2019-2020学年宿迁市泗阳县中考数学一模试题(有标准答案)

合集下载

【附5套中考模拟试卷】江苏省宿迁市2019-2020学年中考数学一模试卷含解析

【附5套中考模拟试卷】江苏省宿迁市2019-2020学年中考数学一模试卷含解析
18.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)化简:
9.二次函数y=ax1+bx+c(a≠0)的部分图象如图 所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣ ,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
26.(12分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA= ,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
27.(12分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.
22.(8分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.

江苏省宿迁市泗阳XX中学中考数学一模试卷(含答案)

江苏省宿迁市泗阳XX中学中考数学一模试卷(含答案)

江苏省宿迁市泗阳XX中学中考数学一模试卷一、选择题:(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填涂在答题纸相应位置上)1.﹣5的倒数是()A. B.C.﹣5 D.52.下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6D.(π﹣3)0=13.如图所示几何体的俯视图是()A.B.C.D.4.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>36.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S27.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣18.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S=S△ABF,其中四边形CDEF正确的结论有()A.5个B.4个C.3个D.2个二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.使有意义的x的取值范围是.10.2015年我市人均GDP约为34800元,34800用科学记数法表示为.11.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.12.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.13.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.14.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB 为.15.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为.16.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a=.三、解答题(本题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.18.解不等式组:.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.20.如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.21.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.22.如图,码头A在码头B的正东方向,两个码头之间的距离为20海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C 的距离.(≈1.732,结果精确到0.1海里)23.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)24.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.25.如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x﹣6分别与x轴、y轴相交于A、B两点.点C沿射线BA以3厘米/秒的速度运动,以点C为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,运动时间为t(t>0),过点P作直线l垂直于x轴.(1)求A,B两点的坐标;(2)若点C与点P同时从点B,点O开始运动,求直线l与⊙C第二次相切时点P的坐标;(3)在整个运动过程中,直线l与⊙C相交时t的范围是.26.如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d (∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)=,d(∠xOy,B)=.(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=﹣x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.江苏省宿迁市泗阳XX中学中考数学一模试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填涂在答题纸相应位置上)1.﹣5的倒数是()A. B.C.﹣5 D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6D.(π﹣3)0=1【考点】负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.【分析】根据同底数幂的乘法与除法,负整数指数幂与零指数幂的运算法则分析各个选项.【解答】解:A、a6÷a2=a4,故A错误;B、(﹣2)﹣1=﹣,故B错误;C、(﹣3x2)•2x3=﹣6x5,故C错;D、(π﹣3)0=1,故D正确.故选D.【点评】本题综合考查了整式运算的多个考点,包括同底数幂的乘法与除法,负整数指数幂与零指数幂的运算,需熟练掌握且区分清楚.3.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个圆与矩形的左边相切,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°【考点】多边形内角与外角.【分析】利用邻补角的定义,先求出∠ADE的外角,再利用多边形的内角和公式求∠AED的度数即可.【解答】解:根据五边形的内角和公式可知,五边形ABCDE的内角和为(5﹣2)×180°=540°,根据邻补角的定义可得∠EAB=∠ABC=∠BCD=∠CDE=180°﹣70°=110°,所以∠AED=540°﹣110°×4=100°.故选D.【点评】本题考查了多边形的内角和公式和邻补角的定义.多边形的内角和为:180°(n﹣2).5.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3【考点】二次函数与不等式(组).【分析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:B.【点评】此题主要考查了二次函数与不等式,正确利用数形结合求出是解题关键.6.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2【考点】解直角三角形;三角形的面积.【专题】计算题.【分析】过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出选择.【解答】解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=AB•sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△DHE中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键是作出高线构造直角三角形.7.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【考点】解分式方程.【专题】新定义.【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列五个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD=;⑤S 四边形CDEF =S △ABF ,其中正确的结论有( )A .5个B .4个C .3个D .2个【考点】相似三角形的判定与性质;矩形的性质. 【专题】压轴题.【分析】①四边形ABCD 是矩形,BE ⊥AC ,则∠ABC=∠AFB=90°,又∠BAF=∠CAB ,于是△AEF ∽△CAB ,故①正确;②由AE=AD=BC ,又AD ∥BC ,所以,故②正确;③过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故③正确;④而CD 与AD 的大小不知道,于是tan ∠CAD 的值无法判断,故④错误; ⑤根据△AEF ∽△CBF 得到,求出S △AEF =S △ABF ,S △ABF =S 矩形ABCD S 四边形CDEF =S △ACD ﹣S △AEF =S 矩形ABCD ﹣S 矩形ABCD =S 矩形ABCD ,即可得到S 四边形CDEF =S △ABF ,故⑤正确.【解答】解:过D 作DM ∥BE 交AC 于N , ∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC , ∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°, ∴△AEF ∽△CAB ,故①正确; ∵AD ∥BC , ∴△AEF ∽△CBF , ∴,∵AE=AD=BC,∴=,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有.∵tan∠CAD==,∴tan∠CAD=,故④错误;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∴S△AEF=S矩形ABCD,又∵S四边形CDEF =S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故⑤正确;故选B.【点评】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.使有意义的x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.10.2015年我市人均GDP约为34800元,34800用科学记数法表示为 3.48×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:34800用科学记数法表示为3.48×104.故答案为:3.48×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是15.【考点】因式分解-提公因式法.【专题】整体思想.【分析】直接提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=3,a﹣2b=5,则a2b﹣2ab2=ab(a﹣2b)=3×5=15.故答案为:15.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【考点】频数与频率.【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.【点评】此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.13.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为15π.【考点】圆锥的计算.【分析】根据已知和勾股定理求出AB的长,根据扇形面积公式求出侧面展开图的面积.【解答】解:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为:15π.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图是扇形,掌握扇形的面积的计算公式是解题的关键.14.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB 为.【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】过A作AC垂直于y轴,过B作BD垂直于y轴,利用垂直的定义可得出一对直角相等,再由OA与OB垂直,利用平角的定义得到一对角互余,在直角三角形AOC中,两锐角互余,利用同角的余角相等得到一对角相等,利用两对对应角相等的三角形相似得到三角形AOC与三角形OBD相似,利用反比例函数k的几何意义求出两三角形的面积,得出面积比,利用面积比等于相似比的平方求出相似比,即为OA与OB的比值,在直角三角形AOB中,利用锐角三角函数定义即可求出tan∠ABO的值.【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,则在Rt△AOB中,tan∠ABO=.故答案为:【点评】此题属于反比例综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.15.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为2.【考点】轨迹.【分析】因为MN是三角形EMN的中位线,所以MN∥BD,所以在运动过程中线段MN所扫过的区域为梯形,然后分别求得梯形的上底、下底和高,然后利用公式计算即可.【解答】解:在运动过程中线段MN所扫过的区域面积如图阴影所示:∵MN是△BDE的中位线.∴MN===1,且MN∥BD.同理:M′N′=3,且M′N′∥BD∴四边形MNN′M′为梯形.MG=MB•sin30°=1×=,N′F=N′C•sin30°=3×=.∴梯形MNN′M′的高==.∴梯形MNN′M′的面积=(FN﹣MG)=×=2.故答案为:2.【点评】本题主要考查轨迹的问题,由三角形中位线的性质判断出MN扫过的区域的形状是解题的关键.16.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a=.【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】首先根据a1=﹣1,求出a2=2,a3=,a4=﹣1,a5=2,…,所以a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、2、;然后用2015除以3,根据商和余数的情况,判断出a是第几个循环的第几个数,进而求出它的值是多少即可.【解答】解:∵a1=﹣1,∴B1的坐标是(﹣1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,﹣),∴A3的坐标是(,﹣),即a3=,∵a3=,∴B3的坐标是(,﹣2),∴A4的坐标是(﹣1,﹣2),即a4=﹣1,∵a4=﹣1,∴B4的坐标是(﹣1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、2、,∵÷3=672,∴a是第672个循环的第3个数,∴a=.故答案为:.【点评】(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣+1﹣(2﹣)﹣2×=﹣+1﹣2+﹣=﹣.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.18.解不等式组:.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【解答】解:,解①得x≥3,解②得x<8.则不等式组的解集是:3≤x<8.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=30,n=20,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是90°;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点评】本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.20.如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.【考点】平行四边形的判定与性质;全等三角形的判定.【专题】证明题.【分析】(1)根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据平行四边的性质:平行四边形的对边相等,可得AB∥CD,AB=CD,∠CDM=∠CFN;根据全等三角形的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)证明:∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,,∴△ABN≌△CDM (ASA).【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,全等三角形的判定,根据条件选择适当的判定方法是解题关键.21.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.【考点】列表法与树状图法.【专题】压轴题;图表型.【分析】(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,==.所以,P(两次摸出的球都是白球)【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.如图,码头A在码头B的正东方向,两个码头之间的距离为20海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C 的距离.(≈1.732,结果精确到0.1海里)【考点】解直角三角形的应用-方向角问题.【分析】根据正切函数,可得CD的长,根据直角三角形的性质,可得答案.【解答】解:作CD⊥AB交AB延长线于点D,则∠D=90°,由题意,得∠DCB=45°,∠CAD=90°﹣60°=30°,AB=20海里,设CD=x海里,在Rt△DCB中,tan∠DCB=,tan45°==1,BD=x,AD=AB+BD=20+x,tan30°==,解得:x=10+10,∵∠CAD=30°,∠CDA=90°,∴AC=2CD=20+20≈54.6(海里).答:码头A与小岛C的距离约为54.6海里.【点评】本题考查了解直角三角形,利用了锐角三角函数,直角三角形的性质,画出直角三角形得出CD的长是解题关键.23.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50(件).由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.24.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【考点】几何变换综合题.【专题】压轴题.【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+2,此时α=315°.【解答】解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当∠OAG′是直角时,求α的度数是本题的难点.25.如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x﹣6分别与x轴、y轴相交于A、B两点.点C沿射线BA以3厘米/秒的速度运动,以点C为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,运动时间为t(t>0),过点P作直线l垂直于x轴.(1)求A,B两点的坐标;(2)若点C与点P同时从点B,点O开始运动,求直线l与⊙C第二次相切时点P的坐标;(3)在整个运动过程中,直线l与⊙C相交时t的范围是0≤t<2或<t<.【考点】圆的综合题.【分析】(1)根据直线方程分别令x,y值为零,即可得出B,A坐标.(2)先求出第二次相切的时间,继而求得到P点坐标.。

江苏省宿迁市2019-2020学年中考一诊数学试题含解析

江苏省宿迁市2019-2020学年中考一诊数学试题含解析

江苏省宿迁市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为1000 3D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶20003千米到达A地2.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.53.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD 4.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A .30x =456x +B .30x =456x -C .306x -=45xD .306x +=45x 5.已知反比例函数1y x=下列结论正确的是( ) A .图像经过点(-1,1) B .图像在第一、三象限C .y 随着 x 的增大而减小D .当 x > 1时, y < 1 6.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒ 7.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <28.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )A .12B .18C .38D .111222++ 9.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .4200.5x +-420x=20 B .420x -4200.5x +=20 C .4200.5x --420x =20 D .420420200.5x x -=- 10.如图,OP 平分∠AOB ,PC ⊥OA 于C ,点D 是OB 上的动点,若PC =6cm ,则PD 的长可以是( )A .7cmB .4cmC .5cmD .3cm11.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH的长是( )A .223B .5C .322D .35512.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组 1~2组 1~3组 1~4组 1~5组 1~6组 1~7组 1~8组盖面朝上次数165335 483 632 801 949 1122 1276 盖面朝上频率 0.5500.558 0.537 0.527 0.534 0.527 0.534 0.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.14.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.15.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加__________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)16.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.17.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a = ___ ;b =____ 请计算扇形统计图中B 组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 20.(6分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.21.(6分)如图,在Rt △ABC 中∠ABC=90°,AC 的垂直平分线交BC 于D 点,交AC 于E 点,OC=OD . (1)若3sin 4A =,DC=4,求AB 的长; (2)连接BE ,若BE 是△DEC 的外接圆的切线,求∠C 的度数.22.(8分)在Rt ABC ∆中,8, 6,90AC BC C ==∠=︒ , AD 是CAB ∠的角平分线,交BC 于点D .(1)求AB 的长;(2)求CD 的长.23.(8分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.24.(10分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:求参与问卷调查的总人数.补全条形统计图.该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.25.(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由. 26.(12分)如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想AE 与CD 的数量关系,并证明.27.(12分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .(1)求反比例函数的解析式;(2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A 选项正确;y=0时两车相遇,x=3,所以B 选项正确;设动车速度为V 1,普车速度为V 2,则3(V 1+ V 2)=1000,所以C 选项错误;D 选项正确.【点睛】理解转折点的含义是解决这一类题的关键.2.C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C .3.D【解析】试题分析:对于A ,由PC ⊥OA ,PD ⊥OB 得出∠PCO=∠PDO=90°,根据AAS 判定定理可以判定△POC ≌△POD ;对于B OC=OD ,根据SAS 判定定理可以判定△POC ≌△POD ;对于C ,∠OPC=∠OPD ,根据ASA 判定定理可以判定△POC ≌△POD ;,对于D ,PC=PD ,无法判定△POC ≌△POD ,故选D . 考点:角平分线的性质;全等三角形的判定.4.A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程.【详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30 x =456 x.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.5.B【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A.反比例函数y=1x,图象经过点(﹣1,﹣1),故此选项错误;B.反比例函数y=1x,图象在第一、三象限,故此选项正确;C.反比例函数y=1x,每个象限内,y随着x的增大而减小,故此选项错误;D.反比例函数y=1x,当x>1时,0<y<1,故此选项错误.故选B.点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.6.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.7.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.8.B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1 8 .故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.9.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.10.A【解析】【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.11.D【解析】【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==∵CH⊥AF,∴1122AC CF AF CH⋅=⋅,12CH=⨯,∴.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】【分析】根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.1【解析】【分析】【详解】∵骑车的学生所占的百分比是126360×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.15.BE=DF【解析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.16.y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.17.25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.18.1【解析】【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)0.3,45;(2)108︒;(3)1 6【解析】【分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可. 【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:1 6 .考点:1、频数分布表,2、扇形统计图,3、概率20.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,此题考查相似三角形的应用,解题关键在于掌握运算法则21.(1;(2)30°【解析】【分析】(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=34,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.【详解】解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=3sin4A=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴=∴AC=6,∴AB::4,∴;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∴BE=EC ,∴∠EBC=∠C ,∴∠EOB=∠EDC ,又∵OE=OD ,∴△DOE 是等边三角形,∴∠EDC=60°,∴∠C=30°.【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE ,构造直角三角形.22.(1)10;(2)CD 的长为83【解析】【分析】(1)利用勾股定理求解;(2)过点D 作DE AB ⊥于E ,利用角平分线的性质得到CD=DE ,然后根据HL 定理证明 Rt ACD Rt AED ∆≌V ,设CD DE x ==,根据勾股定理列方程求解.【详解】解:(1) Q 在Rt ABC ∆中, 8 , 690AC BC C ==∠=︒,22228610AB AC BC ∴=+=+=;(2 )过点D 作DE AB ⊥于E ,AD Q 平分90BAC C ∠∠=︒,CD DE ∴=,在Rt ACD V 和Rt AED ∆中AD AD CD ED=⎧⎨=⎩ ( )Rt ACD Rt AED HL ∴∆V ≌,8AE AC ∴==10AB =Q设CD DE x ==,则6BD x =-在Rt BDE ∆中, 222DE BE BD +=()22226x x +=- 解得83x = 即CD 的长为83【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.23.见解析【解析】试题分析:证明△ABE ≌△ACD 即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE ≌△ACD,∴BE=CD ,∴BD=CE,法2:如图,作AF ⊥BC 于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,24.(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人.【解析】【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论; (2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【详解】(1)()1208040%500+÷=(人).答:参与问卷调查的总人数为500人.(2)50015%1560⨯-=(人).补全条形统计图,如图所示.(3)()8000140%10%15%2800⨯---=(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.25.(1)12;(2)规则是公平的; 【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)见解析;(2)见解析.【解析】【分析】(1)根据题意画出图形即可;(2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.【详解】解:(1)如图:(2)AE与CD的数量关系为AE=CD.证明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.27.(1)y=6x ;(2)454;(3)32<x <1. 【解析】【分析】 (1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x ;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算; (3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x. 【详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【点睛】 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.。

2019-2020年江苏省九年级中考一模数学试题(附答案)

2019-2020年江苏省九年级中考一模数学试题(附答案)

2019-2020江苏省九年级中考一模数学试题班级_______姓名________成绩_________一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.-5的倒数是-------------------------------------------------------------------------------------( )A .5B .-5C .-15D .152.下列运算正确的是.下列运算正确的是 -- ----------------------------------------------------------------------------------------------------(( ) A 、22x x x =× B 、22)(xy xy = C 、632)(x x = D 、422x x x =+3.式子1-x 在实数范围内有意义,则x 的取值范围是的取值范围是------------------------------------------------------------------(( ) A .x >1 B .x ≥1 C .x <1 D .x ≤14.一组数据2,7,6,3,4, 7的众数和中位数分别是---------------------------------- ( )A .7和4.5B .4和6C .7和4D .7和5 5. 反比例函数y ﹦k x 和正比例函数y ﹦mx 的图象如图所示.由此可以得到方程kx﹦mx 的实数根为---------------------------------------------------------------------------------------------------- ( ) A .x ﹦1 B .x ﹦2C .x 1﹦1,x 2﹦-1D .x 1﹦1,x 2﹦-2 6.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为------------------------------------------------------------------- ( ) A .3,22 B .2,22 C .3,2 2 D .2,37.7.如图,在等边△如图,在等边△如图,在等边△ABC ABC 中,中,AB AB AB、、AC 都是圆O 的弦,的弦,OM OM OM⊥⊥AB AB,,ON ON⊥⊥AC AC,垂足分别为,垂足分别为M 、N ,如果MN MN==1,那么△ABC 的面积的面积 ------------------------------------------------ ------------------------------------------------( ) A .3 B .3 C .4 D .338.如图,直线a 、b 、c 、d 互不平行,对它们截出的一些角的数量关系互不平行,对它们截出的一些角的数量关系 描述错误..的是------------------------------------------------------( )A .∠1+∠6﹦∠2B .∠4+∠5﹦∠2C .∠1+∠3+∠6﹦180°D .∠1+∠5+∠4﹦180°9. 根据下列表格中的对应值,•判断方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的个数是------------------------------------------------------------------------------------------------( )x O C第5题1 2y第7题1 cd2 356a b 4 第8题A .0B .1C .2D .1或2 10. 如图1,1,在△在△在△ABC ABC 中,∠中,∠ACB ACB ACB=90°,∠=90°,∠=90°,∠CAB=3CAB=3CAB=30°0°0°, , △ABD 是等边三角形,是等边三角形,E E 是AB 的中点,连结CE 并延长交AD 于F ,如图2,现将四边形ACBD 折叠折叠,,使D 与C 重合,HK 为折痕,则sin ∠ACH 的值为 --------------------------------------------------------------------------------(( ) A .71-3 B .71 C .61 D . 61-3 二、填空题(本大题共有8小题,每空2分,共16分.不需写出解答过程,请把答案直接填写在相应位...置.上) 11. 分解因式:a3-9a ﹦ . 12.用科学记数法表示0.000031的结果是的结果是 . 13.13. 写出写出 8 的一个同类二次根式的一个同类二次根式. 14.若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为,则这个圆锥的侧面积为. 15.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是试分数的标准差是 . 1616.如图,△.如图,△ABC 是⊙O 的内接三角形,∠C =5050°,则∠°,则∠OAB =. 17.已知A 是双曲线xy 2=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限,已知点C 的位置始终在一函数图像上运动,则这个函数解析式为__________________.第17题图题图 第18题图题图18.如图,抛物线.如图,抛物线y =x 2﹣x 与x 轴交于O 、A 两点.两点. 半径为1的动圆⊙P ,圆心从O 点出发沿抛物线向靠近点A 的方向移动;的方向移动;半径为2的动圆⊙Q ,圆心从A 点出发沿抛物线向靠近点O 的方向移动.两圆同时出发,且移动速度相等,同时出发,且移动速度相等, 当运动到P 、Q 两点重合时同时停止运动.设点P 的横坐标为t .若⊙P 与⊙Q 相离,则t 的取值范围是的取值范围是 . 三、解答题(本大题共10小题,共计82分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本题8分)计算:(1) (12)-1-3t an 60°+27; (2)a +2a +1 + 2a 2-1x6.17 6.186.19 6.20 y =ax 2+bx +c0.02 0.01 0.02 0.04BAOC (第16题)题)20.(本题满分8分)(1)解方程:(1)22333xx x -+=-- (2) 解不等式组:ïîïíì-£-ñ-121312x x xx .21.(本题满分6分) 如图,在□ABCD 中,中,E E 、F 为BC 上的两点,且上的两点,且 BE=CF BE=CF ,AF=DE. 求证:(1)△)△ABF ABF ABF≌△≌△≌△DCE DCE DCE;; (2)四边形ABCD 是矩形.是矩形.22.(本题8分)某校八年级所有学生参加2013年初中生物竞赛,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:所给信息解答下列问题:(说明:A 级:25分~30分;B 级:20分~24分;C 级:15分~19分;D 级:15分以下)分以下) (1)请把条形统计图补充完整;)请把条形统计图补充完整;(2)扇形统计图中D 级所占的百分比是级所占的百分比是________▲▲___; 3025 20 15 10 5102312A B C D人数人数等级等级ABC D46%(3)扇形统计图中A 级所在的扇形的圆心角度数是级所在的扇形的圆心角度数是______▲▲____ ; (4)若该校九年级有850名学生,请你估计全年级A 级和B 级的学生人数共约为级的学生人数共约为 ________▲▲__ 人.人.23.(本题满分8分)甲、乙两商场同时开业,为了吸引顾客,都举办有奖酬宾活动,凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外,其他全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少(如下表). 甲商场:甲商场: 乙商场:乙商场:(1)请你用列表法(或画树状图)求出摸到一红一白的概率;)请你用列表法(或画树状图)求出摸到一红一白的概率;(2)如果只考虑中奖因素,你将会选择去哪个商场购物?请说明理由.)如果只考虑中奖因素,你将会选择去哪个商场购物?请说明理由.24.(本题满分8分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,°, ∠BF Q =60°,EF =1km . ⑴判断线段AB 与AE 的数量关系,并说明理由;的数量关系,并说明理由; ⑵求两个岛屿A 和B 之间的距离(结果精确到0.1km ).25.(本题满分8分)已知:如图,在△已知:如图,在△ABC ABC 中,中,AB=AC,AE AB=AC,AE 是角平分线,是角平分线,BM BM 平分∠平分∠AB AB C 交A E 于点M,M,经过经过球 两红两红 一红一白一红一白 两白两白礼金券(元)礼金券(元) 5 10 5 球两红两红 一红一白一红一白 两白两白礼金券(元)礼金券(元) 10510B,M 两点的⊙两点的⊙O O 交BC 于点G,G,交交AB 于点F,FB 恰为⊙恰为⊙O O 的直径的直径. . (1)求证:)求证:AE AE 与⊙与⊙O O 相切;相切;(2)当BC=4,cosC=13时,求⊙时,求⊙O O 的半径的半径..26.(本题满分10分)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y 与x 之间的函数关系式;之间的函数关系式; (2)求甲、乙两种品牌的文具盒进货单价;)求甲、乙两种品牌的文具盒进货单价; (3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?使获利最大?最大获利为多少元?27.(本题满分8分)动手实验:利用矩形纸片(图1)剪出一个正六边形纸片;利用这个正六边形纸片做一个如图()剪出一个正六边形纸片;利用这个正六边形纸片做一个如图(22)无盖的正六棱柱(棱柱底面为正六边形);(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?(2)在(1)的前提下,当矩形的长为2a 时,要使无盖正六棱柱侧面积最大,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?正六棱柱的高为多少?并求此时矩形纸片的利用率?(矩形纸片的利用率并求此时矩形纸片的利用率?(矩形纸片的利用率==无盖正六棱柱的表面积无盖正六棱柱的表面积//矩形纸片的面积)矩形纸片的面积)28.(本题10分)如图1,矩形ABCD 中,点P 从A 出发,以3cm/s 的速度沿边A →B →C →D →A 匀速运动;同时点Q 从B 出发,沿边B →C →D 匀速运动,当其中一个点到达终点时两点同时停止运动,设点P 运动的时间为t s .△APQ 的面积s (cm 2)与t (s)之间函数关系的部分图像由图2中的曲线段OE 与线段EF 给出.CDS图1图2备用(1)点Q运动的速度为▲ cm/s,a﹦ ▲ cm2;运动的速度为求t>3时S的函数关系式;的函数关系式;,①(2)若BC﹦3cm,①② 在图(2)中画出①中相应的函数图像.)中画出①中相应的函数图像.初三数学参考答案一、选择题:(每题3分) 1 2 3 4 5 6 7 8 9 10 CCBDCCBAAB二、填空题:(每题2分)11.a (a +3)(a -3) 12.3.1×10-5 13. 2 等 14.p 1515.6 16. 40 17.y=x 6-(x>0) 18.0<t ≤ 12 三、解答题:三、解答题:19.(共8分)①2 (4分); ② (4分) aa -120.(20.(本题满分本题满分8分)(1) 解:()2332x x -+-=-…2分25x =,解得52x =,…3分 经检验,52x =是原方程的根. … 4分 ∴原方程的根是52x =. (2) 解: 由ïîïíì-£-ñ-121312x x xx Þ 211132x x >x x --£-+Þ14x >x £ ……(2分)分) 14<x Þ£……(4分)分) 21. (本题满分本题满分6分)证明:(1)∵□ABCD ,∴AB=CD AB=CD…………(1分)分) ∵BE=CF ,∴BF=CE BF=CE…………(2分)分)∵AF=DE ,∴△ABF ≌△DCE DCE…………(3分)分)(2)∵△ABF ≌△DCE ,∴∠B=∠C ……(4分)分) ∵∠B+∠C=180°,∴∠B=∠C=90°……(5分)分)∴□ABCD 为矩形. . …………(6分)分) 22. ① 略;②略;②10% 10% ;③;③727272;④;④;④561 561 (每题各2分,共8分)分)23. 解:(1)树状图为:……(2分)分)图表略图表略∴一共有6种情况;P \(一红一白)3264==……(4分)分) (2)方法1:∵去甲超市购物摸一次奖获10元礼金券的概率是P (甲)=,…(5分)分)去乙超市购物摸一次奖获10元礼金券的概率是P (乙)=,(7分)分)∴我选择去甲超市购物;(8分)分)方法2:∵两红的概率P=,两白的概率P=,一红一白的概率P==,(5分)分) ∴在甲商场获礼金券的平均收益是:×5+×10+×5=;在乙商场获礼金券的平均收益是:×10+×5+×10=.(7分)分)∴我选择到甲商场购物.(8分)分)说明:树状图表示为如下形式且按此求解第(2)问的,也正确.)问的,也正确.24. (本题满分8分) (1)相等. (1分) 理由如下:∵∠BEQ=30°,∠BFQ=60°, ∴∠EBF=30°,EF=BF . 又∵∠AFP=60°,∴∠BFA=60°.(2分) 在△AEF 与△ABF 中,中,EF=BF ,∠AFE=∠AFB ,AF=AF , ∴△AEF ≌△ABF ,(3分) ∴AB=AE . (4分)(2)方法一:作AH ⊥PQ ,垂足为H .设AE=x ,则AH=xsin74°,HE=xcos74°,(5分)分) HF=xcos74°HF=xcos74°+1+1. (6分) Rt △AHF 中,AH=HF•tan60°, ∴xsin74°xsin74°==(xcos74°xcos74°+1+1)•tan60°,(7分)分) 即0.96x=(0.28x+1)×1.73, 解得x≈3.6,即AB≈3.6.答:两个岛屿A 与B 之间的距离约为3.6km . (8分)分) 方法二:设AF 与BE 的交点为G . 在Rt △EGF 中,∵EF=1,∴EG=23. (6分)在Rt △AEG 中,中,∠AEG=76°,AE=EG÷AE=EG÷cos76°cos76°cos76°==23÷0.24≈3.6km ,(7分)分) ∵AE=AB ,∴两个岛屿A 和B 之间的距离是3.6km ,(8分)分)25.(本题满分8分) 解:解:(1) (1) 连接OM ,则OM =OB ∴∠OBM=∠OMB ∵BM 平分∠ABC ∴∠OBM= ∴∠OMB=∠EBM∴OM ∥BE ∴∠AMO=∠AEB而在⊿ABC 中,AB=AC,AE 是角平分线是角平分线 ∴AE ⊥BC ∴∠AMO=∠AEB=90°∴AE 与⊙O 相切.------------ 3分 (2) 在⊿ABC 中,AB=AC,AE 是角平分线是角平分线∴BE=12BC=2,∠ABC=∠ACB ∴在Rt ⊿ABC 中cos ∠ABC=cos ∠ACB=2AB =13 ∴AB=6--------------6分 设⊙O 的半径为r,则AO=6-r∵OM ∥BC ∴△AOM ∽△ABE∴OM BE =AOAB 即 r 2 =6-r 6∴r=32--------------8分26.(本题满分10分)分) 解:(1)设y 与x 之间的函数关系式为y=kx+b y=kx+b,由函数图象,得,由函数图象,得,由函数图象,得, ……(1分)分)解得:,∴y 与x 之间的函数关系式为y=y=﹣﹣x+300x+300;;……(2分)分)(2)∵)∵y=y=y=﹣﹣x+300x+300;; ∴当x=120时,时,y=180y=180y=180..……(3分)分)设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得元,由题意,得 120a+180×2a=7200,120a+180×2a=7200, 解得:解得:a=15a=15a=15,,……(4分)分)∴乙品牌的进货单价是30元.……(5分)分) 答:甲、乙两种品牌的文具盒进货单价分别为15元,元,3030元;元;(3)设甲品牌进货m 个,则乙品牌的进货(﹣个,则乙品牌的进货(﹣m+300m+300m+300)个,由题意,得)个,由题意,得)个,由题意,得,解得:180≤m≤181,……(6分)分)11 ∵m 为整数,为整数,∴m=180m=180,,181181..……(7分)分)∴共有两种进货方案:∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;个;方案2:甲品牌进货181个,则乙品牌的进货119个;……(8分)分) 设两种品牌的文具盒全部售出后获得的利润为W 元,由题意,得元,由题意,得 W=4m+9W=4m+9(﹣(﹣(﹣m+300m+300m+300))=﹣5m+27005m+2700..……(9分)分)∵k=k=﹣﹣5<0,∴W 随m 的增大而减小,的增大而减小,∴m=180时,时,W W 最大=1800元.……(10分)分)27.(本题满分8分)分)(1)2︰3 ……(……(……(33分)分)(2)设高为x ,S=ax x 6342+-,……(,……(44分)分)当x=a43时,S=2433a ……(……(55分)分)此时,底面积=2833a , ……(……(66分)分)2433a +2833a =2839a ……(……(77分)分)利用率=169 ……(……(88分)分)29.(1)1,6;(4分)分)(2)①若3<t ≤5,S =3t -9;(2分)分) ②若5<t ≤6,S =32t 2-452t +81.(2分)分) (3)图略。

【附5套中考模拟试卷】江苏省宿迁市2019-2020学年中考数学模拟试题含解析

【附5套中考模拟试卷】江苏省宿迁市2019-2020学年中考数学模拟试题含解析
A.0.15B.0.2C.0.25D.0.3
5.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是( )
A. B. C. D.
6.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()
16.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.
17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).
18.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤20
2.观察下列图案,是轴对称而不是中心对称的是( )
A. B. C. D.
3.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()

泗阳初三中考一模试卷数学

泗阳初三中考一模试卷数学

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 已知a=2,b=-3,则|a-b|的值为()A. 5B. 1C. -5D. -13. 下列各式中,正确的是()A. a^2 = -aB. (a+b)^2 = a^2 + b^2C. (a-b)^2 = a^2 - 2ab + b^2D. (a+b)^2 = a^2 - 2ab - b^24. 如果等腰三角形的底边长为4,腰长为5,那么这个三角形的周长是()A. 14B. 15C. 16D. 175. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A.(-2,-3)B.(2,3)C.(-2,-3)D.(2,-3)6. 已知函数f(x) = 2x + 3,那么f(-1)的值为()A. -1B. 1C. 2D. 37. 下列各式中,能表示直线y=2x+1的是()A. 2x-y+1=0B. 2x+y-1=0C. x-2y+1=0D. x+2y-1=08. 已知等差数列{an}的第一项a1=3,公差d=2,那么第10项a10的值为()A. 19B. 20C. 21D. 229. 下列各式中,能表示圆x^2+y^2=9的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2+y^2=9D. x^2+y^2=1610. 在△ABC中,∠A=30°,∠B=45°,那么∠C的度数是()A. 45°B. 60°C. 75°D. 90°二、填空题(每题5分,共50分)11. 若a、b是相反数,且a+b=0,则a=______,b=______。

12. 已知x^2-5x+6=0,那么x的值为______。

13. 在△ABC中,AB=AC,那么∠B=______。

14. 已知函数f(x) = 3x - 2,那么f(2)的值为______。

2020年宿迁市中考数学一模试卷(带答案)

2020年宿迁市中考数学一模试卷(带答案)

2020年宿迁市中考数学一模试卷(带答案)一、选择题1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1063.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.4.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠D .3x ≠-且1x ≠ 5.下表是某学习小组一次数学测验的成绩统计表: 分数/分 7080 90 100 人数/人 1 3 x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )A .80分B .85分C .90分D .80分和90分 6.下列运算正确的是( ) A .23a a a += B .()2236a a = C .623a a a ÷=D .34a a a ⋅= 7.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数k y x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .58.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体9.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A . B .C .D .10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36- 11.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C .D .12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.16.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .19.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.22.已知222111 x x x Ax x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.3.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.4.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.5.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.6.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.7.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.8.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.9.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 10.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴2234+,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 11.A解析:A【解析】【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近, 故选A .二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.16.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.17.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.18.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间5【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.20.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:(±11,112).【解析】【详解】∵M、N两点关于y轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②, ∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=11±, ∴y=-12x 211±x , ∴顶点坐标为(2b a -=11±,244ac b a -=112),即(11±,112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)过点C 作CG ⊥AB 于G在Rt △ACG 中 ∵∠A =60°∴sin60°=∴……………1分在Rt △ABC 中 ∠ACB =90°∠ABC =30°∴AB=2 …………………………………………2分∴………3分 (2)菱形………………………………………4分∵D 是AB 的中点 ∴AD=DB=CF=1在Rt △ABC 中,CD 是斜边中线 ∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF 是菱形…………………………6分(3)在Rt △ABE 中∴……………………………7分 过点D 作DH ⊥AE 垂足为H则△ADH ∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.(1)11x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11x-(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x=1时,A=11x-无意义.②当x=2时,A=11x-=1=12-1考点:分式的化简求值、一元一次不等式组.23.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-5321xx=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-321m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD3x.又∵BC=20,∴x3x=20,解得:x =31).x=≈⨯⨯-=≈ (海里).∴AC2231) 1.4110(1.731)10.29310.3答:A、C之间的距离为10.3海里.。

江苏省宿迁市2019-2020学年中考数学模拟试题(2)含解析

江苏省宿迁市2019-2020学年中考数学模拟试题(2)含解析

江苏省宿迁市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+12.式子2x+在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣23.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④4.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根5.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.96.31-的值是()A.1 B.﹣1 C.3 D.﹣37.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数e的直径,且AB⊥CD.入8.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃O口K 位于»AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C9.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)10.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.603n mile B.602n mile C.303n mile D.302n mile11.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 1x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y312.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .14.若一个棱柱有7个面,则它是______棱柱.15.一个n 边形的每个内角都为144°,则边数n 为______.16.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为17.如图,路灯距离地面6m ,身高1.5m 的小明站在距离灯的底部(点O )15m 的A 处,则小明的影子AM 的长为________m .18.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m )20.(6分)计算:(3﹣2)0+11()3 +4cos30°﹣|﹣12|.21.(6分)在平面直角坐标系中,已知抛物线经过A (﹣4,0),B (0,﹣4),C (2,0)三点. (1)求抛物线解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△MOA 的面积为S .求S 关于m 的函数关系式,并求出当m 为何值时,S 有最大值,这个最大值是多少?(3)若点Q 是直线y=﹣x 上的动点,过Q 做y 轴的平行线交抛物线于点P ,判断有几个Q 能使以点P ,Q ,B ,O 为顶点的四边形是平行四边形的点,直接写出相应的点Q 的坐标.22.(8分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.23.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k ,然后放回搅匀再取一个球,标号记为b ,求直线y=kx+b 经过一、二、三象限的概率. 24.(10分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.25.(10分)已知抛物线y =ax 2+(3b+1)x+b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”.(1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B .①求实数a 的取值范围;②若点A ,B 关于直线y =﹣x ﹣(21a +1)对称,求实数b 的最小值. 26.(12分)如图,己知AB 是的直径,C 为圆上一点,D 是的中点,于H ,垂足为H ,连交弦于E ,交于F ,联结. (1)求证:. (2)若,求的长.27.(12分)如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0m y m x=≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P在双曲线myx=上,且△PAC的面积为4,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.2.B【解析】【分析】根据二次根式有意义的条件可得20x+≥,再解不等式即可.【详解】解:由题意得:20x+≥,x≥-,解得:2故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.4.C【解析】【详解】解:由题意可知4的算术平方根是2,4的算术平方根是,2<,8的立方根是2,故根据数轴可知,故选C5.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.6.B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,7.B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.8.B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.9.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.10.B【解析】【分析】【详解】如图,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=2×60=302n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=602n mile.故选B.11.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.12.D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意;故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.36或45. 【解析】 【详解】 (3)当B′D=B′C 时,过B′点作GH ∥AD ,则∠B′GE=90°,当B′C=B′D 时,AG=DH=12DC=8,由AE=3,AB=36,得BE=3. 由翻折的性质,得B′E=BE=3,∴EG=AG ﹣AE=8﹣3=5,∴B′G=22'B E EG -=22135-=33,∴B′H=GH ﹣B′G=36﹣33=4,∴DB′=22'B H DH +=2248+=45;(3)当DB′=CD 时,则DB′=36(易知点F 在BC 上且不与点C 、B 重合); (3)当CB′=CD 时,∵EB=EB′,CB=CB′,∴点E 、C 在BB′的垂直平分线上,∴EC 垂直平分BB′,由折叠可知点F 与点C 重合,不符合题意,舍去.综上所述,DB′的长为36或45.故答案为36或45.考点:3.翻折变换(折叠问题);3.分类讨论.14.5分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.10【解析】【分析】【详解】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10, 故答案为:1016.7 2°或144°【解析】【详解】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144° 17.1.【解析】【分析】易得:△ABM ∽△OCM ,利用相似三角形的相似比可得出小明的影长.【详解】解:根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM=+ , 即1.5615AM AM=+, 解得AM=1m .则小明的影长为1米.故答案是:1.本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.18.140°【解析】【分析】【详解】如图,连接BD,∵点E、F分别是边AB、AD的中点,∴EF是△ABD的中位线,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.通信塔CD的高度约为15.9cm.【解析】【分析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒, 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , )3663373x x tan +=+︒, 解得:33, ∴33(cm ), 答:通信塔CD 的高度约为15.9cm .【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键.20.1【解析】分析:按照实数的运算顺序进行运算即可. 详解:原式31343,=++- 1333,=++=1.点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.21.(1)y=12x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2﹣2﹣P,Q,B,O为顶点的四边形是平行四边形.【解析】【分析】(1)设抛物线解析式为y=ax2+bx +c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),∴16404420a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得1214 abc⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线解析式为y=12x2+x﹣4;(2)∵点M的横坐标为m,∴点M的纵坐标为12m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=12×4×|12m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,∴当m=﹣1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)∵点Q是直线y=﹣x上的动点,∴设点Q 的坐标为(a ,﹣a ),∵点P 在抛物线上,且PQ ∥y 轴,∴点P 的坐标为(a ,12a 2+a ﹣4), ∴PQ=﹣a ﹣(12a 2+a ﹣4)=﹣12a 2﹣2a+4, 又∵OB=0﹣(﹣4)=4,以点P ,Q ,B ,O 为顶点的四边形是平行四边形,∴|PQ|=OB ,即|﹣12a 2﹣2a+4|=4, ①﹣12a 2﹣2a+4=4时,整理得,a 2+4a=0, 解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q 坐标为(﹣4,4), ②﹣12a 2﹣2a+4=﹣4时,整理得,a 2+4a ﹣16=0,解得a=﹣2±所以点Q 的坐标为(﹣2﹣2﹣,,综上所述,Q 坐标为(﹣4,4)或(﹣2﹣2﹣P ,Q ,B ,O 为顶点的四边形是平行四边形.【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.22.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.熟练掌握将一般式化为顶点式是解题关键.23.(1)23;(2)49【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是2 3 .(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.24.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(1)(11,22)或(﹣1,﹣1);(1)①2<a <17②b 的最小值是13 【解析】【分析】(1)把x=y=m ,a=1,b=1代入函数解析式,列出方程,通过解方程求得m 的值即可;(1)抛物线上恒有两个不同的“和谐点”A 、B .则关于m 的方程m=am 1+(3b+1)m+b-3的根的判别式△=9b 1-4ab+11a .①令y=9b 1-4ab+11a ,对于任意实数b ,均有y >2,所以根据二次函数y=9b 1-4ab+11的图象性质解答; ②利用二次函数图象的对称性质解答即可.【详解】(1)当a =1,b =1时,m =1m 1+4m+1﹣4,解得m =12或m =﹣1. 所以点P 的坐标是(12,12)或(﹣1,﹣1); (1)m =am 1+(3b+1)m+b ﹣3,△=9b 1﹣4ab+11a .①令y =9b 1﹣4ab+11a ,对于任意实数b ,均有y >2,也就是说抛物线y =9b 1﹣4ab+11的图象都在b 轴(横轴)上方.∴△=(﹣4a )1﹣4×9×11a <2.∴2<a <17.②由“和谐点”定义可设A (x 1,y 1),B (x 1,y 1),则x 1,x 1是ax 1+(3b+1)x+b ﹣3=2的两不等实根,123122x x b a ++=-. ∴线段AB 的中点坐标是:(﹣312b a +,﹣312b a +).代入对称轴y =x ﹣(21a +1),得 ﹣312b a +=312b a +﹣(21a+1), ∴3b+1=1a+a . ∵a >2,1a >2,a•1a =1为定值,∴3b+1=1a =1,∴b≥13.∴b的最小值是13.【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.26.(1)证明见解析;(2)【解析】【分析】(1)由题意推出再结合,可得△BHE~△BCO.(2)结合△BHE~△BCO ,推出带入数值即可.【详解】(1)证明:∵为圆的半径,是的中点,∴,,∵,∴,∴,∴,∵,∴,∴,又∵,∴∽.(2)∵∽,∴,∵,, ∴得, 解得, ∴.【点睛】 本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形. 27.(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x =-;(2)点P 的坐标为1(2,2)P -或2(2,2)P - 【解析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可; (2)根据直线解析式求得点A 坐标,由S △ACP =12AC•|y P |=4求得点P 的纵坐标,继而可得答案. 详解:(1)∵直线()30y kx k =+≠与双曲线y =m x (0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x=-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0), 4AC ∴=,∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x=-上, ∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省宿迁市泗阳县中考数学一模试卷一、选择题:本大题共8小题,每题3分共24分.1.﹣3的相反数是()A.B.C.3 D.﹣32.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2D.5a﹣2a=33.已知一粒大米的质量约为0.000021kg,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.0.21×10﹣54.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁6.已知下列函数:①y=﹣(x>0),②y=﹣2x+1,③y=3x2+1(x<0),④y=x+3,其中y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个7.已知,在△ABC中,AD为BC边上的中线,AC=5,AD=4,则AB的取值范围是()A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<138.如图所示,在直角坐标系中放置一个矩形OABC,其中AB=2,AO=1,若将矩形OABC沿x轴的负方向无滑动地在x轴上翻滚,则当点O离开原点后第一次落在x轴上时,点O运动的路径与x轴围成的面积为()A.B.C. D.二、填空题:本大题共8小题,每题3分,共24分.9.4是的算术平方根.10.分解因式ma2﹣2mab+mb2= .11.关于x的方程x2﹣4x+3﹣m=0有两个相等的实数根,则m= .12.在平面直角坐标系xOy中,平行四边形OABC的顶点为O(0,0),A(1,1),B(3,0),则顶点C 的坐标是.13.分式方程的解为.14.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F 分别为线段AB、AC的中点,则线段EF的长度为.15.如图,扇形OAB是圆锥的侧面展开图,且点O、A、B分别是格点,已知小正方形方格的边长为1cm,则这个圆锥的底面半径为.16.已知函数y=,若使y=k成立的x值恰好有两个,则k的取值范围为.三、解答题:本大题共10题,17-22题每题6分,23、24题每题8分,25、26题每题10分.共72分.17.计算:﹣4sin60°+(1﹣π)0.18.先化简:,当y=﹣1时,请你为x任选一个适当的整数代入求值.19.现在“校园手机”越来越受到社会的关注,为此某校八(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图.(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?20.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.23.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(3,﹣1)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.24.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)25.(1)如图1,正方形ABCD和正方形DEFG,G在AD边上,E在CD的延长线上.求证:AE=CG,AE⊥CG;(2)如图2,若将图1中的正方形DEFG绕点D顺时针旋转角度θ(0°<θ<90°),此时AE=CG还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图3,当正方形DEFG绕点D顺时针旋转45°时,延长CG交AE于点H,当AD=4,DG=时,求线段CH的长.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0),B(1,0),C(0,3).(1)求抛物线的解析式;(2)点P为抛物线上一个动点,记△PAC的面积为S.①当点P与抛物线顶点D重合时,求△PAC的面积S;②若点P位于第二象限,试求△PAC面积S的最大值及此时点P的坐标;(3)在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.江苏省宿迁市泗阳县中考数学一模试卷参考答案与试题解析一、选择题:本大题共8小题,每题3分共24分.1.﹣3的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2D.5a﹣2a=3【考点】多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方分别进行解答,即可得出答案.【解答】解:A、(ab3)2=a2b6,故本选项正确;B、a2•a3=a5,故本选项错误;C、(a+b)(a﹣2b)=a2﹣ab﹣2b2,故本选项错误;D、5a﹣2a=3a,故本选项错误.故选A.【点评】本题考查了多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方,熟记法则和公式是本题的关键.3.已知一粒大米的质量约为0.000021kg,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.0.21×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000021=2.1×10﹣5,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S甲2>S乙2>S丙2>S丁2,∴射箭成绩最稳定的是丁;故选D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.已知下列函数:①y=﹣(x>0),②y=﹣2x+1,③y=3x2+1(x<0),④y=x+3,其中y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个给定函数,根据函数的系数结合函数的性质,找出其在定义域内的单调性,由此即可得出结论.【解答】解:①在反比例函数y=﹣(x>0)中,k=﹣2,∴该函数在x>0中单调递增;②在一次函数y=﹣2x+1中,k=﹣2,∴该函数在其定义域内单调递减;③二次函数y=3x2+1(x<0)中a=3>0,且对称轴为x=0,∴该函数在x<0中单调递减;④一次函数y=x+3中,k=1,∴该函数在其定义域内单调递增.综上可知:y随x的增大而减小的函数有②③.故选B.【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是结合函数的系数找出函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数的系数结合函数的性质找出函数的单调性是关键.7.已知,在△ABC中,AD为BC边上的中线,AC=5,AD=4,则AB的取值范围是()A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<13【考点】三角形三边关系;全等三角形的判定与性质.【分析】首先根据题意画出图形,然后延长AD至E,使DE=AD=4,连接CE,易证得△ABD≌△ECD(SAS),可求得AE的长,证得CE=AB,然后由三角形三边关系,求得答案.【解答】解:如图,延长AD至E,使DE=AD=4,连接CE.∵AD为BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AC=5,AE=AD+ED=8,∴3<EC<13,∴AB的取值范围是:3<AB<13.故选B.【点评】此题考查了三角形的三边关系以及全等三角形的判定与性质.注意准确作出辅助线是解此题的关键.8.如图所示,在直角坐标系中放置一个矩形OABC,其中AB=2,AO=1,若将矩形OABC沿x轴的负方向无滑动地在x轴上翻滚,则当点O离开原点后第一次落在x轴上时,点O运动的路径与x轴围成的面积为()A.B.C. D.【考点】轨迹;坐标与图形性质;矩形的性质.【分析】根据题意先画出示意图,再结合图形及扇形的面积公式即可计算出点O运动的路径线与x轴围成的面积.【解答】解:点O运动的路径如图所示,见图:则点O运动的路径与x轴围成的面积=++++=+×1×2+×1×2+=π+1+π+1+=π+2.故选A.【点评】本题考查了轨迹问题,用到的知识点是矩形的性质、旋转的性质、扇形的面积公式,解答本题如果不能直观想象出图形,可以画出图形再求解,注意熟练掌握扇形的面积计算公式.二、填空题:本大题共8小题,每题3分,共24分.9.4是16 的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.10.分解因式ma2﹣2mab+mb2= m(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:ma2﹣2mab+mb2=m(a2﹣2ab+b2)=m(a﹣b)2,故答案为m(a﹣b)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.关于x的方程x2﹣4x+3﹣m=0有两个相等的实数根,则m= ﹣1 .【考点】根的判别式.【分析】由方程有两个相等的实数根可得出b2﹣4ac=0,代入数据即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:由已知得:b2﹣4ac=(﹣4)2﹣4(3﹣m)=0,即4m+4=0,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是得出关于m的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,由根的个数结合根的判别式得出方程(不等式或不等式组)是关键.12.在平面直角坐标系xOy中,平行四边形OABC的顶点为O(0,0),A(1,1),B(3,0),则顶点C 的坐标是(2,﹣1).【考点】平行四边形的性质;坐标与图形性质.【分析】连接AC交OB于P,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标.【解答】解:连接AC交OB于P,如图所示:∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(3,0),∴P的坐标(1.5,0),∵A(1,1),∴C的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质.求出点P的坐标是解决问题的关键.13.分式方程的解为x=﹣3 .【考点】分式方程的解.【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:两边都乘以x(x﹣1),得4x=3(x﹣1),解得x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题考查了分式方程的解,利用等式的性质是解题关键,要检验分式方程的根.14.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F 分别为线段AB、AC的中点,则线段EF的长度为.【考点】三角形中位线定理;两条直线相交或平行问题.【专题】几何图形问题.【分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【解答】解:如图,∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=9.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.【点评】本题考查了三角形中位线定理、两条直线相交或平行问题.根据直线方程求得点B、C的坐标是解题的关键.15.如图,扇形OAB是圆锥的侧面展开图,且点O、A、B分别是格点,已知小正方形方格的边长为1cm,则这个圆锥的底面半径为cm .【考点】圆锥的计算.【分析】利用勾股定理的逆定理求得扇形的圆心角,然后利用弧长公式求得扇形的弧长,即圆锥的底面周长,根据圆的周长公式求得底面圆的半径.【解答】解:根据勾股定理可以得到:OA2=OB2=22+22=4+4=8,即OA=2.∵AB=4,42=8+8,∴AB2=OA2+OB2,∴△OAB是等腰直角三角形.∴的长是=π.设圆锥的底面半径是rcm,则2πr=π,解得:r=.故答案为cm.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.已知函数y=,若使y=k成立的x值恰好有两个,则k的取值范围为k=1或k<﹣3 .【考点】二次函数图象上点的坐标特征.【专题】常规题型.【分析】首先在平面直角坐标系内作出函数y=的图象,然后利用数形结合的方法即可找到使y=k成立的x值恰好有2个的k值.【解答】解:画函数y=的图象:根据图象知道当y=1或y<﹣3时,对应成立的x有恰好有2个,所以k=1或k<﹣3.故答案为:k=1或k<﹣3.【点评】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.三、解答题:本大题共10题,17-22题每题6分,23、24题每题8分,25、26题每题10分.共72分.17.计算:﹣4sin60°+(1﹣π)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用二次根式性质,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2﹣4×+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简:,当y=﹣1时,请你为x任选一个适当的整数代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=2,y=﹣1时,原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.现在“校园手机”越来越受到社会的关注,为此某校八(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图.(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据家长认为无所谓的有80人,所占的比例是20%,即可求得家长的总人数,进而求得反对的家长的人数,从而完成统计图;(2)利用360°乘以表示“赞成”的家长所占的比例即可求得;(3)利用总人数2500乘以持反对态度的家长所占的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360×═36°;(3)反对中学生带手机的大约有2500×=1750(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB,∴△ABF∽△CEB;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AB平行且等于CD,∴△DEF∽△CEB,△DEF∽△ABF,∵DE=CD,∴=()2=, =()2=,∵S△DEF=2,∴S△CEB=18,S△ABF=8,∴S四边形BCDF=S△BCE﹣S△DEF=16,∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=24.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟悉相似三角形的性质和判定是解决问题的关键.21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【考点】作图—复杂作图;切线的性质.【专题】作图题.【分析】(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.【解答】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.【点评】本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【专题】应用题;创新题型.【分析】(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.【解答】解:(1)根据题意列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.【点评】本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.23.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(3,﹣1)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点B的坐标带入反比例函数解析式中即可求出m的值,从而得出反比例函数解析式,再将点A的坐标带入反比例函数解析式即可求出n值,由点A、B的坐标利用待定系数法即可求出一次函数解析式;(2)观察两函数图象,结合点A、B的坐标,即可得出结论;(3)由BC⊥x轴结合点B的坐标可得出BC的长度,再根据点A的坐标利用三角形的面积公式即可得出结论.【解答】解:(1)将点B(3,﹣1)带入反比例函数解析式中,得:﹣1=,解得:m=﹣3,∴反比例函数解析式为y=﹣;∵点A(n,3)在反比例函数y=﹣的图象上,∴3=﹣,解得:n=﹣1,即点A的坐标为(﹣1,3).将点A(﹣1,3),点B(3,﹣1)带入到一次函数解析式中,得:,解得:.∴一次函数解析式为y=﹣x+2.(2)观察函数图象发现:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴不等式kx+b>的解集为x<﹣1或0<x<3.(3)∵BC⊥x轴,B(3,﹣1),∴BC=1,∵A(﹣1,3),∴S△ABC=BC•(x B﹣x A)=×1×4=2.【点评】本题考查了反比例函数与一次函数交点的问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)结合函数图象解不等式;(3)利用三角形的面积公式求出面积.本题属于基础题,难度不大,解决该题型题目时,求出点的坐标,利用待定系数法求出函数解析式是关键.24.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据题意得出,∠BEF=36°,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)为36°,∴∠BEF=36°,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=BD=15,DF=15≈25.98,EF==≈21.43故:DE=DF﹣EF=4(米);(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×30=15,PA=AD•cos30°=×30=15,在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9,GH=HM+MG=15+15+9≈45米.答:建筑物GH高约为45米.【点评】此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.25.(1)如图1,正方形ABCD和正方形DEFG,G在AD边上,E在CD的延长线上.求证:AE=CG,AE⊥CG;(2)如图2,若将图1中的正方形DEFG绕点D顺时针旋转角度θ(0°<θ<90°),此时AE=CG还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图3,当正方形DEFG绕点D顺时针旋转45°时,延长CG交AE于点H,当AD=4,DG=时,求线段CH的长.【考点】四边形综合题.【分析】(1)先判断出△ADE≌△CDG,然后用互余判断出垂直;(2)先判断出△ADE≌△CDG,然后用互余判断出垂直;(3)先判断出△ADE≌△CDG,然后用互余判断出垂直,然后用勾股定理计算出CM,AM最后用相似即可.【解答】解:(1)在△ADE和△CDG中,...,∴△ADE≌△CDG,∴AE=CG,∠AED=∠CGD,∵∠DCG+∠CGD=90°,∴∠DCG+∠AED=90°,∴AE⊥CG.(2)∵∠CDG+∠ADG=90°,∠ADE+∠ADG=90°,∴∠CDG=∠ADE在△ADE和△CDG中,,∴△ADE≌△CDG,∴AE=CG,∠AED=∠CGD,∵∠DCG+∠CGD=90°,∴∠DCG+∠AED=90°,∴AE⊥CG.(3)如图,过点E作AD的垂线,垂足为N,连接AC,在△ADE和△CDG中,,∴△ADE≌△CDG,∴∠EAD=∠DCM∴tan∠DCM=,∴DM=CD=∴CM==,AM=AD﹣DM=∵△CMD∽△AMH,∴,∴AH=,∴CH==.【点评】此题是四边形综合题,主要考查了全等三角形的性质,判定,利用互余判断出直角,勾股定理,三角函数的意义,解本题的关键是判定三角形全等.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0),B(1,0),C(0,3).(1)求抛物线的解析式;(2)点P为抛物线上一个动点,记△PAC的面积为S.①当点P与抛物线顶点D重合时,求△PAC的面积S;②若点P位于第二象限,试求△PAC面积S的最大值及此时点P的坐标;(3)在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PN的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据余角的性质,可得∠MAO=∠DMN,根据全等三角形的判定与性质,可得答案.【解答】解:(1)将A、B、C点的坐标代入函数解析式,得,解得,抛物线的解析式为:y=﹣x2﹣2x+3;(2)①如图1,y=﹣x2﹣2x+3=﹣(x+1)2+4,即D点坐标为(﹣1,4),AC的解析式为y=x+3,当x=﹣1时,y=2,即N点坐标为(﹣1,2),ND=4﹣2=2.S△ADC=ND•OA=×2×3=3;②如图2,由上题可知直线AC的解析式是:y=x+3设P点的坐标为(x,﹣x2﹣2x+3),则点N的坐标为(x,x+3)∴PN=PE﹣NE=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x∵S△APC=S△ANP+S△CNP∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+∴当x=﹣时,S有最大值,此时点P的坐标(﹣,);(3)如图3,由△ADM是等腰直角三角形,得AM=DM,∠AMD=90°,由∠MAO+∠AMO=90°,∠AMO+∠DMN=90°,∴∠MAO=∠DMN.在△MAO和△DMN中,,∴△MAO≌△DMN(AAS),∴OM=DN=1,∴M(0,1).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用面积的和差得出二次函数是解题关键;利用全等三角形的判定与性质得出OM=DN是解题关键.。

相关文档
最新文档