完全平方公式课件

合集下载

完全平方公式ppt课件

完全平方公式ppt课件

4. 解法:
(1)先把二次方程化为完全 平方公式的形式: ax² + bx + c = 0
完全平方公式
(2)然后将方程按照完全平方公式的标准形式:
(x + p)² + q = 0
01
(5)求出方程的根:
x1 = -p + √(-q)
04
x2 = -p - √(-q)
(3)求出p、q的值:
02
p = -b/2a q = c - b²/4a
一、完全平方公式
演讲人 2023-01-14
目录
01
02
完全平方公式
实例
完全平方公式
1. 定义:
完全平方公式,又称为对称二 次方程,指的是可以表示为一
个完全平方式的二次方程。
2. 标准形式:
ax² + bx + c = 0
3. 用途:
完全平方公式可以用来解决二 次方程,求解方程的根,从而
解决一些数学问题。
04
0 5
(1)将二次方程化为完全平方公式的形式:
x² - 10x + 25 = 0
(3)求出p、q的值:
p = -10/2 q = 25 - 100/4
实例
x1 = 5 + √24 01
03 x1 = 9
(5)求出方程 的根:x2 = 5 - √2 0204 x2 = 1
谢谢
03
(4)由求出的p、q值代入完全平方公式中:
(x + p)² + q = 0
实例
例1:解x² - 10x + 25 = 0
在右侧编辑区输入内容
(2)按照完全平方公式的标准形式:

人教版八年级上册数学:完全平方公式精品课件PPT

人教版八年级上册数学:完全平方公式精品课件PPT
合作探究
思考:怎样添括号才能够变成 乘法公式的结构?
例5 运用乘法公式计算: 找到相同和相反项
(1) ( x +2y-3) (x- 2y +3) ;
(2) (a + b +c ) 2.
变成两个项的和
解:(1) ( x +2y-3) (x- 2y +3) (2)(a + b +c ) 2
= [ x+ (2y – 3 )] [ x- (2y- 3) ] = [ (a+b) +c ]2
人教版八年级上册数学课件:14.2.2 完全平 方公式
人教版八年级上册数学课件:14.2.2 完全平 方公式
尝试练习
1.先将式子变形,后自选两道题再计算。
(1) (a + 2b – 1 ) 2 (2) (2x +y +z ) (2x – y – z )
2
= _[_a_+_(_2_b_-_1_)]____ =_[_2_x_+_(_y_+_z_)_]_[_2_x_-_(_y_+_z_)]
= x2- (2y- 3)2 = x2- ( 4y2-12y+9)
三=平=个a方2数(和+a和2,+a的b再b)完加2+全+上b2平2每(+方两a2等+数ab于c乘)c这+积2+三的bc个2c2倍数+。c的2
= x2-4y2+12y-9.
= a2+b2+c2 +2ab+2bc +2ac.
点拨:此式需用添括号变形成平方差和完全平方公式 公式结构,再运用公式使计算简便。

14.2.2 完全平方公式课件

14.2.2 完全平方公式课件

你发现了什么?
a
(a+b)2=a2+2ab+b2
a
b
问题1:计算下列多项式的积,你能发现什么规律? (1) (p+1)2=(p+1)(p+1)= p2+2p+1 . (2) (m+2)2=(m+2)(m+2)= m2+4m+4 . (3) (p–1)2=(p–1)(p–1)= p2–2p+1 . (4) (m–2)2=(m–2)(m–2)= m2–4m+4 .
简记为: “首平方,尾平方,积的2倍放中央”
你能根据下面图形的面积说明完全平方公式吗?
证明 设大正方形ABCD的面积为S.
S1
S2
S3
S4
S= (a+b)2 =S1+S2+S3+S4= a2+b2+2ab .
几何解释
b
a
=
+
+
+
a
b
a2
ab
ab
b2
和的完全平方公式:
(a+b)2= a2+2ab+b2 .
4.由完全平方公式可知:32+2×3×5+52=(3+5)2=64, 运用这一方法计算:4.3212+8.642×0.679+0.6792= ____2_5___.归纳新知源自法则完全平 注 意 方公式
常用 结论
(a±b)2= a2±2ab+b2
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添 括号变形成符合公式的要求才行 3.弄清完全平方公式和平方差公式不同(从公式结构 特点及结果两方面)

人教版《完全平方公式》PPT完美课件

人教版《完全平方公式》PPT完美课件
八年级上册 RJ
14.2.2 完全平方公式
第2课时
初中数学
知识回顾
平方差公式: (a+b)(a-b)=a2-b2.
两个数的和与这两个数的差的积,等于这两个数的平方差. 完全平方公式:
(a+b)2=a2+2ab+b2 ,(a-b)2=a2-2ab+b2. 两个数的和(或差)的平方,等于它们的平方和,加
如果括号前面是正号,括到括号里的各项都不变符号
2.计算:
=a2+b2+c2+2ab+2ac+2bc .
a+(b+c)=_______;
(1)(3a+b-2)(3a-b+2); (1) (x+2y-3)(x-2y+3);
=a2+2ab+b2+2ac+2bc+c2
例1 运用乘法公式计算:
(2)(x-y-m+n)(x-y+m-n). 解:(2) (x-y-m+n)(x-y+m-n)
3.当x2-xy=18,xy-y2=-15时,求x2-2xy+y2的值. 解:x2-2xy+y2=x2-xy-xy+y2=(x2-xy)-(xy-y2). 因为x2-xy=18,xy-y2=-15, 所以x2-2xy+y2 =18-(-15)
=18+15 =33.
=x2-(2y-3)2
=(a+b) +2(a+b)c+c 2 a+(b+c)=_______;
有些整式相乘需要先作适当变形,然后再用Байду номын сангаас式.
2
[x+(2y-1)]2

《完全平方公式》课件

《完全平方公式》课件

数学运算技巧
在进行数学运算时,完全 平方公式可以作为一种常 用的技巧,用来简化计算 过程。
03
完全平方公式的证明
使用数学归纳法证明
总结词
数学归纳法是一种严谨的证明方法,通过逐步推导,最终得出结论。
详细描述
首先,我们需要对完全平方公式进行定义,然后通过数学归纳法,从公式的基本情况开始证明,逐步 推广到一般情况。在证明过程中,需要注意每个步骤的逻辑严谨性和正确性,以确保最终结论的正确 性。
$(7+8)^2$
计算下列各式的值
$(5+6)^2$
请简述完全平方公式的应用场景 和优势。
答案与解析
• $(3+4)^2 = 3^2 + 2\times3\times4 + 4^2 = 9 + 24 + 16 = 49$ • $(5+6)^2 = 5^2 + 2\times5\times6 + 6^2 = 25 + 60 + 36 = 111$ • $(7+8)^2 = 7^2 + 2\times7\times8 + 8^2 = 49 + 112 + 64 = 225$ • 完全平方公式是一种非常实用的数学工具,可以帮助我们快速计算出任意一个数的平方,同时也可以帮助
预测模型
在统计学和预测模型中,完全平方公式可以 用来建立回归模型并预测未来趋势。例如, 在时间序列分析中,完全平方公式可以用来
拟合时间序列数据并预测未来的值。
05
完全平方公式的扩展知识
完全立方公式
完全立方公式
$a^3 + 3a^2b + 3ab^2 + b^3$

因式分解(完全平方公式)课件

因式分解(完全平方公式)课件
公式
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。

《完全平方公式》PPT课件

《完全平方公式》PPT课件
解:(1)不对。(a 1)2 (a)2 2(a) 12
a2 2a 1
(2)不对。 (2x 1)2 (2x)2 12 2 • 2x •1 4x2 1 4x
(3)不对。 (2a b)2 (2a)2 2 • (2a) • b b2
4a2 4ab b2
例2 运用完全平方公式计算:
( a - b)2 = a 2 — 2 · a · b + b 2.
( 2x - y )2 = ( 2x )2 -2 ·(2x)·y + y 2 = 4x2-4xy+y2
归纳
我们把
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.
都叫做完全平方公式.
两个公式可合并为一个 公式: (a b)2 a2 2ab b2
做一做
(a - b )2 = ? 把( a + b )2= a2+ 2ab + b2 中的“b”换做 “-b”,试试看.
(a - b)2 =[a+(-b)]2 = a2+2a(-b)+(-b)2 = a2 - 2ab + b2 .
问、能用(a-b)2=a2-2ab+b2来计算 (a b)2 吗?
3、该怎样计算(a+b)(a+b) 即( a + b)2 ?
我们用乘法对加法的分配律来推导一般情况
( a + b)2 =( a + b )( a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2 .
动脑筋
能否利用(a+b)( a+b)的计算结果,即

完全平方公式.ppt

完全平方公式.ppt
4
(1) (mn+3)2=( C )
(A) mn2+9
(B) m2n2+9
(C) m2n2+6mn+9 (D) mn2+6m+9
(2) 下列计算中正确的是( D)
(A) (p+q)2=p2+q2 (B) (a+2b)2=a2+4ab+2b2 (C) (a2+1)2=a4+2a+1 (D) (-s+t)2=s2-2st+t2
(2)中间一项的符号错误
(3)首项被平方时, 未添括号;
6
(1)( 3x +3y )2=
(2)(Байду номын сангаас 1)2 2
(3)x2 12 xy ___ (x __)2
请你找错误
指出下列各式中的错误,并加以改正:
(1)(x+y)2=x2+2xy + y2 ;
+
(2) (−2x−y)2=(2x)2 − 2 (2x) (y) + y2;
(3) (0.5x−3y)2=0.5x2− 2(0.5x)(3y)+(3y)2
(x/2)2
解:(1) 少了第一数与第二数乘积的2倍 (丢了一项):2xy
1
(a+b)2=a2+2ab+b2
计算: (x+2y)2
2
(a+b)2=a2+2ab+b2
利用完全平方公式计算:
(1) (x + 3 )2
(2) (2a+3b)2
(3)(2a 1)2 2
(4) (a - b)2
利用完全平方公式计算:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档