三角函数中三角变换常用的方法和技巧1
三角方程的解法

三角方程的解法
1. 引言
三角方程是包含了三角函数的方程,与普通的代数方程相比,其求解过程中存在一些特殊性。
本文将介绍几种常见的解三角方程的方法。
2. 常见三角方程的解法
2.1. 三角恒等变换法
三角恒等变换法是一种常用的解三角方程的方法。
该方法通过把原方程经过一系列的三角恒等变换,转化为一个更简单的方程,从而得到解。
例如,对于sin(2x) = 1的方程,可以使用三角恒等变换sin(2x) = 2sin(x)cos(x)来简化为2sin(x)cos(x) = 1的方程。
2.2. 利用单位圆解法
单位圆解法是一种通过在单位圆上寻找角度的方法来解决三角方程的方法。
该方法通过将三角方程转化为在单位圆上求解对应角度的问题。
例如,对于cos(x) = 1/2的方程,可以在单位圆上找到x = π/3和x = 5π/3两个解。
2.3. 利用三角函数的周期性
三角函数具有周期性,利用这一特性可以简化三角方程的求解
过程。
例如,对于sin(x) = sin(π/6)的方程,考虑到正弦函数的周期
是2π,可以得到x = π/6 + 2πn和x = π - π/6 + 2πn两个解。
其中n
为整数。
3. 总结
解三角方程是研究三角函数的重要环节,通过熟练掌握三角恒
等变换、单位圆解法以及利用三角函数的周期性,可以解决各种类
型的三角方程。
在实际应用中,需要根据具体情况选择合适的解法,并注意方程的特殊性。
以上就是本文对三角方程解法的介绍,希望对读者有所帮助。
三角函数变换的技巧与方法

三角函数变换的技巧与方法三角函数是数学中非常重要的概念,在求解各类问题时都会用到。
而三角函数之间的变换则是解决三角函数相关问题的重要技巧之一、下面将介绍一些常见的三角函数变换方法。
方法一:和差角公式三角函数的和差角公式是非常重要的三角函数变换公式。
根据和差角公式,我们可以将一个三角函数的和差表达式转化为两个三角函数的乘积表达式。
具体公式如下:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)通过使用和差角公式,我们可以将复杂的三角函数表达式转化为简单的三角函数乘积表达式,从而便于求解和化简。
方法二:倍角公式倍角公式是三角函数变换中另一个重要的公式。
根据倍角公式,我们可以将一个三角函数的角度变为原来的2倍。
具体公式如下:1. sin2A = 2sinAcosA2. cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. tan2A = (2tanA) / (1 - tan^2A)方法三:半角公式半角公式是将一个角的角度变为原来的1/2的公式。
具体公式如下:1. sin(A/2) = ±√[(1 - cosA) / 2]2. cos(A/2) = ±√[(1 + cosA) / 2]3. tan(A/2) = √[(1 - cosA) / (1 + cosA)]方法四:和差化积公式和差化积公式是将一个三角函数的和差化为积的公式。
具体公式如下:1. sinA + sinB = 2sin((A + B)/2)cos((A - B)/2)2. sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)3. cosA + cosB = 2cos((A + B)/2)cos((A - B)/2)4. cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)方法五:积化和差公式积化和差公式是将两个三角函数的积化为和差的公式。
三角函数“角变换”的六种常用技巧

ʏ童昌立角变换 是三角变换的核心, 角变换 的六种常用技巧是:互余角或互补角的转化,非特殊角向特殊角的转化,半角与倍角的转化,复角与单角的转化,结论式中的角与条件式中的角的转化,引入辅助角㊂下面举例分析,供大家学习与提高㊂技巧一:互余角或互补角的转化例1 (1)已知c o s α-π4=45,αɪ0,π4,则c o s α+π4=㊂(2)已知s i n π3-α=14,则c o sπ3+2α=㊂(1)由αɪ0,π4,可得α-π4ɪ-π4,0 ㊂因为c o s α-π4 =45,所以s i n α-π4 =-35,所以s i n π4-α =35㊂故c o s α+π4 =s i n π2-α+π4 =s i n π4-α =35㊂(2)由s i n π3-α =14,可得c o s π6+α =c o s π2-π3-α=s i n π3-α =14,所以c o s π3+2α =c o s 2π6+α =2c o s 2π6+α -1=2ˑ116-1=-78㊂评注:利用π4+α=π2-π4-α,π3+α=π2-π6-α ,π6+α=π2-π3-α 的转化是解题的关键㊂技巧二:非特殊角向特殊角的转化例2 (多选题)下列式子结果为3的是( )㊂A .2s i n 35ʎc o s 25ʎ+c o s 35ʎc o s 65ʎB .1+t a n 15ʎ1-t a n 15ʎC .t a n 75ʎ1-t a n 275ʎD .t a n 25ʎ+t a n 35ʎ+3t a n 25ʎt a n35ʎ对于A ,2(s i n 35ʎc o s 25ʎ+c o s 35ʎc o s65ʎ)=2(s i n35ʎ㊃c o s 25ʎ+c o s 35ʎs i n 25ʎ)=2s i n 60ʎ=3㊂对于B ,1+t a n 15ʎ1-t a n 15ʎ=t a n 45ʎ+t a n 15ʎ1-t a n 45ʎt a n 15ʎ=t a n 60ʎ=3㊂对于C ,t a n 75ʎ1-t a n 275ʎ=12ˑ2t a n 75ʎ1-t a n 275ʎ=12ˑt a n150ʎ=-36㊂对于D ,t a n25ʎ+t a n 35ʎ+3t a n25ʎt a n35ʎ=t a n60ʎ(1-t a n 25ʎt a n 35ʎ)+3t a n25ʎt a n35ʎ=3-3t a n 25ʎt a n 35ʎ+3t a n 25ʎt a n 35ʎ=3㊂应选A B D ㊂评注:特殊角的三角函数值是同学们熟悉的㊂利用非特殊角向特殊角转化是解答本题的突破口㊂技巧三:半角与倍角的转化例3 (1)3c o s 15ʎ-4s i n 215ʎc o s15ʎ=( )㊂A.2 B .3C .6D .23(2)s i n 50ʎ(1+3t a n 10ʎ)=㊂(1)原式=3c o s15ʎ-2s i n 15ʎ㊃2s i n 15ʎc o s 15ʎ=3c o s 15ʎ-2s i n15ʎs i n30ʎ=3c o s15ʎ-01 知识结构与拓展 高一数学 2022年12月Copyright ©博看网. All Rights Reserved.s i n 15ʎ=2c o s (30ʎ+15ʎ)=2㊂应选A ㊂(2)原式=s i n 50ʎ(c o s 10ʎ+3s i n 10ʎ)c o s 10ʎ=s i n 50ʎ㊃2s i n 40ʎc o s 10ʎ=2s i n 50ʎc o s 50ʎc o s 10ʎ=s i n 100ʎc o s 10ʎ=c o s 10ʎc o s 10ʎ=1㊂评注:对于形如 c o s α,c o s 2α,c o s 4α的化简与求值问题,就要想到二倍角公式和辅助角公式的应用㊂技巧四:复角与单角的转化例4 已知s i n (2023π+θ)=13,则所给三角函数式:c o s (π+θ)c o s θ㊃[c o s (π-θ)-1]+c o s (θ-2π)s i n θ-3π2c o s (θ-π)-s i n 3π2+θ的值为㊂因为s i n (2023π+θ)=-s i n θ=13,所以s i n θ=-13㊂所以原式=-c o s θ-c o s θ㊃(1+c o s θ)+c o s θ-c o s 2θ+c o s θ=11+c o s θ+11-c o s θ=21-c o s 2θ=2s i n 2θ=2-132=18㊂评注:对于诱导公式2k π+α(k ɪZ ),πʃα,-α,π2ʃα的变换,每用一次公式,都要注意三角函数值的符号㊂技巧五:结论式中的角与条件式中的角的转化例5 已知α,β均为锐角,且c o s (α+β)=-513,s i n β+π3 =35,则c o s α+π6=( )㊂A.3365 B .6365C .-3365D .-6365因为α,β均为锐角,且c o s (α+β)=-513,s i n β+π3=35,所以α+βɪπ2,π ,β+π3ɪπ3,5π6,所以s i n α+β =1213,c o s β+π3 ɪ-32,12㊂易得c o s β+π3 =ʃ45,其中c o s β+π3 =45>12舍去㊂故c o s α+π6 =c o s (α+β)-β+π3 +π2 =-s i n (α+β)-β+π3 =-1213ˑ-45 +-513ˑ35=3365㊂应选A ㊂评注:三角公式中的角α,β可以是任意角,既能看成是单角,也能看成是复角㊂在运用公式时,要特别注意 条件角 与 结论角 之间可能存在的和差关系㊂常见的角的变换有15ʎ=45ʎ-30ʎ=60ʎ-45,α=(α+β)-β,α=α+β2+α-β2,2α=(α+β)+(α-β)=π4+α-π4-α,β=α+β2-α-β2等㊂技巧六:引入辅助角例6 已知函数f (x )=5s i n x -12c o s x ,当x =x 0时,f (x )有最大值13,则t a n x 0=㊂因为函数f (x )=5s i n x -12c o s x =13s i n (x -θ),其中θ由t a n θ=125确定㊂因为当x =x 0时,函数f (x )有最大值13,所以x 0-θ=π2+2k π(k ɪZ ),所以x 0=θ+π2+2k π(k ɪZ ),所以t a n x 0=t a n θ+π2+2k π=ta n θ+π2=s i n θ+π2 c o s θ+π2=c o s θ-s i n θ=-1t a n θ=-512㊂评注:形如a s i n x +b c o s x 的求值问题,可考虑利用辅助角公式来解决㊂a s i n x +b c o s x =a 2+b 2si n (x +θ),其中θ由t a n θ=ba确定㊂作者单位:湖北省恩施市第三高级中学(责任编辑 郭正华)11知识结构与拓展高一数学 2022年12月Copyright ©博看网. All Rights Reserved.。
三角函数图像变换方法

三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。
下面将详细介绍三角函数图像变换的原理、方法和应用。
一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。
具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。
振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。
2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。
频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。
3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。
相位增加时,图像向右平移;相位减小时,图像向左平移。
二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。
例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。
2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。
例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。
3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。
例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。
此外,还可以结合使用上述方法,实现更复杂的图像变换。
例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。
三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。
以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。
三角函数变换的方法总结

三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。
三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。
下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。
(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。
解析:已知显然有:由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0即有:acosθ+b=0又 a≠0所以,cosθ=-b/a ③将③代入①得:a(-a/b)2-b(-b/a)=2a即a4+b4=2a2b2∴(a2-b2)2=0即|a|=|b|点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。
(2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
解析:设θ+15°=α,则原式=sin(α+60°)+cos (α+30°)-cosα=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα=sinα+cosα+cosα-sinα-cosα=0点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。
三角函数换角技巧

高一数学必修四辅导资料三角变换的技巧与方法知识要求:1、熟悉各公式在恒等变形中的作用,才能在解决各种总题时,合理选择公式,灵活运用公式,提高分析和解决有关三角问题的能力。
2、常用的技巧有:○1角的变换;○2函数名称变换;○3常数代换;○4幂的变换;○5公式变形;○6结构变形;○7消元法;○8思路变化; 变换技巧与方法归纳:1、切割化弦:就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,这样可有利于问例1:求证:ααααααcos sin 11sec -tan 1-sec tan +=++2、“1”的代换:在三角函数中,“1”的代换有:1cos sin ,45,1cot tan 122o =+=∙=αααα等,在具体的三角变换过程中将“1”作某种合适的变形,往往能收到意想不到的效果。
例2:已知2cos sin sin -1,1-tan tan 2++=ααααα求的值;例3:已知ααααcos2sin2-1,25tan -1tan 1求+=+的值;例4:已知tanx1sin2xx 2cos 0,3cosx 6sinx -sinxcosx x cos -x 2sin 222++=++求的值;3、分拆与配凑:“凑角法”是解三角题的常用技巧,解题时首先要分析已知条件和结论中各种角例5:设)cos(,,02,32)-2sin(,91)2-cos(βαπβπαπβαβα+<<<<==求的值;例6:已知)sin(,135)43sin(,53)-4cos(43440βαβπαππαππβ+=+=求,<<,<<的值;例7:(1997年全国高考题)oooo o o sin8sin15-cos7sin8cos15sin7+的值为 。
4、引入辅助角:ϕϕθθθ这里辅助角可化为),sin(b a bcos asin 22+++所在的象限由a,b 的符号确定,ab tan =ϕϕ角的值由确定。
高三数学9种常用三角恒等变换技巧总结
高中数学:9种常用三角恒等变换技巧总结三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。
“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想.在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视.跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项” . “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等变换,也是常用的方法,本题也可以采用降次、和积互化等方法。
.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。
凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.。
9种常用三角恒等变换技巧总结
9种常用三角恒等变换技巧总结三角函数是数学中一种重要的函数,它广泛应用于几何、物理、工程等领域。
而在解题过程中,常常需要通过三角恒等变换技巧来简化或转换问题,以便更容易求解或证明。
下面我们将总结一下常用的九种三角恒等变换技巧。
1.正弦和余弦平方和恒等式:sin^2(x) + cos^2(x) = 1这是最基本的三角恒等式,即正弦和余弦的平方和等于1、它在很多场合都会被应用到,例如求解三角方程、证明三角函数的性质等。
2.余弦的二倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)这个公式可以将一个角的余弦值转化为另一个角的余弦值,同时也可以将余弦值转化为正弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
3.正弦的二倍角公式:sin(2x) = 2sin(x)cos(x)这个公式可以将一个角的正弦值转化为另一个角的正弦值,或者将正弦值转化为余弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
4.正切的和差公式:tan(x±y) = (tan(x)±tan(y))/(1∓tan(x)tan(y))这个公式可以将两个角的正切值的和或差转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和或差。
它在解决一些三角方程和证明一些三角恒等式的时候非常有用。
5.两角和差公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)cos(x±y) = cos(x)cos(y)∓sin(x)sin(y)这些公式可以将两个角的正弦值或余弦值的和或差转化为一个角的正弦值或余弦值,或者将一个角的正弦值或余弦值转化为两个角的正弦值或余弦值之和或差。
它们在解决一些三角方程和证明一些三角恒等式的时候非常有用。
6.正切的和公式:tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))这个公式可以将两个角的正切值的和转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和。
三角恒等变换与解题技巧
三角恒等变换与解题技巧三角恒等变换是解决三角函数相关问题的重要方法之一,通过巧妙地变换三角函数的表达式,可以简化计算、化简复杂的式子、推导出新的关系等。
在解题过程中,合理应用三角恒等变换可以帮助我们降低难度、提高效率。
本文将介绍三角恒等变换的基本概念、常用公式以及解题技巧,以帮助读者更好地理解和运用三角恒等变换。
一、基本概念三角恒等变换是指通过等式的变换,将一个三角函数表达式变为与之等价的另一个表达式。
通常,三角恒等变换会使得原先复杂的式子简化或转化成更易处理的形式,从而方便我们求解问题。
三角恒等变换的基本思想是利用三角函数之间的相互关系以及已知恒等式,将三角函数表达式转换为其他函数的组合或者其他三角函数的形式。
二、常用公式以下是一些常用的三角恒等变换公式:1. 余弦的平方与正弦的平方恒等变换:cos^2θ + sin^2θ = 12. 二倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. 和差角公式:sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβcos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβ4. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ= 2cos^2θ - 1 = 1 - 2sin^2θ5. 平方和与平方差公式:sin^2θ + cos^2θ = 1sin^2θ - cos^2θ = sin^2θ / cos^2θ以上只是一部分常用的三角恒等变换公式,通过合理运用这些公式,我们可以将复杂的三角函数式子转化为简单易解的形式,为解题提供便利。
三、解题技巧1. 利用三角恒等变换化简式子在解决问题时,我们常常会遇到需要化简复杂的三角函数式子的情况。
数学解决三角函数问题的六种方法
数学解决三角函数问题的六种方法在数学学习中,三角函数是一项基础而重要的内容。
解决三角函数问题,需要掌握不同的解题方法和技巧。
本文将介绍六种常用的数学解决三角函数问题的方法,以帮助读者更好地理解和应用三角函数。
方法一:利用定义和基本公式三角函数的定义和基本公式对于解决问题非常重要。
例如,正弦函数的定义是一个直角三角形的斜边与对边之比,可以表示为sinθ = a/c。
利用这个定义和基本公式,我们可以求解一些基本的三角函数值,如sin(30°) = 1/2。
方法二:利用三角函数图像特征三角函数的图像特征可以帮助我们更好地理解和应用它们。
例如,正弦函数的图像是一条连续的波形,取值范围在[-1, 1]之间。
利用这个特征,我们可以根据给定的角度,通过观察三角函数图像来确定函数值。
方法三:利用三角函数的周期性质三角函数具有周期性的特点,即sin(θ + 2π) = sinθ,cos(θ + 2π) =cosθ。
利用这个周期性质,我们可以将任意角度转换成特定区间范围内的角度,从而简化计算。
方法四:利用三角函数的恒等变换三角函数的恒等变换是一种将一个三角函数表示为其他三角函数的等价形式。
例如,sin(θ) = cos(π/2 - θ)。
利用这种恒等变换,我们可以将复杂的三角函数问题转化为简单的形式,从而更便于求解。
方法五:利用特殊角的三角函数值特殊角(如0°、30°、45°、60°、90°等)具有特殊的三角函数值,这些值是我们在计算过程中常常用到的。
例如,sin(0°) = 0,cos(90°) = 0,tan(45°) = 1等。
熟记这些特殊角的三角函数值,可以大大简化计算过程。
方法六:利用三角函数的性质和定理三角函数具有一系列的性质和定理,如和差化积公式、倍角公式、半角公式等。
利用这些性质和定理,我们可以根据已知条件,推导出新的关系式,从而求解三角函数问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数中三角变换常用的方法和技巧一、角的变换当已知条件中的角与所求角不同时,需要通过“拆”、“配”等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果. 例1 函数ππ2sin cos ()36y x x x ⎛⎫⎛⎫=--+∈⎪ ⎪⎝⎭⎝⎭R 的最小值等于( ). (A )3- (B )2-(C )1-(D)解析:注意到题中所涉及的两个角的关系:πππ362x x ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以将函数()f x 的表达式转化为πππ()2cos cos cos 666f x x x x ⎛⎫⎛⎫⎛⎫=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()f x 的最小值为1-.故选(C ).评注:常见的角的变换有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-,22αβαββ+-=-,3πππ()442βααβ⎛⎫⎛⎫+--=++⎪ ⎪⎝⎭⎝⎭,ππ44αβαβ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.只要对题设条件与结论中所涉及的角进行仔细的观察,往往会发现角之间的关系. 例2、已知 βαβαα,,1411)cos(,71cos -=+=均是锐角,求βcos 。
解:。
)21734143571)1411(cos 1435sin(,734sin .sin )sin(cos )cos(])cos[(cos =⨯+⨯-=∴=+=+++=-+=ββαααβααβααβαβ小结:本题根据问题的条件和结论进行])[(αβαβ-+=的变换。
例3、已知cos(91)2-=-βα,sin(2α-β)=32,且,20,2πβπαπ<<<<求.2cosβα+ 分析:观察已知角和所求角,可作出)2()2(2βαβαβα---=+的配凑角变换,然后利用余弦的差角公式求角。
解:.2757329543591)]2()2cos[(2cos,35(1)2cos(,954(1)2sin(.224,24,20,2)32)9122=∙+⨯-=---=+∴=--=-=-=-<-<-<-<∴<<<<βαβαβαβαβαπβαππβαππβπαπ例4、已知),2sin(sin βαβ+=m 求证:).1(tan 11)tan(≠-+=+m mmαβα 分析:由角的特点,因已知条件所含角是,,2ββα+所证等式含角,,αβα+所以以角为突破口。
证明:.tan 11tan(1sin )cos()1(cos )sin()1(,sin )cos(cos )sin(sin )cos(cos )sin(],)sin[(])sin[(,)(,)(2αβααβααβααβααβααβααβααβααβααβαβαβαβαmmm m m m m m -+=+∴≠++=+-∴+++=+-+++=-+∴-+=++=+)即小结:抓住题设与结论中角的差异,利用角的和,差,倍等关系,变不同的角为同角,在三角变换中角的变换很重要。
二、函数名称变换三角函数包括六种形式,因此,对于含有多种三角函数的问题,要从题目中所给的各函数间的关系入手,寻求统一函数名称的变换途径,正确选用三角变换公式,通过变换尽量减少三角函数的种类,可以使问题得到快速的解决.例1、若sin (α+β)=12, sin (α—β)=110,求tan tan αβ解:由sin=(α+β)=12, s in (α—β)=110得1sin cos cos sin 312sin cos ,cos sin 1105sin cos cos sin 10αβαβαβαβαβαβ⎧+=⎪⎪==⎨⎪=⎪⎩解得- ∴tan tan αβ=sin cos cos sin αβαβ=32例2、当π04x <<时,函数22cos ()cos sin sin xf x x x x=-的最小值是( ).(A )4 (B )12(C )2 (D )14解析:注意到函数的表达式的分子与分母是关于sin x 与cos x 的齐二次式,所以,分子与分母同时除以2cos x 转化为关于tan x 的函数进行求解.因为π04x <<,所以0t a n 1α<<,所以2211()4tan tan 11tan 24f x x x x ==-⎛⎫--+⎪⎝⎭≥.故选(A ). 评注:切、割化弦,弦化切是解答三角问题中对函数名称进行转化的最常见、最基本的两种方法:(1)若所给的三角式中出现了“切、割函数”,则可利用同角三角函数基本关系将“切、割函数”化为“弦函数”进行求解、证明;(2)若所给的三角式中出现了“弦函数”与“切函数”,有时可以利用公式sin tan cos x x x=将“弦函数”化为“切函数”进行解答. 例3、化简:0cos10(tan10sin50解:原式000000sin10cos102cos 40(2cos10sin 50sin 50-====- 例4、已知tan()34πα+=-,求22sin cos sin sin cos 1ααααα-+的值。
解:∵tan()14tan tan()2441tan()4παππααπα+-=+-==++, ∴222222sin cos 2sin cos 2tan 47sin sin cos 1sin sin cos sin cos 2tan tan 1ααααααααααααααα===-+-++-+ 点评:在求值、化简、恒等式证明中,切化弦与弦化切是常用的三角变换技巧。
三、升幂与降幂变换分析三角函数中的次数,是低次的升次,还是高次的降次,要充分结合题中的要求,正确选用半角公式或倍角公式等三角公式,达到次数的统一.例1、 已知α为第二象限角,且sin α=πsin 4sin2cos 21ααα⎛⎫+ ⎪⎝⎭++的值.分析:由于已知条件中知道sin α的值,而所求三角函数式中所涉及的角是与α有关的复角,因此可利用同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形获得解答.解:原式2cos )cos )22sin cos 2cos 4cos (sin cos )αααααααααα++==++当α为第二象限角,且sin α=时,s i nc o s 0αα+≠,1cos 4α=-,所以πs i n 4s i n 2c o s 2o ααα⎛⎫+ ⎪⎝⎭==++ 评注:解答本题的关键是将含有二倍角的一次式转化为二次式,消去常数1.例2、求值:︒︒︒+︒-480sin 20sin 220sin 820sin 433解:原式:=︒︒-︒-20sin 3)20sin 21(20sin 432=︒︒︒-20sin 340cos 20sin 43=︒︒︒-︒+︒20sin 340cos 20sin 4)2040sin(2=︒︒︒-︒︒20sin 320sin 40cos 20cos 40(sin 2=︒︒-︒20sin 3)2040sin(2=332 注:怎样处理sin 320°和3是本题的难点,解决的方法是“降幂”和“常数变换法”。
四、常数变换 例1、已知πtan 24α⎛⎫+=⎪⎝⎭,求212sin cos cos ααα+的值.分析:由已知易求得tan α的值,而所求三角函数式中的分母所涉及的函数是正、余弦函数且各式都为二次式,而分子是常数1,可将1化为22sin cos αα+,再利用同角三角函数基本关系将所求式转化为正切函数进行求解.解:由π1tan tan 241tan ααα+⎛⎫+==⎪-⎝⎭,得1tan 3α=,于是原式2222sin cos tan 122sin cos cos 2tan 13ααααααα++===++. 评注:对于题中所给三角式中的常数(如:123,,等),比照特殊角的三角函数值,将它们化为相应的三角函数,参与其它三角函数的运算,在解题中往往起着十分奇妙的作用.例2、 求值(21cos 80o —23cos 10o )²1c o s 20o解:∵21cos 80o —23cos 10o =2222cos 103cos 80cos 80cos 10o oo o-=22cos 10sin 10o oo o o o (cos10)(cos10) =22cos10cos 10sin 10o o o o o o o o o o 4(sin30+cos30sin10)(sin30cos10-cos30sin10)=24sin 40sin 201sin 204o o o =16sin 40sin 20o o=32cos20o ∴原式=32五、消参变换当题设或结论中含有参数时,我们可以采用消去参数法来解决. 例1、已知sin sin(3)m βαβ=+,1m ≠且ππ()2k k αβ+≠+∈Z ,π()2k k α≠∈Z . 求证:1tan()tan 1mmαβα++=-. 分析:由于已知和结论中都含有参数m ,所以我们可以把已知变形,求出sin sin(2)m m βαβ=+,,代入1tan 1m m α+-化简,即可证得等式成立. 评注:在解答含有参数的等式证明问题时,我们往往可以采用这种办法.本例并未给出证明过程,同学们可试着自己完成.六、变换公式的方法使用任何一个公式都要注意它的逆向变幻,多向变幻,这是灵活,深刻地使用公式所必须的,尤其是三角公式众多,把这些公式变活,显得更加重要。
三角公式是变换的依据,应熟练掌握三角公式的顺用、逆用及变形应用。
如cos α=ααsin 22sin ,tan α±tan β=tan (α+β)(1 tan αtan β)等。
例1:求值:212cos 412csc )312tan 32-︒︒-︒+( 解:先看角,都是12°;再看“名”,需将切割化为弦,最后在化简过程中再看变换。
原式=212cos 412sin 1)312cos 12sin 3(2-︒︒⋅-︒︒(切、割化为弦)=)112cos 2(12cos 12sin 212cos 312sin 32-︒︒︒︒-︒=︒︒︒-︒24cos 24sin )12cos 2312sin 21(32(逆用二倍角) =︒︒︒︒-︒︒24cos 24sin )60sin 12cos 60cos 12(sin 32(常数变换)=︒︒︒-︒24cos 24sin 2)6012sin(34(逆用差角公式)=︒︒-48sin )48sin(34=-43(逆用二倍角公式)注:要养成逆用公式的意识,熟悉教材给出的三角基本公式的同时,如果我们熟悉其他变通形式常可以开拓解题思路。