正交试验设计极差分析方法
正交检验的极差分析和方差分析

计算各样本平均数 y i 如下:
型号
yi
表 8-2
A
B
C
D
E
F
9.4 5.5 7.9 5.4 7.5 8.8
4.1 方差分析的基本概念和原理
两个总体平均值比较的检验法 把样本平均数两两组成对:
y
(
C
2 6
1与
y
2,
y
与
1
y
15)对。
3,…
y
1与 y
6
,
y
2与 y
3
,…, y
参数 假设 检验 的假 设条 件
观测值(i=1,2,…,k;j=1,2,…,m) 相互独立
在水平Ai条件下, Yij(j=1,2,…m)
服从正态分布N (i ,2)
4.2.4 显著性检验
要判断在因素A的k个水平条件下真值之间是否 有显著性差异, 即检验假设
H0: 12k, H1: 不全相等
我们还可以证明 , i , i分别是参数 ,i ,i 的无
偏估计量。
将和 i 分别用它们的估计量代替,可以得到试 验误差 ij 的估计量 e ij ,
eij Yij Yi
(4-10)
4.2.3 分解定理 自由度
为了由观测值的偏差中分析出各水平的效应,我们 研究三种偏差:Y ij Y ,Yi Y 和 Yij Y i. 根据前面参数估计的讨论,它们分别表示
数学模型和数据结构 参数点估计 分解定理 自由度 显著性检验 多重分布与区间估计
4.2.1 数学模型和数据结构
在单因素试验中,为了考察因素A的k个水平A1, A2,…,Ak对Y的影响(如k种型号对维修时间的影响), 设想在固定的条件Ai下作试验.所有可能的试验结果 组成一个总体Yi,它是一个随机变量.可以把它分解
正交实验实验结果解读

正交实验实验结果解读
正交实验设计是一种高效率的试验设计方法,它通过合理安排多因素试验,寻求最优水平组合。
解读正交实验结果主要涉及以下几个步骤:
1.观察每组试验的观测结果或数据,了解各个因素在不同水平下的变化情况。
2.计算每个因素的极差,即同一因素在不同水平下的最大值与最小值之差。
极差分析是一种直观式分析方法,通过比较各因素的极差大小,可以初步判断因素对试验目标的影响程度。
3.根据试验结果和极差分析,找出理论上的最优方案。
这个方案通常是最有利于考察的目标值的方案。
4.对理论上的最优方案进行验证分析,确保其在实际应用中的可行性。
验证分析可以通过实际试验、模拟仿真等方法进行。
在解读正交实验结果时,还需要注意以下几点:
1.正交表的设计是关键。
在设计正交表时,需要选择合适的因素和水平数,并确保试验次数合理。
2.极差分析是一种初步分析方法,其结果可以作为优化方案的参考,但不一定是最优解。
因此,在实际应用中,还需要结合其他分析方法(如方差分析、回归分析等)进行综合评估。
3.正交实验的结果受到试验条件、操作误差等多种因素的影响,因此在实际应用中,需要对试验过程进行严格控制和记录,以确保结果的准确性和可靠性。
总之,正交实验设计是一种有效的多因素试验设计方法,通过合理的试验安排和结果分析,可以找出最优方案并评估其在实际应用中的可行性。
在解读正交实验结果时,需要综合考虑多种因素和分析方法,以确保结果的准确性和可靠性。
正交试验设计和分析方法研究

正交试验设计和分析方法研究一、本文概述正交试验设计是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及社会调查等领域。
通过正交表的正交性、均匀分散性和整齐可比性,正交试验设计能够在众多试验因素中快速找出关键因素,优化试验方案,提高试验效率。
本文旨在深入研究正交试验设计的理论基础,探讨其在实际应用中的优化策略,分析正交试验设计的优缺点,并展望其未来发展趋势。
本文首先介绍正交试验设计的基本原理和常用正交表,然后详细阐述正交试验设计的步骤和方法,接着通过案例分析展示正交试验设计在不同领域的应用实践,最后对正交试验设计的未来发展进行展望,以期为相关领域的研究和实践提供有益的参考和借鉴。
二、正交试验设计基本原理正交试验设计是一种高效、系统的试验设计方法,其核心在于利用正交表来安排试验,通过对试验因素与水平进行全面、均匀的搭配,从而找出最佳的试验方案。
正交试验设计的基本原理主要包括以下几点:正交性原理:正交表具有正交性,即表中的每一行(或列)所代表的因素水平组合都是唯一的,且在整个表中均匀分布。
这种正交性保证了试验点在试验范围内均匀分布,从而能够全面反映试验因素与水平的变化情况。
代表性原理:正交表中的每一行都代表一组试验因素与水平的组合,这些组合在试验范围内具有代表性。
通过选择适当的正交表,可以在较少的试验次数下获得较为全面的试验结果。
综合可比性原理:正交表中的每一列都对应一个试验因素,不同列之间的因素是相互独立的。
这意味着每个因素在不同水平下的效果可以单独进行分析和比较,从而便于找出影响试验结果的主要因素及其最佳水平。
分析简便性原理:正交试验设计的结果分析简便易行,可以通过直观分析或方差分析等方法快速得出结论。
直观分析法可以直接从正交表中观察出各因素在不同水平下的效果,而方差分析法则可以进一步检验各因素对试验结果的影响程度。
正交试验设计通过合理利用正交表的性质,实现了试验的高效、系统和全面。
在实际应用中,只需根据试验需求选择合适的正交表,按照表中的安排进行试验,并对试验结果进行简便的分析,即可得出较为准确的结论。
第7章-正交试验设计的极差分析

第7章-正交试验设计的极差分析第7章正交试验设计的极差分析正交试验设计和分析⽅法⼤致分为⼆种:⼀种是极差分析法(⼜称直观分析法),另⼀种是⽅差分析法(⼜称统计分析法)。
本章介绍极差分析法,它简单易懂,实⽤性强,在⼯农业⽣产中⼴泛应⽤。
7.1 单指标正交试验设计及其极差分析极差分析法简称R 法。
它包括计算和判断两个步骤,其内容如图7-1所⽰。
图7-1 R 法⽰意图图中,Kj m为第j列因素m ⽔平所对应的试验指标和,K jm 为Kjm 的平均值。
由K jm 的⼤⼩可以判断j因素的优⽔平和各因素的⽔平组合,即最优组合。
R j 为第j 列因素的极差,即第j 列因素各⽔平下平均指标值的最⼤值与最⼩值之差:R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 )R j 反映了第j列因素的⽔平变动时,试验指标的变动幅度。
R j 越⼤,说明该因素对试验指标的影响越⼤,因此也就越重要。
于是依据R j的⼤⼩,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进⾏,现以例6-2来说明单指标正交试验结果的极差分析⽅法。
⼀、确定因素的优⽔平和最优⽔平组合例6-2 为提⾼⼭楂原料的利⽤率,某研究组研究了酶法液化⼯艺制造⼭楂精汁。
拟通过正交试验寻找酶法液化⼯艺的最佳⼯艺条件。
在例6-2中,不考虑因素间的交互作⽤(因例6-2是四因素三⽔平试验,故选⽤L9(34)正交表),表头设计如表6-5所⽰,试验⽅案则⽰于表6-6中。
试验结果的极差分析过程,如表7-1所⽰.表6-4 因素⽔平表表6-6 试验⽅案及结果试验指标为液化率,⽤y i 表⽰,列于表6-6和表7-1的最后⼀列。
表7-1 试验⽅案及结果分析计算⽰例:因素A 的第1⽔平A1所对应的试验指标之和及其平均值分别为:K A 1=y1+y 2+y3=0+17+24=41,=1A K 31K A1=13.7同理,对因素A的第2⽔平A2和第3⽔平A 3,有KA2=y4+y5+y 6=12+47+28=87,=2A K 31K A2=29 K A 3=y 7+y 8+y 9=1+18+42=61,=3A K 31K A3=20.3由表7-1或表6-6可以看出,考察因素A 进⾏的三组试验中(A1,A 2,A3),B 、C、D 各⽔平都只出现了⼀次,且由于B 、C 、D间⽆交互作⽤,所以B 、C 、D 因素的各⽔平的不同组合对试验指标⽆影响,因此,对A 1、A2和A 3来说,三组试验的试验条件是完全⼀样的。
极差分析法——精选推荐

直观分析法是通过对每一因素的平均极差来分析问题。
极差就是平均效果中最大值和最小值的差。
有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
第二节正交试验分析方法现在我们按表3-2-2进行试验,得到表3-2-3所示的试验结果。
我们如何分析试验结果,以得到上节中介绍的正交试验可以解决的三个问题呢?下面介绍正交试验的分析方法。
表3-2-3 铸铁性能试验参数一、直接对比法直接对比法就是对试验结果进行简单的直接对比。
对比表3-2-3的试验结果,可以看出第4号试验铸铁的抗拉强度最高,而第1 号试验抗拉强度最低。
这说明A1B2C2成分的铸铁强度最高。
这符合人们目前对铸铁性能的认识,即硅和锰提高铸铁的强度,而碳使强度降低。
进一步仔细观察,可以发现,抗拉强度较高的两组试验,硅含量都在高水平上,碳和锰却没有如此明显的规律。
这说明,在本试验中,硅是影响铸铁强度的主要因素。
直接对比法虽然对试验结果给出了一定的说明,但是这个说明是定性的,而且不能肯定地告诉我们最佳的成分组合是否包含小上述四组试验中。
显然这种分析方法虽然简单,但是不能令人满意。
二、直观分析法直观分析法是通过对每一因素的平均极差来分析问题。
所谓极差就是平均效果中最大值和最小值的差。
有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
直观分析法的具体做法如下:1. 首先计算各因素每个水平的平均效果和极差。
一般用罗马数字表示水平效果,用大写R表示极差,因素用角标表示。
根据表3-2-3试验结果,可以计算得=(240+280)/2=260=(250+270)/2=260R A==260-260=0用同样的方法,可得=(240+250)/2=245=(280+270)/2=275R B=275-245=30=(240+270)/2=255=(280+250)/2=265R C=265-255=10将计算结果加到表3-2-3中,得表3-2-4。
正交检验的极差分析和方差分析教材

正交检验的极差分析和方差分析教材正交检验的极差分析和方差分析引言:正交检验的极差分析和方差分析是统计学中常用的两种分析方法。
它们被广泛应用于实验设计和数据分析中,可以帮助我们判断变量之间的差异是否显著,并且确定是哪些因素对变量影响最为显著。
本文将重点介绍正交检验的极差分析和方差分析的基本原理和应用方法。
一、正交检验的极差分析1.1 基本原理正交检验的极差分析是通过观察不同水平的自变量对因变量的影响,推断不同水平之间的差异是否显著的一种方法。
它基于方差分析的原理,通过计算不同水平之间的平均差和标准差,判断不同水平之间的差异是否超过了预期的随机误差范围,从而得出结论。
1.2 应用方法首先,确定研究的自变量和因变量,并确定自变量的水平。
然后,通过随机抽样的方式获取样本数据,并计算每个水平下的极差。
接下来,计算整体样本数据的均值和方差,以及不同水平之间的平均差和标准差。
最后,使用统计方法,比较差异是否显著,并进一步推断不同水平之间的差异。
1.3 实例分析以某品牌洗衣机的不同水平温度对洗涤效果(洗涤时间)为例,通过极差分析探究不同水平温度下洗涤效果是否存在显著差异。
首先,选择3个不同水平的温度:40℃、60℃和80℃。
然后,使用这3个水平的温度进行多次洗涤实验,每次实验记录洗涤时间。
接下来,计算每个水平下的极差,并计算整体样本数据的均值和方差。
最后,使用正交检验的极差分析方法,比较不同水平之间的差异是否显著。
二、方差分析2.1 基本原理方差分析是通过比较不同组之间的方差大小,来判断不同组之间的差异是否显著的一种方法。
它基于总体方差和组内方差之间的关系,通过计算F统计量来比较差异是否显著。
2.2 应用方法首先,确定研究的自变量和因变量,并确定不同组别。
然后,通过随机抽样的方式获取样本数据,并计算每个组别的均值和方差。
接下来,计算总体样本数据的均值和方差,以及组内方差和组间方差。
最后,使用统计方法,计算F统计量,并比较差异是否显著。
第章正交试验设计的极差分析

第章正交试验设计的极差分析集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第7章 正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
单指标正交试验设计及其极差分析极差分析法简称R 法。
它包括计算和判断两个步骤,其内容如图7-1所示。
值。
最优组合R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 )R j 反映了第j 列因素的水平变动时,试验指标的变动幅度。
R j 越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j 的大小,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6-2来说明单指标正交试验结果的极差分析方法。
一、 确定因素的优水平和最优水平组合例6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6-2中,不考虑因素间的交互作用(因例6-2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6-5所示,试验方案则示于表6-6中。
试验结果的极差分析过程,如表7-1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y i表示,列于表6-6和表7-1的最后一列。
表7-1 试验方案及结果分析计算示例:因素A 的第1水平A 1所对应的试验指标之和及其平均值分别为:K A1=y 1+y 2+y 3=0+17+24=41,=1A K 31K A1=同理,对因素A 的第2水平A 2和第3水平A 3,有K A2=y 4+y 5+y 6=12+47+28=87,=2A K 31K A2=29K A3=y 7+y 8+y 9=1+18+42=61,=3A K 31K A3=由表7-1或表6-6可以看出,考察因素A 进行的三组试验中(A 1,A 2,A 3),B 、C 、D 各水平都只出现了一次,且由于B 、C 、D 间无交互作用,所以B 、C 、D 因素的各水平的不同组合对试验指标无影响,因此,对A 1、A 2和A 3来说,三组试验的试验条件是完全一样的。
SPSSAU正交实验及极差分析步骤说明

极差分析正交试验正交设计 SPSSAU极差分析Contents1背景 (1)2理论 (2)3操作 (3)4 SPSSAU输出结果 (4)5文字分析 (4)6剖析 (5)正交试验设计进行分析的方法包括两种,一种是极差分析(也称直观分析法),二是方差分析法。
如果使用方差分析,可使用S P S S A U进阶方法里面的多因素方差,也或者通用方法里面的方差分析进行研究。
极差分析是一种直观式的分析方法,其也称作R法,通过计算R值(因素极差值)来判断因素的优劣情况,当然还可判断某因素时的最佳水平情况,从而得到最终组合。
特别提示:极差分析是针对正交试验设计数据,比如使用S P S S A U【医学/实验研究--正交设计】数据得到正交表,进行试验得到试验数据后需要进行直观式分析。
1背景当前有一项研究,研究大豆出油率分别与3个因素的关系情况,分别是萃取液,温度和处理时间。
首先使用S P S S A U的正交设计得到正交表L9.3.4,总共进行9次试验收集完成试验数据后进行分析,希望找出3个因素时各水平的最佳大豆出油率组合。
另外,本案例数据如下表:表格中水平数量使用数字表示,比如因子2(温度)里面的数字1表示20度,数字2表示35度。
2理论极差分析是一种直观式分析方法,一般我们希望先评价因素优劣,比如本案例中三个因素的优劣,评价标题是通过R值(因素极差值)进行评价;而具体水平的优劣可通过K a v g值,即每个水平时试验数据的平均值,对于K a v g值的大小即可得到水平优劣的对比。
最终结合因素优劣和水平优劣,即可找出最佳试验组合。
特别提示:极差分析时,涉及相关指标的计算说明如下:K值:每因子每水平时试验证数据Y的加和值K a v g值:每因子每水平时试验证数据Y的平均值最佳水平:每因子时,K a v g值最大时对应的水平R:每因子时,K a v g值的最大值减去K a v g值的最小值水平数量:每因子时的水平数量每水平重复数r:每个水平平均实验次数折算系数d:每因子时,水平数量对应的折算系数d值R’:折算系数d*R*S q r t(每水平重复数r)如果是混合型正交表,R值(因素极差值)需要进行校正,即使用R’值,R’=折算系数d*R*S q r t(每水平重复数r),其中折算系数d是结合水平数量查表得到,每水平重复数r指每水平平均实验次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1极差分析法特点 (1)极差分析法直观形象、简单易懂。 (2)通过非常简便的计算和判断就可以求得试验的优化成 果——主次因素、优水平、优搭配及最优组合。能比较圆 满迅速地达到一般试验的要求。它在试验误差不大、精度 要求不高的各种场合中,在筛选因素的初步试验中,在寻求最 优生产条件、最佳工艺、最好配方的科研生产实际中都能 得到广泛的应用。 (3)极差分析法是正交设计中常用的方法之一。但是,由 于极差分析法不能充分利用试验数据所提供的信息,因此,其 应用还受到一定的限制。
针对上机操作内容讲解具体实例2个
1.以“正交试验设计”为关键词查询20052006年度《食品科学》期刊上发表的论文10 篇; 2.对其极差分析过程进行上机计算,求R; 3.分析所查阅论文在优水平、主次因素、最 优组合的分析与讨论的阐述内容; 4. 独立L9(34)设计方案并模拟进行极差分 析。
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(1)
1.1极差分析法特点 (4)极差分析法不能估计试验误差。实际上,任何 试验都不可避免地存在着试验误差,而极差分析法 却不能估计这种试验误差的大小,无法区分某因素 各水平所对应的试验指标平均值间的差异究竟有多 少是由因素水平不同引起的,又有多少是由试验误 差引起的。 (5)对于误差较大或精度要求较高的试验,若用极 差法分析试验结果而不考虑试验误差的影响,就会 给准确分析带来困难,影响获得正确的结论。 (6)极差法无法确定试验的优化成果的可信度,也 不能应用于回归分析与回归设计。
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(5)
转谷氨酰胺酶、复合磷酸盐、卡拉胶、酪蛋白对鸡肉肠质硬度 的影响.PDF
1.2极差分析步骤:
1.2试验结果直观分析
③计算各因素列的极差 R, 只表示该因素在其取值范围内试验指标变化 的幅度。
④根据极差R的大小,进行因素的主次排队。R越大,表示该因素的水平 变化对试验的影响越大,因此在本试验中这个因素就越重要;反之,R越小, 这个因素就越不重要。
⑤做因素与指标(试验结果)的关系图,为了更为直观起见 ,还 可以用作图的方法把因素与水平的变动情况表示出来。方 法是用各因素的水平作横坐标,各水平的平均值作纵坐标(图 11-3)。
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(2)
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(3)
超声波法提取红景天多糖.PDF
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(3)
比较规范的文章示例4
大花罗布麻叶黄酮的提取.PDF
鼠尾藻多糖的制备及其抗氧化活性.PDF
1.3 2005-2006食品研究正交试
验设计极差分析具体实例讲解
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(2)
竹叶总黄酮的提取和纯化工艺的研究.PDF
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(2)
1.3 2005-2006食品研究正交试验设计极差 分析具体实例讲解(2)
⑥计算空列的Re值,以确定误差界限并以此判断各因素的可 靠性。各因素的效应是否真正对试验有影响,须将其只值与 空列的只值相比较。因为在有空列的正交试验中 , 空列的 R 值Re代表了试验误差(当然其中包括了一些交互作用的影响 ),所以各因素指标的R值只有大于Re才能表示其因素的效应 存在,所以空列的Re在这里是判断各试验因素的效应只是否 可靠的界限。 ⑦选出最优的水平组合,即根据因素的主次顺序,将对试验有 主要影响的因素,选出最好水平;而对于次要因素,既可以根据 试验选取最好水平,又可以根据某些既定条件,例如操作性强 或者操作方便、经济实惠节省开支等来选取因素的各具体 水平。