磁性材料常识参数介绍

合集下载

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁钢参数解读

磁钢参数解读

磁钢参数解读磁钢是一种常用的磁性材料,具有很高的磁导率和磁化强度。

在电子电气领域,磁钢被广泛用于电机、变压器、声音设备等各种电磁设备中。

磁钢的性能参数对设备的工作效果和性能起着至关重要的作用。

本文将解读磁钢的几个常见参数,以帮助读者更好地了解并选择合适的磁钢材料。

1.磁导率(μ):磁导率是磁钢的基本物理参数,表示了材料对磁场的响应能力。

磁导率越高,材料对磁场的感应能力越强,磁导率越低,材料对磁场的感应能力越弱。

磁导率的单位是亨利/米(H/m),常用的磁导率数值范围一般在1000-7000之间。

2.饱和磁化强度(Bs):饱和磁化强度是指磁钢材料在饱和磁场下的磁化强度。

简单来说,就是磁钢能够达到的最高磁化程度。

饱和磁化强度越高,材料的磁化能力越强,磁场越容易被磁化。

饱和磁化强度的单位是特斯拉(T),常用的数值范围一般在0.5-2.5T之间。

3.剩磁(Br):剩磁是指在去磁场的作用下,磁钢材料表面产生的剩余磁场。

剩磁是磁钢材料磁化后得到的一个留存状态,可以用来储存或传输磁能。

剩磁的大小与材料本身的磁化强度有关,一般剩磁越大,材料的磁能保存能力越强。

剩磁的单位也是特斯拉(T),常用的数值范围一般在0.05-1.0T之间。

4.矫顽力(Hc):矫顽力是指磁钢材料在去磁化后,需要外加的磁场强度才能使其重新磁化的能力。

矫顽力越大,材料越难去磁化,矫顽力越小,材料越容易去磁化。

矫顽力的单位是安培/米(A/m),常用的数值范围一般在100-1000A/m之间。

5.温度系数(α):温度系数是指磁钢材料在不同温度下的磁化能力变化率。

温度系数可以用来评估磁钢材料的温度稳定性。

温度系数的单位是%/℃,常用的数值范围根据具体应用要求而定。

以上是磁钢的几个重要参数,不同的磁钢材料具有不同的参数组合,适用于不同的应用场景。

在选择磁钢时,需要根据具体的设计要求和工作环境来合理选择磁钢材料,以确保设备的性能和稳定性。

需要注意的是,磁钢的参数解读只是初步了解磁钢性能的一种方式,实际应用中还需要综合考虑其他因素,例如成本、可加工性、耐腐蚀性等。

磁性材料相关知识

磁性材料相关知识

磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。

磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。

磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。

2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。

软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。

常见的软磁性材料有铁、镍、钴等。

软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。

2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。

硬磁性材料主要应用于存储设备、传感器等领域。

常见的硬磁性材料有钕铁硼、钴磁体等。

硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。

3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。

磁化过程可以分为顺磁化和逆磁化两种情况。

3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。

顺磁化过程中,磁性材料会被吸引到磁场较强的地方。

顺磁性材料的磁化强度与外磁场强度成正比。

3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。

逆磁化过程中,磁性材料会被排斥出磁场较强的地方。

逆磁性材料的磁化强度与外磁场强度成负相关。

4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。

矫顽力越高,磁性材料越难磁化。

矫顽力的单位是安培/米(A/m)。

4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。

磁导率越大,磁性材料的磁性能越好。

磁导率的单位是亨利/米(H/m)。

4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。

磁性材料参数汇总表

磁性材料参数汇总表

磁性材料参数汇总表引言磁性材料是一类重要的材料,在许多领域中都有广泛的应用,例如电子设备、电力传输、通信等。

了解磁性材料的参数对于正确选择和设计合适的磁性材料至关重要。

本文档旨在提供一个汇总表,列出常见磁性材料的重要参数和特性,以帮助工程师和研究人员进行选择和评估。

1. 常见磁性材料1.1 铁氧体材料铁氧体材料是一类具有高饱和磁感应强度和低磁导率的磁性材料。

下表列出了一些常见的铁氧体材料及其参数。

材料名称饱和磁感应强度 (T) 磁导率 (H/m) 矫顽力 (A/m)镍锌铁氧体0.4 50 800锰锌铁氧体0.3 100 500镍铜铁氧体0.6 20 10001.2 钕铁硼磁体钕铁硼磁体是一类具有极高磁能积和高矫顽力的磁性材料。

下表列出了一些常见的钕铁硼磁体及其参数。

材料名称饱和磁感应强度 (T) 磁能积 (J/m3) 矫顽力 (A/m)N35 1.17 263e6 955N45 1.33 326e6 955N52 1.45 398e6 9551.3 钢磁材料钢磁材料是一类在低频磁场中具有高导磁率和低矫顽力的磁性材料。

下表列出了一些常见的钢磁材料及其参数。

材料名称饱和磁感应强度 (T) 导磁率 (H/m) 矫顽力 (A/m)低碳钢 2 1000 4硅钢 2 5000 6非晶合金钢 2.1 10000 22. 参数解释2.1 饱和磁感应强度饱和磁感应强度是材料在外加磁场作用下能够达到的最大磁感应强度。

单位为特斯拉(T)。

2.2 磁导率磁导率描述了材料对磁场的响应程度,即磁场强度与磁感应强度之间的比值。

单位为亨利/米(H/m)。

2.3 矫顽力矫顽力是材料从饱和磁化状态中恢复到磁场消失状态所需施加的逆磁场强度。

单位为安培/米(A/m)。

2.4 磁能积磁能积是材料单位体积的储磁能力,表示材料在磁场中存储的能量密度。

单位为焦耳/立方米(J/m3)。

3. 典型应用3.1 铁氧体材料•镍锌铁氧体:常用于磁芯和磁带记录头。

磁性材料入门知识

磁性材料入门知识

磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。

它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。

本文将为你介绍磁性材料的基本知识。

1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。

磁化强度的单位是安培每米(A/m)或高斯(Gs)。

磁力线越接近选定的物体,磁化强度就越强。

2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。

磁场强度的单位是特斯拉(T)或高斯(Gs)。

3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。

高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。

4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。

磁饱和是磁性材料失去磁性的一个重要特征。

5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。

每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。

6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。

磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。

7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。

软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。

硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。

8. 磁性材料应用磁性材料广泛应用于各个领域。

在电子行业,磁性材料用于制造电感和磁芯等元器件。

在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。

磁性材料还用于通讯、医疗、军事和安全等领域。

总之,磁性材料具有重要的应用和理论价值。

通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。

磁性材料基础知识---已

磁性材料基础知识---已

磁性材料基础知识磁性材料:磁性是物质的基本属性之一。

磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性。

一切物质都具有磁性。

自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料。

磁性材料的分类,性能特点和用途:1铁氧体磁性材料,一般是指氧化铁和其他金属的氧化物。

他们大多具有亚铁磁性。

特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。

饱和磁化强度低,不适合高磁密度场合使用。

居里温度比较低。

2 铁磁性材料:指具有铁磁性的材料。

例如铁镍钴及其合金,某些稀土元素的合金。

在居里温度以下,加外磁场时材料具有较大的磁化强度。

3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在居里温度以下,加外磁场时材料具有较大的磁化强度。

4 永磁材料:磁体被磁化后去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。

可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等。

铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等。

5软磁材料:容易磁化和退磁的材料。

锰锌铁氧体软磁材料,其工作频率在1K-10M之间。

镍锌铁氧体软磁材料,工作频率一般在1-300MHZ金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。

术语:1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。

在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。

2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。

3 磁通密度矫顽力,他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度,使磁感应强度B减小到0时的磁感应强度。

磁性材料基本参数详解

磁性材料基本参数详解

磁性材料基本参数详解磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。

自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。

铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。

顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。

本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。

锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。

它是以氧化铁、氧化锌为主要成分的复合氧化物。

其工作频率在1kHz 至10MHz 之间。

主要用着开关电源的主变压器用磁芯. 。

随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。

但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。

磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。

使用频率可达100KHZ ,甚至更高。

但最适合于10KHZ 以下使用。

磁场强度H :磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。

它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。

均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示;使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N IH 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一•磁性材料的基本特性1・磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M〜H或B〜H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H, Ms保持不变;以及当材料的M值达到饱和后,外磁场H 降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M〜H曲线或B〜H曲线上的某一点,该点常称为工作点。

2 •软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br/Bs矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率小是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率山、最大磁导率nm>微分磁导率pd、振幅磁导率pa、有效磁导率pe、脉冲磁导率|ip o居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe oc f2 t2 / , p 降低,磁滞损耗Ph的方法是降低矫顽力He;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率P。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3 •软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性。

器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁芯
SPINEL
磁学常识: 磁学常识:磁性材料分类
A)锰锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 71%, MnO 20%, 其他为:ZnO 电阻率高(10 ohm-cm) 电阻率高 磁心损耗低 居里温度高 形状:EE,EI,ER,PQ,RM,POT等型式。 形状: , , , , , 等型式。 等型式 用途:功率变压器、 共模滤波器、 用途:功率变压器、EMI共模滤波器、储能电感等 共模滤波器
SPINEL
磁性材质介召:材质发展 磁性材质介召:
在PC50后,TDK相继推 出超低功耗材料PC44,PC45, PC46,PC47,其功率损耗较 PC40降低了约1/4~1/3, 主要差别就在于功耗最低点温 度不同,PC45为60-80℃, PC46为40-50℃,PC47则是 100℃,它们有一个明显的缺 点,一旦偏离了功耗最低点, 损耗值急剧上升。
C点以后是饱和段 点以后是饱和段 点以后是 ab段是上升段 段是上升段 段是 起始磁化 曲线反映 了什么? 了什么?
磁滞回线中H为 磁滞回线中 为 零时B并不为零 零时 并不为零 的现象说明铁 磁材料具有剩 磁材料具有剩 磁性。 磁性。
0
H
起始磁化曲线
oa段是线性段 段是线性段 段是
起始磁化曲线的ab段反映了铁磁材料的 起始磁化曲线的 段反映了铁磁材料的 高导磁性; 点以后说明铁磁材料具有 高导磁性;c点以后说明铁磁材料具有 磁饱和性。 磁饱和性。
SPINEL
磁学常识: 磁学常识:磁性材料分类
B)镍锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO 电阻率很高(107 ohm-cm) 电阻率很高 工作频率高 铁心损耗较锰锌系高 居里温度高 型式: , ,环形等。 型式:DR,R,环形等。 用途:常模滤波器、 用途:常模滤波器、储能电感等
Le有效磁路长度 导磁率
Hc矫顽力
磁学常识:磁化曲线2 磁学常识:磁化曲线2
软磁材料反复磁化一周 所构成的曲线称为磁滞 所构成的曲线称为磁滞 回线。 回线。
B c b a
bc段是磁化曲线的膝部 段是磁化曲线的膝部 段是磁化曲线的
磁滞回线中B的变化总 磁滞回线中 的变化总 是落后于H的变化 的变化说明 是落后于 的变化说明 铁磁材料具有磁滞性 磁滞性; 铁磁材料具有磁滞性;
μi
居里温度是磁性材料 从铁磁性到顺磁性的转 变温度,在这个温度磁 性材料的磁性将变得很 小或消失,它的表示方 式有很多,我们一般按 下图进行测量,即随着 温度升高,磁导率下降 到最大值的80%及20% 时,两点的联线,延长 到与温度轴的交点即为 居里温度。
T
Tc
SPINEL
磁性参数与测量:其它参数 磁性参数与测量:
SPINEL
磁性参数与测量:磁损耗 (5) 磁性参数与测量: 3 大信号下的功率损耗Pc
为标准化PC的测量,通常情况下根据使用情况指定 测试频率与Bm,如: 16KHz 150mT; 25Khz 200mT ; 100KHz 200mT等
测量方法
SPINEL
磁性参数与测量:磁滞回线 (1) 磁性参数与测量: 1 饱和磁感应强度Bs、剩余磁感应强度Br、 矫顽力Hc
SPINEL
磁性参数与测量:磁导率温度稳定性 磁性参数与测量: 磁导率温度稳定性αμ
定义为:由于温度的改变而引起的被测量的相对变化 与温度变化之比。例:磁导率的温度系数为: αμ=
μ2-μ1 μ1(T2-T1)
式中:μ1是T1温度时的磁导率,μ2是T2温度时的磁导率 。因对于同一种软磁材料,其磁芯的αμ/μi值是一个常 数。故常用αμ/μi来表示温度特性。
2003年其推出的PC95则属于宽温低功耗功率铁氧体新材料,起始磁导率 为3300±25﹪;25℃时饱和磁通量密度为540mT,100℃时为430mT; 25℃~120℃内功率损耗均小于350 Kw/m3(B=200mT,f=100KHz),在 25℃和120℃时,功耗均为350 Kw/m3,80℃时为280 Kw/m3。这种材料 是目前性能最为优良的功率铁氧体材料。
SPINEL
磁学常识:磁性来源1 磁学常识:磁性来源1
铁磁材料之所以具有高导磁 性,是因为在它们的内部具有一 磁畴。 种特殊的物质结构—磁畴。
(a)无外磁场情况 铁磁材料内部的 磁畴排列杂乱无章 杂乱无章, 磁畴排列杂乱无章, 磁性相互抵消, 磁性相互抵消,因此 对外不显示磁性。 对外不显示磁性。
磁性参数与测量:磁损耗 (2) 磁性参数与测量: 1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降 (tanδ)gap = tanδe/i 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
SPINEL
磁性参数与测量:磁损耗 (3) 磁性参数与测量: 2 品质因素 Q
测量方法
磁性参数与测量:磁导率 (3) 磁性参数与测量:磁导率 2 有效导磁率e
变压器或电感器磁芯中常用非闭合的E型、U 型等配对磁芯,其磁路各部分形状尺寸不同,而且 其配合面不可避免地仍有残余气隙; 此时,必须用有效导磁率e来表示磁芯的导 磁率; e = LC1/(4πN2) ×107
C1 …… 磁芯磁路常数(cm-1)
SPINEL
磁性参数与测量:磁滞回线 (2) 磁性参数与测量: 1 饱和磁感应强度Bs、剩余磁感应强度Br、 矫顽力Hc
由于软磁材料在交变磁场中存在不 可逆磁化而形成磁滞回线。 如左图: Bs为磁化到饱和状态下的磁通密度; Br为从磁饱和状态去除磁场后,剩 余的磁通密度; Hc为从磁饱和状态去除磁场后,磁 芯继续被反向的磁场磁化,直至磁通密 度减小到零,此时的磁场强度称为矫顽 力。
饱和磁感应强度Bs是把足够大的磁 场Hs加到磁性体后的自发磁化,即是饱 和磁化强度Ms有以下的关系: Bs=Ms+0Hs 式中0表示真空磁导率, 0=4π×10-7H/m。 大部分的软磁铁氧体的Ms处于200500mT范围之间,而且在103-104A/m 的磁场内饱和。因此,0Hs的值为110mT可忽视,饱和磁感应强度可看作 与饱和磁化强度几乎相等。
铁氧体软磁材料介召
无锡斯贝尔:黄舰
内容
磁学常识: 磁学常识:磁性材料分类 磁学常识: 磁学常识:磁性来源 磁学常识: 磁学常识:磁化曲线 磁性参数与测量 磁性材料应用 磁性材质介召
SPINEL
磁学常识: 磁学常识:磁性材料分类
锰锌系材* 锰锌系材 铁氧体磁芯 镍锌系材 镁锌系材 硅(矽)钢材 铁粉芯 合金类磁芯 铁硅铝合金 铁镍合金 钼坡莫合金 非晶、 非晶、微晶合金
SPINEL
磁性材质介召:材质发展 磁性材质介召:
日本TDK公司铁氧体材料性能表(功率铁氧体)
材料型号 初始磁导率 (μi) 1400±25﹪ 2300±25﹪ 2400±25﹪ 2500±25﹪ 3200±25﹪ 2500±25﹪ 1400±25﹪ 2200±25﹪ 3300±25﹪ 磁芯损耗 (Pcv) Kw/m3 25℃ 60℃ 100℃ PC33 PC40 PC44 PC45 PC46 PC47 PC50 PC90 PC95 1100 600 600 570 350 600 130﹡ 680 350 800 450 400 250 250 400 80﹡ 600 410 300 460 660 250 80﹡ 320 290 饱和磁通量密 (Bs)mT 25℃ 60℃ 100℃ 520 510 510 530 530 530 470 540 530 440 450 450 440 390 390 420 410 420 380 320 410 居里温度 (Tc) ℃ ≥290 ≥215 ≥215 ≥240 ≥230 ≥230 ≥230
磁性器件作滤波器的电感时,通常用品质因素Q来表示 它的质量; Q = 1/ tanδ Q与频率和绕组参数有关;
SPINEL
磁性参数与测量:磁损耗 (4) 磁性参数与测量: 3 大信号下的功率损耗Pc
P = Ph + Pe + Pr (Ph、Pe、Pr表示磁滞、涡流、剩余损耗) 磁性材料在高磁通密度下的单位体积损耗。该磁通密 度通常表示为: Bm =E/4.44fNAe ×106(mT) 式中: Bm为磁通密度的峰值(mT) E为线圈两端的电压(V) f为频率(KHz),N为匝数 Ae为磁芯的有效面积(m2)
注:i通常是用规定尺寸的环形磁芯测量而得;
磁性参数与测量:磁导率 (2) 磁性参数与测量:磁导率 1 起始磁导率μi
i计算
i = L/(4.6N2hlg(D/d)) ×107 (适用于环形磁芯) 式中 N …… 测试线圈匝数(N) L …… 装有磁芯的线圈的自感量(mH) h …… 磁芯高度(mm) D …… 磁芯外直径(mm) d …… 磁芯内直径(mm)
SPINEL
磁学常识:磁性来源2 磁学常识:磁性来源2
B B
H
(A) (B)
H
B
B
H
(C)
SPINEL
H
(D)
磁学常识:磁化曲线1 磁学常识:磁化曲线1
磁路部分
B
Br
Bs
φ
u
Hc
I
H
电路部分
H 磁场强度 B磁感应强度 Bs饱和磁感应强度 Br剩磁 导磁率
SPINEL
H=NI/Le B=H Φ=BAe
磁畴是怎么 形成的? 形成的?
(b)有外磁场情况
磁畴因受外磁 场作用而顺着外磁 场的方向发生归顺 性重新排列,在内 性重新排列, 部形成一个很强的 附加磁场。 附加磁场。
铁磁材料内部往往有相邻的几百个分子 电流圈流向一致, 电流圈流向一致,因此在这些极小的区域内 就形成了一个个天然的磁性区域—磁畴 磁畴。 就形成了一个个天然的磁性区域 磁畴。
相关文档
最新文档