆柱底面的截面形状;解:水面的形状就是垂直圆柱底面的截面的形状,即为长方形;故选B.5.用一个平面去截几何体,截面不可能是三角形的是()A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【解析】【分析】根据正方体、球体、棱柱、圆柱的形状特点判断即可.【详解】A、圆柱的截面跟圆、四边形有关,截面不可能是三角形,符合题意;B、过圆锥的顶点和下底圆心的面得到的截面是三角形,不符合题意;C、过三棱柱的三个面得到的截面是三角形,不符合题意;D、过正方体的三个面得到的截面是三角形,不符合题意.故选:A.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.6.用一个平面去截一个几何体,其截面形状是圆,则原几何体可能为()①圆柱①圆锥①球①正方体①长方体A.①①B.①①①C.①①①①D.①①①①①【答案】B【解析】【分析】根据圆柱、圆锥、球、正方体、长方体的形状进行判断即可,可用排除法.【详解】解:①圆柱的截面形状可能是圆,符合题意;①圆锥的截面形状可能是圆,符合题意;①球的截面形状一定是圆,符合题意;①正方体的截面形状不可能是圆,不符合题意;①长方体的截面形状不可能是圆,不符合题意;故选B.【点睛】本题考查了用平面去截一个几何体,截面的形状即与被截的几何体有关,还与截面的角度和方向有关.7.如图所示,用一个平面去截一个圆柱,则截得的形状应是(①A.B.C.D.【答案】B【解析】【分析】当截面的角度和方向不同时,圆柱体的截面不相同进行判断即可.【详解】解:平面平行圆柱底面截圆柱可以得到一个圆,而倾斜截得到椭圆,所以B选项是正确的.【点睛】本题考查的是截面位置与截面的关系, 解答的关键是知道截面位置不同所得截面可能不同;8.一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( )A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥【答案】C【解析】【分析】观察题目,每个选项中都有圆锥,而圆锥的截面可能是三角形,故可以判断A①B①D;根据圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆对C选项进行判断.【详解】圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆,也不会是三角形.故选C①【点睛】本题主要考查的是几何体的有关知识,熟练掌握常见几何体截面的形状是解答本题的关键.9.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.【答案】C【解析】试题分析:根据圆锥的形状特点判断即可,也可用排除法.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆或抛物线与线段组合体,所以不可能是直角形.故选;C.点评:此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.10.一个正方体锯掉一个角后,顶点的个数是① ①A.7个或8个B.8个或9个C.7个或8个或9个D.7个或8个或9个或10个【答案】D【解析】如下图,一个正方体锯掉一个角,存在以下四种不同的情形,新的几何体的顶点个数分别为:7个、8个、9个或10个.故选D.二、填空题11.正方体的截面中,边数最多的是________边形.【答案】六【解析】解:①用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,①最多可以截出六边形.故答案为:六.12.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是_____.【答案】圆柱【解析】【分析】首先当截面的角度和方向不同时,长方体的截面始终不是圆,无论什么方向截取圆锥都不会截得长方形,从而可用排除法可得答案.【详解】解:用一个平面截长方体,不管角度与方向,始终截不到圆,所以排除长方体,用一个平面截圆锥,不管角度与方向,始终截不到长方形,所以排除圆锥,用一个平面截圆柱,可以截到长方形与圆.故答案为:圆柱.【点睛】本题考查的是对基本的几何立体图形的认识,掌握长方体,圆柱,圆锥的特点是解题的关键.13.用一个平面去截下列几何体,截面可能是圆的是__________.(填写序号)①三棱柱;①圆柱;①圆锥;①长方体;①球【答案】①①①【解析】【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【详解】用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:①①①【点睛】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.14.小华用一个平面去截圆柱体,所得到的截面形状可能是_______(写出一个即可).【答案】长方形或梯形或椭圆或圆【解析】【分析】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行),竖着截时,截面是长方形(截面与两底面垂直)或梯形.【详解】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行).竖着截时,截面是长方形(截面与两底面垂直)或梯形.故答案为:长方形或梯形或椭圆或圆.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.下列说法:①球的截面一定是圆;①正方体的截面可以是五边形;①棱柱的截面不可能是圆;①长方体的截面一定是长方形,其中正确的有___________个【答案】3【解析】【分析】根据用一个平面截几何体,从不同角度截取所得形状会不同,进而分析得出答案.【详解】解::①球的截面一定是圆,说法正确;①正方体的截面可以是五边形,说法正确;①棱柱的截面不可能是圆,说法正确;①长方体的截面中,边数最多的多边形是六边形,也可以是三角形,故说法错误;故答案为:3.【点睛】本题考查了截面的形状.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.主要考查学生的观察图形的能力、空间想象能力和动手操作能力.16.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.【答案】三角形【解析】【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.17.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.n .【答案】五,六,七,2【解析】【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.18.一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成__ 块相等体积的蛋糕,十刀最多可切成____块(要求:竖切,不移动蛋糕).【答案】16 56【解析】当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+①1+2+3…+n①=1+()12n n+.n=5代入公式得16,n=10,代入公式得56.点睛:找规律题需要记忆常见数列1①2①3①4……n.1①3①5①7……2n-1.2①4①6①8……2n.2①4①8①16①32……2n.1①4①9①16①25 (2)2①6①12①20……n(n+1).学会常见数列的变形,才能具体问题找到规律.三、解答题19.(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有?(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有?【答案】(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【解析】(1)根据截面是圆,可得几何体是旋转体,根据旋转得到的几何体,可得答案;(2)根据截面与几何体的三个面相交,可得截面是三角形.【详解】(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有球,圆柱,圆锥;(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有三棱柱,三棱锥,正方体,故答案为:(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【点睛】此题考查截一个几何体,解题关键在于掌握图形的形状结构.20.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm ;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】【分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.21.如图,图①1①是正方体木块,把它切去一块,可能得到①2①①①3①①①4①①①5①所示的图形,问①2①①①3①①①4①①①5①图中切掉的部分可能是其他几块中的哪一块?【答案】①2①图切掉的部分可能是①3①图和①5①图,①3①图切掉的部分可能是①2①图,①5①图切掉的部分可能是①2①图.【解析】试题分析:如图所示,图(3)可能是通过如下图(6①方法切割得到的,切下去的就是图(2①①图(5)可通过如下图(7)方法切割得到的,切下的是图(2①.试题解析:(2)图切掉的部分可能是(3)图和(5)图,(3)图切掉的部分可能是(2)图,(5)图切掉的部分可能是(2)图.22.如图,用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【答案】(1)三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点.【解析】【分析】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【详解】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示:【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?【答案】8,12,6,1【解析】试题分析:在大正方体的顶点处的小正方体的三面都有色;有一条棱在大正方体的棱上的小正方体的两面有色,与大正方体没有公共棱的小正方体有一面有色,在大正方体的中心的小正方体各面都无色.试题解析:解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.24.如图①是一个正方体,不考虑边长的大小,它的平面展开图为图①,四边形APQC是截正方体的一个截面.问截面的四条线段AC,CQ,QP,PA分别在展开图的什么位置上?【答案】线段AC,CQ,QP,PA分别在展开图的面ABCD,BCGF,EFGH,EFBA上.【解析】【分析】把立体图形表面的线条画在平面展开图上,找到四边形APQC四个顶点所在的位置这个关,再进一步确定四边形的四条边所在的平面即可①【详解】根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面:顶点:A−A①C−C①P在EF边上,Q在GF边上.边AC在ABCD面上,AP在ABFE面上,QC在BCGF面上,PQ在EFGH面上.如图:【点睛】此题考查正方体的展开图,解决此题的关键是抓住四边形APQC四个顶点所在的位置,再进一步确定四边形的四条边所在的平面就可容易地画出.。
人教版初中七年级数学上册第四单元《几何图形初步》知识点复习(含答案解析)(1)

一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60°2.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上 D .点B 在线段DC 的延长线上3.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D4.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形5.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( ) A .3B .2C .3 或 5D .2 或 66.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°7.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒8.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ). A .不互余且不相等 B .不互余但相等 C .互为余角但不相等D .互为余角且相等 9.下列说法正确的是( ) A .射线PA 和射线AP 是同一条射线 B .射线OA 的长度是3cm C .直线,AB CD 相交于点 P D .两点确定一条直线 10.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B11.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( ) A .①④ B .②④ C .①②④ D .①②③④12.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cm A .2 B .3 C .5 D .6 13.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( ) A .7个面B .15条棱C .7个顶点D .10个顶点14.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .15.下列说法不正确的是( ) A .两条直线相交,只有一个交点 B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.17.如图,能用O ,A ,B ,C 中的两个字母表示的不同射线有____条.18.从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.19.已知点、、A B C 都在直线l 上,13BC AB =,D E 、分别为AC BC 、中点,直线l 上所有线段的长度之和为19,则AC =__________.20.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.21.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.22.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.23.如图所示,填空:(1)AOB AOC ∠=∠+_________;(2)COB COD ∠=∠-_________=_________-_________; (3)AOB COD AOD ∠+∠-∠=_________.24.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.25.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)26.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题27.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长; (2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 28.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图: ①射线BA ;②直线AD ,BC 相交于点E ;③延长DC 至F (虚线),使CF=BC ,连接EF (虚线). (2)图中以E 为顶点的角中,小于平角的角共有__________个.29.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.30.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.。
《好题》七年级数学上册第四单元《几何图形初步》-解答题专项经典练习题(含答案解析)

一、解答题1.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.2.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个. 【详解】 用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个) 【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.如图,有一只蚂蚁想从A 点沿正方体的表面爬到G 点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析. 【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论, 作图解答即可. 【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键. 6.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形. 【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案. 【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形. 【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别. 7.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.8.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析. 【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可. 【详解】(1)14-,85t -; (2)分两种情况: ①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =. ②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2; (3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.9.已知线段AB=12,CD=6,线段CD 在直线AB 上运动(C 、A 在B 左侧,C 在D 左侧). (1)M 、N 分别是线段AC 、BD 的中点,若BC=4,求MN ;(2)当CD 运动到D 点与B 点重合时,P 是线段AB 延长线上一点,下列两个结论:①PA PBPC+是定值; ②PA PBPC-是定值,请作出正确的选择,并求出其定值. 解析:(1)MN =9;(2)①PA PBPC+是定值2.【分析】(1)如图,根据“M 、N 分别为线段AC 、BD 的中点”,可先计算出CM 、BN 的长度,然后根据MN =MC +BC +BN 利用线段间的和差关系计算即可;(2)根据题意可得:当CD 运动到D 点与B 点重合时,C 为线段AB 的中点,根据线段中点的定义可得AC =BC ,此时①式可变形为()()PC AC PC BC PA PB PC PC++-+=,进而可得结论. 【详解】解:(1)如图,∵M 、N 分别为线段AC 、BD 的中点, ∴CM =12AC =12(AB ﹣BC )=12(12﹣4)=4, BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PBPC+=2. 如图,当CD 运动到D 点与B 点重合时, ∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC , ∴()()22PC AC PC BC PA PB PCPC PC PC++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC +---===,不是定值. ∴①PA PBPC+是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.10.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30° 【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数. 【详解】∵OE 平分∠AOB ,∠AOB=90° ∴∠BOE=∠AOB =45° 又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15° 又∵OF 平分∠BOC ∴∠BOC=2∠BOF=30° ∴∠AOC=∠AOB +∠BOC=120° 故∠AOC=120°,∠COB=30°. 【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.11.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.解析:见解析 【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是. 【详解】根据题意,分别以A 和B 所在位置作出不明物体所在它们的方向上的射线, 两线的交点D 即为不明物体所处的位置. 如图所示,点D 即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键. 12.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠. (1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α 【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决. 【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=, ∴907020COE ︒︒︒∠=-=. ∵OE 平分BOC ∠, ∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=. 故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=, ∴90COE α︒∠=-. ∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=. 【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 13.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置; (2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB 的值不会随着t 的变化而改变,理由见解析;【分析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm ,(3)不变,理由如下:当移动时间为t 秒时,点A. B. C 分别表示的数为−2+t 、−5−2t 、4+4t ,则CA=(4+4t)−(−2+t)=6+3t ,AB=(−2+t)−(−5−2t)=3+3t ,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB 的值不会随着t 的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 14.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE=∠AOE-∠AOB=53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===.所以127.5 4.5(cm)DE AE AD =-=-=.【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.18.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点, 所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点, 所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 19.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案.【详解】 (1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.21.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.解析:(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点, 所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键. 22.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】 (1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.23.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.解析:CE =10.4cm .【分析】根据中点的定义,可得AC 、BC 的长,然后根据题已知求解CD 、DE 的长,再代入CE=DE-CD 即可.【详解】∵AC=BC=12AB=12cm ,CD=13AC=4cm ,DE=35AB=14.4cm , ∴CE=DE ﹣CD=10.4cm. 24.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长.解析:7或3【分析】求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =, 12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.25.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC ,根据∠BOC 的余角的4倍等于∠AOD 即可得出结论.解:(1)∵OB 平分∠COD ,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC .∵∠AOD=4(90°﹣∠BOC ),∴180°﹣∠BOC=4(90°﹣∠BOC ),∴∠BOC=60°.考点:余角和补角;角平分线的定义.26.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.27.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.28.如图,OC是∠AOB的平分线,∠AOD比∠BOD大30°,则∠COD的度数为________.解析:15°【分析】设∠BOD=x,分别表示出∠AOD=x+30°,∠AOC= x+15°,即可求出∠COD.【详解】解:设∠BOD=x,则∠AOD=x+30°,所以∠AOB=2x+30°.因为OC是∠AOB的平分线,所以∠AOC=12∠AOB= x+15°,所以∠COD=∠AOD-∠AOC=15°.故答案为:15°【点睛】本题考查了角平分线的定义,角的和差等知识,理解角平分线的定义,并用含x的式子表示是解题关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。
甘肃省酒泉中学七年级数学上册第四单元《几何图形初步》-解答题专项知识点总结(含答案)

一、解答题1.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.2.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB =,求线段AC 的长度.解析:8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.3.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°, ∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.4.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:5.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A 处发现一只虫子在D 处,立刻赶去捕捉,你知道它怎样去的吗请在图中画出它的爬行路线,如果虫子正沿着DI 方向爬行,蚂蚁预想在点I 处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD 爬行;第二问取线段E J 的中点M ,连结AM 和MI ,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD 爬行;第二问取线段E J 的中点M ,连结AM 和MI ,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.6.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠, 8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 7.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.8.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒) ()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.解析:(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键. 9.已知线段AB=12,CD=6,线段CD 在直线AB 上运动(C 、A 在B 左侧,C 在D 左侧).(1)M 、N 分别是线段AC 、BD 的中点,若BC=4,求MN ;(2)当CD 运动到D 点与B 点重合时,P 是线段AB 延长线上一点,下列两个结论:①PA PB PC +是定值; ②PA PB PC -是定值,请作出正确的选择,并求出其定值. 解析:(1)MN =9;(2)①PA PB PC+是定值2. 【分析】(1)如图,根据“M 、N 分别为线段AC 、BD 的中点”,可先计算出CM 、BN 的长度,然后根据MN =MC +BC +BN 利用线段间的和差关系计算即可;(2)根据题意可得:当CD 运动到D 点与B 点重合时,C 为线段AB 的中点,根据线段中点的定义可得AC =BC ,此时①式可变形为()()PC AC PC BC PA PB PC PC ++-+=,进而可得结论.【详解】解:(1)如图,∵M 、N 分别为线段AC 、BD 的中点,∴CM =12AC =12(AB ﹣BC )=12(12﹣4)=4, BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PB PC+=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.10.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.11.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.解析:见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A 和B 所在位置作出不明物体所在它们的方向上的射线,两线的交点D 即为不明物体所处的位置.如图所示,点D即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.12.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)解析:(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,⨯⨯=(立方分米).所以甲型盒的容积为24540乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,⨯⨯=(立方分米),容积为2228故答案为40,8.⨯=(平方分米),(2)甲型盒的底面积为248⨯=(立方分米),两个乙型盒中的水的体积为8216÷=(分米).所以甲型盒内水的高度为1682答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.解析:【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项经典练习(课后培优)(1)

一、解答题1.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.2.如图所示,∠AOB=35°,∠BOC=50°,∠COD=22°,OE平分∠AOD,求∠BOE的度数.解析:5°【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3.如图,点B 和点C 为线段AD 上两点,点B 、C 将AD 分成2︰3︰4三部分,M 是AD 的中点,若MC =2,求AD 的长.解析:AD=36.【分析】根据点B 、C 将AD 分成2︰3︰4三部分可得出CD 与AD 的关系,根据中点的定义可得MD=12AD ,利用MC=MD-CD 即可求出AD 的长度. 【详解】∵点B 、C 将AD 分成2︰3︰4三部分,∴CD=49AD , ∵M 是AD 的中点, ∴MD=12AD , ∵MC=MD-CD=2,∴12AD-49AD=2, ∴AD=36.【点睛】 本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.(1)如图,AC =DB ,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m ,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD ;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC =BD ,∴AC -BC =DB -BC ,即AB =CD .(2)设首尾之间的距离为x ,由8棵树之间共有7段间隔,可得x =7×1.5=10.5(m ). 故答案为:10.5m .【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键. 6.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ;(2)若AC=6,求a 的值;(3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.7.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 8.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 9.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B、面C相对的面分别是和;(2)若A=a3+15a2b+3,B=﹣12a2b+a3,C=a3﹣1,D=﹣15(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.解析:(1)面F,面E;(2)F=12a2b,E=1【分析】(1)根据“相间Z端是对面”,可得B的对面为F,C的对面是E,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A与D,B与F,C与E,列式计算即可.【详解】(1)由“相间Z端是对面”,可得B的对面为F,C的对面是E.故答案为:面F,面E.(2)由题意得:A与D相对,B与F相对,C与E相对,A+D=B+F=C+E将A=a315+a2b+3,B12=-a2b+a3,C=a3﹣1,D15=-(a2b+15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.10.如图,点B、C在线段AD上,且::2:3:4AB BC CD=,点M是线段AC的中点,点N是线段CD上的一点,且9MN=.(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①.【详解】设AB=2x ,则BC=3x ,CD=4x .∴AC=AB+BC=5x ,∵点M 是线段AC 的中点,∴MC=2.5x ,∵点N 是线段CD 的中点,∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x , ∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x ,∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.11.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.12.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数;(2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.解析:(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.13.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.14.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.15.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.解析:见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A 和B 所在位置作出不明物体所在它们的方向上的射线,两线的交点D 即为不明物体所处的位置.如图所示,点D 即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.16.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.17.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.解析:【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
七年级数学上册第四单元《几何图形初步》-解答题专项(含答案)

一、解答题1.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠, 所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=. 综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.2.如图,点B 和点C 为线段AD 上两点,点B 、C 将AD 分成2︰3︰4三部分,M 是AD 的中点,若MC =2,求AD 的长.解析:AD=36.【分析】根据点B 、C 将AD 分成2︰3︰4三部分可得出CD 与AD 的关系,根据中点的定义可得MD=12AD ,利用MC=MD-CD 即可求出AD 的长度. 【详解】∵点B 、C 将AD 分成2︰3︰4三部分,∴CD=49AD , ∵M 是AD 的中点, ∴MD=12AD , ∵MC=MD-CD=2,∴12AD-49AD=2, ∴AD=36.【点睛】 本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.3.已知直线l 上有三点A 、B 、C ,AB=3,AC=2,点M 是AC 的中点.(1)根据条件,画出图形;(2)求线段BM 的长.解析:(1)见解析;(2)2或4.【分析】(1)分C 点在线段AB 上和C 点在BA 的延长线上两种情况画出图形即可;(2)利用(1)中所画图形,根据中点的定义及线段的和差故选,分别求出MB 的长即可.【详解】(1)点C 的位置有两种:当点C 在线段AB 上时,如图①所示:当点C 在BA 的延长线上时,如图②所示:(2)∵点M 是AC 的中点,AC=2,∴AM=CM=12AC=1, 如图①所示,当点C 在线段AB 上时,∵AB=AM+MB ,AB=3,∴MB=AB-AM=2.如图②所示:当点C 在BA 的延长线上时,MB=AM+AB=4.综上所述:MB 的长为2或4.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用分类讨论的思想是解题关键. 4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.(1)如图,AC =DB ,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m ,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD ;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.6.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.7.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x天才爬到树顶不下滑,即爬到九丈八需x天,可列方程(10-7.8)(x-1)+10=98,解得x=41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.9.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB=90 °,∠COB+∠BOD=90 ° -﹣﹣﹣①所以∠AOC=∠BOD .﹣﹣﹣﹣②-因为∠AOC=40°,所以∠BOD=40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.10.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.11.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 12.如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE 是∠BOC 的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC ,∠DOE=72°,求∠EOC 的度数. 解析:(1)见解析;(2)72° 【解析】【分析】 (1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x 度,∠EOC=2x 度,把角用未知数表示出来,建立x 的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD 是∠AOB 的平分线,OE 是∠BOC 的平分线, 所以∠BOD=12∠AOB ,∠BOE=12∠BOC , 所以∠DOE=12(∠AOB+∠BOC )=12∠AOC=90°;(2)设∠EOB=x ,则∠EOC=2x ,则∠BOD=12(180°–3x ), 则∠BOE+∠BOD=∠DOE , 即x+12(180°–3x )=72°, 解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.13.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=度.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?解析:(1)45°,理由见解析;(2)35;(3)12α,理由见解析【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)表示出∠AOC度数,表示出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35.(3)如图3,∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α.【点睛】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC-∠NOC.14.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC 、线段AD 、线段AE 、线段AB 、线段CD 、线段CE 、线段CB 、线段DE 、线段DB 、线段EB.能用大写字母表示的射线:射线AC 、射线CD 、射线DE 、射线EB 、射线CA 、射线DC 、射线ED 、射线BE.(2)因为n 个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段, 所以n 个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC 与线段CA , 所以这条直线上共有(1)2n n -条线段. 因为一个端点对应延伸方向相反的两条射线, 所以当一条直线上有n 个点时,共有2n 条射线. 【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法. 15.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度. (2)若6AB =,求MN 的长度. 解析:(1)3;(2)3. 【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长; (2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度. 【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =, ∴2CN =,1AM CM ==, ∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性. 16.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC 【分析】(1)根据直线、射线、线段的定义作图; (2)根据直线、射线、线段的定义解答. 【详解】 (1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ; 线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC . 【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒. 【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可. 【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒. 【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 18.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p . 解析:(1)-4;(2)-88 【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值. 【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-, 所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-, 所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.19.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥 (2)求该几何体的体积. 解析:(1)C ;(2)4 【分析】(1)本题根据展开图可直接得出答案. (2)本题根据体积等于底面积乘高求解即可. 【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2;故该几何体体积=底面积⨯高=22=4⨯. 【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可. 20.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒, 所以54BOD ∠=︒ 【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,21.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长; (2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由) 解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长; (2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答. 【详解】解:(1)∵AC=6cm ,点M 是AC 的中点, ∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm . (2)∵N 是BC 的中点, ∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm . (3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b. 【点睛】本题考查两点间的距离.22.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠. (1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析. 【分析】(1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论; (2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论. 【详解】(1)∵COD ∠是直角,30AOC ∠=︒,180903060BOD ∴∠=︒-︒-︒=︒, 9060150COB ∴∠=︒+︒=︒, ∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒,756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒. (2)COD ∠是直角,AOC a ∠=, 1809090BOD a a ∴∠=︒-︒-=︒-, 9090180COB a a ∴∠=︒+︒-=︒-, ∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-,()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=.(3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭,即2AOC DOE ∠=∠. 【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 23.已知,A 、B 是线段EF 上两点,已知EA :AB :BF=1:2:3,M 、N 分别为EA 、BF 的中点,且MN=8cm,求EF的长.解析:12cm【解析】【分析】由已知设设EA=x,AB=2x,BF=3x,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=12EA,NB=12BF,∴MN=MA+AB+BN=12x+2x+32x=4x,∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.24.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.25.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π) 解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π 【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积. 【详解】 解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π 【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键. 26.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.解析:AB=12cm ,CD=16cm 【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长. 【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.27.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.解析:∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.28.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.解析:(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.29.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.30.如图,直线AB与CD相交于点O,∠AOE=90°.(1)如图1,若OC平分∠AOE,求∠AOD的度数;(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.解析:(1)135°;(2)54°【分析】(1)利用OC平分∠AOE,可得∠AOC=12∠AOE=12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE平分∠COF,可得∠COE=∠EOF=12∠COF=32x°,即可得出.【详解】(1)∵∠AOE=90°,OC平分∠AOE,∴∠AOC=12∠AOE=12×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.。
辽宁营口市七年级数学上册第四单元《几何图形初步》知识点总结(含答案)

一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .13.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D .4.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒- 5.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( ) A .另一边上B .内部;C .外部D .以上结论都不对6.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较7.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A .B .C .D .8.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ). A .点动成线,线动成面 B .线动成面,面动成体 C .点动成线,面动成体 D .点动成面,面动成线 9.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒'''10.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D .11.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .412.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B13.已知线段AB ,在AB 的延长线上取一点C ,使25BC AC =,在AB 的反向延长线上取一点D ,使34DA AB =,则线段AD 是线段CB 的____倍A.98B.89C.32D.2314.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.15.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确二、填空题16.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.17.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.18.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.19.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.20.如图,C为线段AB的中点,线段AB=12cm,CD=2cm.则线段DB的长为_______ 21.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.22.分别指出图中截面的形状;23.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.24.在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______. 25.若A ,B ,C 在同一条直线上,线段10cm AB =,2cm BC =,则A ,C 两点间的距离是________.26.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题27.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度. (2)若6AB =,求MN 的长度.28.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)29.如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.30.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?。