高一数学必修1单元测试:创优单元测评(第一章)B卷Word版含解析

合集下载

(完整)高中数学必修一第一章单元测试及答案.doc

(完整)高中数学必修一第一章单元测试及答案.doc
.
( )求实数
2
R
上的单调性;
( )判断并证明函数f (x)在
(3)已知不等式f (2m 1)
f ( 1)
0恒成立,求实数m的取值范围.
高一数学试题第4页,共9页
高一数学试题及答案
一、选择题(本大题共
12小题,每小题5分,共60分,每题有且只有一个选项是正确的,
请把答案填在答题卡上)
1.设集合A
{ 1, 2 ,4},B
1
1
与u
1
1
x
v
5.函数y
2x
1的定义域是(

A. (1,
)
B. [1,
)
2
2
6.下列函数中为偶函数的是(

A.y
x
B.y
x
7.函数y=x2-6x+10在区间(2,4)上是(
A.递减函数B.递增函数
1
x的图像关于(

8.函数f ( x)
x
A.y轴对称
C.{2,1,5,8}D.
B.yx24与yx2x2
是其图像上的两点, 那么f x 1
的解集是(B

A.3,0B.0,3C., 13,D.,01,
二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上)
x
5( x
1)
8
.
13.已知f ( x)
1(x
,则f [ f (1)]
2x2
1)
14.已知A {1,2, x2},B
{1, x},且A∩B=B,则x的值为___________..
( )f (x)x 25 x
( )
2x 4
1

(word版)高一数学必修一第一章测试题及答案[1],文档

(word版)高一数学必修一第一章测试题及答案[1],文档

高中数学必修1检测题一、选择题:1.全集U {1,2,3,4,5,6.7},A {2,4,6},B {1,3,5,7}.那么A (C U B〕等于〔〕A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5}2.集合 A {x|x2 1 0},那么以下式子表示正确的有〔〕①1 A ②{ 1} A ③ A ④{1, 1} AA.1个B.2个C.3个D.4个3.假设 f:A B能构成映射,以下说法正确的有〔〕1〕A中的任一元素在B中必须有像且唯一;2〕A中的多个元素可以在B中有相同的像;3〕B中的多个元素可以在A中有相同的原像;4〕像的集合就是集合B.A、1个B、2个C 、3个D、4个4、如果函数f(x)x22(a1)x 2在区间,4上单调递减,那么实数a的取值范围是〔〕A、a≤3B、a≥3C、a≤5D、a≥55、以下各组函数是同一函数的是〔〕①f(x)2x3与g(x)x2x;②f(x)x与g(x)x2;③f(x)x0与g(x)1;④f(x)x22x1与g(t)t22t1。

x0A、①②B、①③C 、③④D、①④6.根据表格中的数据,可以断定方程e x x20的一个根所在的区间是〔〕x-10123 e x1x212345A.〔-1,0〕B.〔0,1〕C.〔1,2〕D.〔2,3〕7.假设lgx lgy a,那么lg(x)3lg(y)3〔〕22A.3a B.3a C.a D.a22-1-8、假设定义运算ab a bx log2x log1x的值域是〔ba,那么函数f〕a b2A0,B0,1C 1,D R9.函数y a x在[0,1]上的最大值与最小值的和为3,那么a〔〕1B.2C.41A.D.2410 .以下函数中,在0,2上为增函数的是〔〕A、ylog1(x1)B、y log2x21C、y log21D、y log1(x24x5) 2x211.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是〔〕x45678910 y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型12、以下所给4个图象中,与所给3件事吻合最好的顺序为〔〕1〕我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;2〕我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽误了一些时间;3〕我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高中人教A版数学必修1单元测试:第一章 集合与函数概念(二)AB卷 Word版含解析

高中人教A版数学必修1单元测试:第一章 集合与函数概念(二)AB卷 Word版含解析

高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________第一章 集合与函数概念(二) (函数的概念与基本性质) 名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=12x -3的定义域是( )A.⎝⎛⎭⎪⎫0,32 B.⎣⎢⎡⎭⎪⎫32,+∞ C.⎝⎛⎦⎥⎤-∞,32 D.⎝⎛⎭⎪⎫32,+∞2.函数y =f (x )的图象与直线x =2的公共点有( ) A .0个 B .1个 C .0个或1个 D .不能确定 3.函数y =x 2-4x +1,x ∈2,5]的值域是( ) A .1,6] B .-3,1] C .-3,6] D .-3,+∞)4.已知函数f (x )=⎩⎪⎨⎪⎧x (x ≥0),x 2 (x <0),则f (f (-2))的值是( )A .2B .-2C .4D .-45.已知函数f (x )=(a -x )|3a -x |,a 是常数且a >0,下列结论正确的是( )A .当x =2a 时,有最小值0B .当x =3a 时,有最大值0C .无最大值也无最小值D .有最小值,但无最大值6.定义域为R的函数y=f(x)的值域为a,b],则函数y=f(x+a)的值域为()A.2a,a+b] B.a,b]C.0,b-a] D.-a,a+b]7.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x+2 B.3x+1 C.3x-1 D.3x+48.设f(x)是R上的偶函数,且在(-∞,0)上为减函数,若x1<0,且x1+x2>0,则()A.f(x1)>f(x2) B.f(x1)=f(x2)C.f(x1)<f(x2) D.无法比较f(x1)与f(x2)的大小9.已知反比例函数y=kx的图象如图所示,则二次函数y=2kx2-4x+k2的图象大致为()10.若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上有最大值5,则f(x)在(-∞,0)上有()A.最小值-5 B.最大值-5C.最小值-1 D.最大值-311.已知f(x)为奇函数,在区间3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f (-6)+f (-3)=( )A .-15B .-13C .-5D .512.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为________.14.已知函数f (x )满足f (x +y )=f (x )+f (y )(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.15.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为______________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知二次函数f (x )=x 2+2(m -2)x +m -m 2.(1)若函数的图象经过原点,且满足f (2)=0,求实数m 的值; (2)若函数在区间2,+∞)上为增函数,求m 的取值范围.18.(本小题满分12分) 已知函数f (x )=1+x 21-x 2.(1)求f (x )的定义域; (2)判断并证明f (x )的奇偶性;(3)求证:f ⎝ ⎛⎭⎪⎫1x =-f (x ).19.(本小题满分12分)已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ). (1)求函数g (x )的定义域;(2)若f (x )是奇函数,且在定义域上单调递减,求不等式g (x )≤0的解集.20.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)当x <0时,求f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间.21.(本小题满分12分)已知函数f (x )的定义域为(0,+∞),且f (x )为增函数,f (x ·y )=f (x )+f (y ).(1)求证:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y );(2)若f (3)=1,且f (a )>f (a -1)+2,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+2x +ax,x ∈1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈1,+∞),f (x )>0恒成立,试求实数a 的取值范围.详解答案第一章 集合与函数概念(二) (函数的概念与基本性质) 名师原创·基础卷]1.D 解析:由2x -3>0得x >32.2.C 解析:如果x =2与函数y =f (x )有公共点,则只有一个公共点,因为自变量取一个值只对应一个函数值;若无交点,则没有公共点,此时的x =2不在y =f (x )的定义域内.3.C 解析:函数y =(x -2)2-3在2,+∞)上是增函数,所以最小值为f (2)=-3,又x ∈2,5],故最大值为f (5)=6.4.C 解析:∵x =-2<0,∴f (-2)=(-2)2=4. 又4>0,∴f (f (-2))=f (4)=4.5.C 解析:由f (x )=⎩⎪⎨⎪⎧(x -2a )2-a 2,x ≤3a ,-(x -2a )2+a 2,x >3a ,可画出简图.分析知C 正确.6.B 解析:y =f (x +a )可由y =f (x )的图象向左或向右平移|a |个单位得到,因此,函数y =f (x +a )的值域与y =f (x )的值域相同.7.C 解析:设x +1=t ,则x =t -1,∴f (t )=3(t -1)+2=3t -1, ∴f (x )=3x -1,故选C.解题技巧:采用换元法求函数解析式是常用方法.换元时,一定注意自变量的取值范围的变化情况.8.C 解析:x 1<0,且x 1+x 2>0,∴x 1>-x 2. 又f (x )在(-∞,0)上为减函数,∴f (x 1)<f (-x 2). 又f (x )是偶函数,∴f (x 1)<f (x 2).9.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k <0,排除C.10.C 解析:由已知对任意x ∈(0,+∞),f (x )=aφ(x )+bg (x )+2≤5. 对任意x ∈(-∞,0),则-x ∈(0,+∞),且φ(x ),g (x )都是奇函数,有f (-x )=aφ(-x )+bg (-x )+2≤5.即-aφ(x )-bg (x )+2≤5, ∴aφ(x )+bg (x )≥-3.∴f (x )=aφ(x )+bg (x )+2≥-3+2=-1.11.A 解析:因为函数在3,6]上是增函数,所以f (6)=8,f (3)=-1,又函数f (x )为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-2×8+1=-15,故选A.12.D 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),∴f (x )-f (-x )x =2f (x )x <0,即⎩⎨⎧ f (x )<0,x >0或⎩⎨⎧f (x )>0,x <0.因为f (x )是奇函数且在(0,+∞)上是增函数,故f (x )在(-∞,0)上是增函数.由f (1)=0知f (-1)=0,∴⎩⎨⎧f (x )<0,x >0可化为⎩⎪⎨⎪⎧f (x )<f (-1),x >0,∴0<x <1;⎩⎨⎧f (x )>0,x <0可化为⎩⎪⎨⎪⎧f (x )>f (1),x <0,∴-1<x <0.13.⎝ ⎛⎭⎪⎫-1,-12 解析:由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12. 解题技巧:已知f (x )的定义域为a ,b ],求f (g (x ))的定义域,可从a ≤g (x )≤b 中解得x 的取值范围,即为f (g (x ))的定义域.14.①②③ 解析:令x =y =0,得f (0)=0;令x =2,y =1,得f (3)=f (2)+f (1)=3f (1);令x =y =12,得f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.15.-2x 2+4 解析:f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2为偶函数,则2a +ab =0,∴a =0或b =-2.又f (x )的值域为(-∞,4],∴a ≠0,b =-2,∴2a 2=4. ∴f (x )=-2x 2+4.16.a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12, ∵函数在(1,2)上单调,∴a -12≥2或a -12≤1,即a ≥52或a ≤32.17.解:(1)∵f (0)=0,f (2)=0,∴⎩⎪⎨⎪⎧m 2-5m +4=0,m -m 2=0,∴m =1. (2)∵y =f (x )在2,+∞)为增函数,∴对称轴x =-2(m -2)2≤2, ∴m ≥0.18.(1)解:由1-x 2≠0得x ≠±1, ∴f (x )的定义域为{x |x ≠±1,x ∈R }. (2)解:f (x )是偶函数,证明如下:设x ∈{x |x ≠±1,x ∈R },则-x ∈{x |x ≠±1,x ∈R }. ∵f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ),∴f (x )是偶函数.(3)证明:∵f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=1+1x 21-1x 2=x 2+1x 2-1=-1+x 21-x 2= -f (x ),∴f ⎝ ⎛⎭⎪⎫1x =-f (x )成立.19.解:(1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2,∴⎩⎨⎧-1<x <3,12<x <52.解得12<x <52.故函数f (x )的定义域为⎝ ⎛⎭⎪⎫12,52.(2)由g (x )≤0,得f (x -1)+f (3-2x )≤0, ∴f (x -1)≤-f (3-2x ).∵f (x )为奇函数,∴f (x -1)≤f (2x -3). 而f (x )在(-2,2)上单调递减,∴⎩⎨⎧x -1≥2x -3,12<x <52.解得12<x ≤2.∴g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 20.解:(1)当x <0时,-x >0, ∴f (-x )=(-x )2-2(-x )=x 2+2x . 又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=x 2+2x .(2)由(1)知,f (x )=⎩⎪⎨⎪⎧x 2-2x (x ≥0),x 2+2x (x <0).作出f (x )的图象如图所示.由图得函数f (x )的递减区间是(-∞,-1],0,1]. f (x )的递增区间是-1,0],1,+∞).21.(1)证明:∵f (x )=f ⎝ ⎛⎭⎪⎫x y ·y =f ⎝ ⎛⎭⎪⎫x y +f (y )(y ≠0), ∴f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ). (2)解:∵f (3)=1,∴f (9)=f (3·3)=f (3)+f (3)=2.∴f (a )>f (a -1)+2=f (a -1)+f (9)=f 9(a -1)]. 又f (x )在定义域(0,+∞)上为增函数, ∴⎩⎪⎨⎪⎧a >0,a -1>0,a >9(a -1),∴1<a <98.22.解:(1)当a =12时,f (x )=x +12x +2,设x 2>x 1>1,则f (x 2)-f (x 1)=x 2+12x 2+2-⎝ ⎛⎭⎪⎫x 1+12x 1+2 =(x 2-x 1)+x 1-x 22x 1x 2=(x 2-x 1)⎝ ⎛⎭⎪⎫1-12x 1x 2.∵x 2>x 1>1,∴x 2-x 1>0,12x 1x 2<12,1-12x 1x 2>0,∴f (x 2)-f (x 1)>0,∴f (x )在1,+∞]上单调递增.∴f (x )在区间1,+∞)上的最小值为f (1)=72. (2)在区间1,+∞)上,f (x )=x 2+2x +ax >0恒成立, 等价于x 2+2x +a >0恒成立. 设y =x 2+2x +a ,x ∈1,+∞).∵y =x 2+2x +a =(x +1)2+a -1在1,+∞)上单调递增, ∴当x =1时,y min =3+a .于是,当且仅当y min =3+a >0时,f (x )>0恒成立. ∴a >-3.解题技巧:不等式的恒成立问题常转化为函数的最值问题,分离参数法是求解此类问题的常用方法.高中同步创优单元测评B 卷数学班级:________姓名:________得分:________第一章集合与函数概念(二)(函数的概念与基本性质)名校好题·能力卷](时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四组函数中,表示同一函数的是()A.y=x-1与y=(x-1)2B.y=x-1与y=x-1 x-1C.y=4lg x与y=2lg x2D.y=lg x-2与y=lgx 1002.已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有()A.3个B.4个C.5个D.6个3.函数f(x)=x+1x-1的定义域是()A.-1,1) B.-1,1)∪(1,+∞) C.-1,+∞) D.(1,+∞)4.函数y =2--x 2+4x 的值域是( ) A .-2,2] B .1,2] C .0,2]D .-2, 2 ]5.已知f (x )的图象如图,则f (x )的解析式为( )A .f (x )=⎩⎪⎨⎪⎧1,0≤x ≤1-x -2,1<x ≤2B .f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1x +2,1<x ≤2C .f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1x -2,1<x ≤2D .f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1-x +2,1<x ≤26.定义两种运算:a ⊕b =a 2-b 2,a b =(a -b )2,则函数f (x )=2⊕x (x2)-2的解析式为( ) A .f (x )=4-x 2x ,x ∈-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪2,+∞) C .f (x )=-x 2-4x ,x ∈(-∞,-2]∪2,+∞) D .f (x )=-4-x 2x ,x ∈-2,0)∪(0,2] 7.函数f (x )=1x -x 的图象关于( ) A .坐标原点对称 B .x 轴对称 C .y 轴对称D .直线y =x 对称8.设f (x )是定义在-6,6]上的偶函数,且f (4)>f (1),则下列各式一定成立的是( )A .f (0)<f (6)B .f (4)>f (3)C .f (2)>f (0)D .f (-1)<f (4)9.若奇函数f (x )在1,3]上为增函数,且有最小值0,则它在-3,-1]上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值010.已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0),满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A.⎝⎛⎦⎥⎤0,14 B .(0,1) C.⎣⎢⎡⎭⎪⎫14,1 D .(0,3)11.若f (x )是R 上的减函数,且f (x )的图象经过点A (0,4)和点B (3,-2),则当不等式|f (x +t )-1|<3的解集为(-1,2)时,t 的值为( )A .0B .-1C .1D .212.已知函数y =f (x )满足:①y =f (x +1)是偶函数;②在1,+∞)上为增函数.若x 1<0,x 2>0,且x 1+x 2<-2,则f (-x 1)与f (-x 2)的大小关系是( )A .f (-x 1)>f (-x 2)B .f (-x 1)<f (-x 2)C .f (-x 1)=f (-x 2)D .无法确定第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若函数f (x )=ax 7+bx -2,且f (2 014)=10,则f (-2 014)的值为________.14.若函数f (x )=ax +1x +2在x ∈(-2,+∞)上单调递减,则实数a的取值范围是________.15.已知函数f (x )=x +3x +1,记f (1)+f (2)+f (4)+f (8)+f (16)=m ,f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫116=n ,则m +n =________. 16.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a 2-1对一切x ≥0都成立,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)已知f (x -2)=3x -5,求f (x );(2)若f(f(f(x)))=27x+26,求一次函数f(x)的解析式.18.(本小题满分12分)已知f(x)=1x-1,x∈2,6].(1)证明:f(x)是定义域上的减函数;(2)求f(x)的最大值和最小值.19.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=⎩⎨⎧400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.(1)将利润f (x )表示为月产量x 的函数;(2)当月产量x 为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)20.(本小题满分12分)已知函数f (x )=x 2+2ax +2,x ∈-5,5]. (1)当a =-1时,求函数的最大值和最小值;(2)若y =f (x )在区间-5,5]上是单调函数,求实数a 的取值范围.21.(本小题满分12分)已知二次函数f (x )=ax 2+bx (a ,b ∈R ),若f (1)=-1且函数f (x )的图象关于直线x =1对称.(1)求a ,b 的值;(2)若函数f (x )在k ,k +1](k ≥1)上的最大值为8,求实数k 的值.22.(本小题满分12分)已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3-x )=f (x ),且有最小值74.(1)求f (x )的解析式;(2)求函数h (x )=f (x )-(2t -3)x 在区间0,1]上的最小值,其中t ∈R ; (3)在区间-1,3]上,y =f (x )的图象恒在函数y =2x +m 的图象上方,试确定实数m 的范围.详解答案第一章 集合与函数概念(二) (函数的概念与基本性质) 名校好题·能力卷]1.D 解析:∵y =x -1与y =(x -1)2=|x -1|的对应关系不同,∴它们不是同一函数;y =x -1(x ≥1)与y =x -1x -1(x >1)的定义域不同,∴它们不是同一函数;又y =4lg x (x >0)与y =2lg x 2(x ≠0)的定义域不同,因此它们也不是同一函数,而y =lg x -2(x >0)与y =lg x 100=lg x -2(x >0)有相同的定义域、值域与对应关系,因此它们是同一函数.2.C 解析:令x 2=0,1,4,解得x =0,±1,±2.故选C.3.B 解析:由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1,且x ≠1.4.C 解析:令t =-x 2+4x ,x ∈0,4],∴t ∈0,4].又∵y 1=x ,x ∈0,+∞)是增函数∴ t ∈0,2],-t ∈-2,0],∴y ∈0,2].故选C.5.C 解析:当0≤x ≤1时,f (x )=-1;当1<x ≤2时,设f (x )=kx +b (k ≠0),把点(1,-1),(2,0)代入f (x )=kx +b (k ≠0),则f (x )=x -2.所以f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1,x -2,1<x ≤2.故选C.6.D 解析:f (x )=2⊕x (x 2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2.由⎩⎪⎨⎪⎧4-x 2≥0,|x -2|-2≠0,得-2≤x ≤2且x ≠0.∴f (x )=-4-x 2x . 7.A 解析:函数f (x )的定义域关于原点对称,又∵f (-x )=1-x+x =-⎝⎛⎭⎪⎫1x -x =-f (x ),∴f (x )为奇函数,其图象关于坐标原点对称.8.D 解析:∵f (x )是定义在-6,6]上的偶函数,∴f (-1)=f (1).又f (4)>f (1),f (4)>f (-1).9.D 解析:因为奇函数f (x )在1,3]上为增函数,且有最小值0,所以f (x )在-3,-1]上是增函数,且有最大值0.10.A 解析:由于函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,所以该函数为R 上的减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,4a ≤a 0,解得0<a ≤14.解题技巧:本题主要考查了分段函数的单调性,解决本题的关键是利用好该函数为R 上的减函数这一条件.应特别注意隐含条件“a 0≥4a ”.11.C 解析:由不等式|f (x +t )-1|<3,得-3<f (x +t )-1<3,即-2<f (x +t )<4.又因为f (x )的图象经过点A (0,4)和点B (3,-2),所以f (0)=4,f (3)=-2,所以f (3)<f (x +t )<f (0).又f (x )在R 上为减函数,则3>x +t >0,即-t <x <3-t ,解集为(-t,3-t ).∵不等式的解集为(-1,2),∴-t =-1,3-t =2,解得t =1.故选C.12.A 解析:由y =f (x +1)是偶函数且把y =f (x +1)的图象向右平移1个单位可得函数y =f (x )的图象,所以函数y =f (x )的图象关于x =1对称,即f (2+x )=f (-x ).因为x 1<0,x 2>0,且x 1+x 2<-2,所以2<2+x 2<-x 1.因为函数在1,+∞)上为增函数,所以f (2+x 2)<f (-x 1),即f (-x 1)>f (-x 2),故选A.13.-14 解析:设g (x )=ax 7+bx ,则g (x )是奇函数,g (-2 014)=-g (2 014).∵f (2 014)=10且f (2 014)=g (2 014)-2,∴g (2 014)=12,∴g (-2 014)=-12,∴f (-2 014)=g (-2 014)-2,∴f (-2 014)=-14.14.a <12 解析:f (x )=ax +1x +2=a +1-2a x +2.∵y =1x +2在x ∈(-2,+∞)上是减函数,∴1-2a >0,∴a <12.15.18 解析:因为函数f (x )=x +3x +1,所以f ⎝ ⎛⎭⎪⎫1x =1+3x x +1. 又因为f (x )+f ⎝ ⎛⎭⎪⎫1x =4(x +1)x +1=4, f (1)+f (2)+f (4)+f (8)+f (16)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫116 =f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (4)+f ⎝ ⎛⎭⎪⎫14+f (8)+f ⎝ ⎛⎭⎪⎫18+f (16)+f ⎝ ⎛⎭⎪⎫116=f (1)+4×4=18,所以m +n =18.解题技巧:本题主要考查了学生的观察、归纳、推理的能力,解决本题的关键是挖掘出题目中隐含的规律f (x )+f ⎝ ⎛⎭⎪⎫1x =4. 16.-1≤a <0 解析:当x =0时,f (x )=0,则0≥a 2-1,解得-1≤a ≤1,所以-1≤a <0.当x >0时,-x <0,f (-x )=-x +a 2-x-2,则f (x )=-f (-x )=x +a 2x +2.由对数函数的图象可知,当x =a 2=|a |=-a 时,有f (x )min =-2a +2,所以-2a +2≥a 2-1,即a 2+2a -3≤0,解得-3≤a ≤1.又a <0, 所以-3≤a <0.综上所述,-1≤a <0.17.解:(1)令t =x -2,则x =t +2,t ∈R ,由已知有f (t )=3(t +2)-5=3t +1,故f (x )=3x +1.(2)设f (x )=ax +b (a ≠0),f (f (x ))=a 2x +ab +b ,f (f (f (x )))=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b ,∴⎩⎪⎨⎪⎧a 3=27,a 2b +ab +b =26, 解得a =3,b =2.则f (x )=3x +2.18.(1)证明:设2≤x 1<x 2≤6,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1), 因为x 1-1>0,x 2-1>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以f (x )是定义域上的减函数.(2)由(1)的结论可得,f (x )min =f (6)=15,f (x )max =f (2)=1.19.解:(1)当0≤x ≤400时,f (x )=400x -12x 2-100x -20 000=-12x 2+300x -20 000.当x >400时,f (x )=80 000-100x -20 000=60 000-100x , 所以f (x )=⎩⎨⎧ -12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时, f (x )=-12x 2+300x -20 000=-12(x -300)2+25 000;当x =300时,f (x )max =25 000;当x >400时,f (x )=60 000-100x <f (400)=20 000<25 000;所以当x =300时,f (x )max =25 000.故当月产量x 为300台时,公司获利润最大,最大利润为25 000元.20.解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.又因为x ∈-5,5].所以函数的最大值为37,最小值为1.(2)若y =f (x )在区间-5,5]上是单调函数,则有-a ≤-5或-a ≥5解得a ≤-5或a ≥5.解题技巧:本题主要考查了二次函数在给定区间上的最值与单调性.解决本题的关键是确定对称轴和区间端点的关系.注意分类讨论.21.解:(1)由题意可得f (1)=a +b =-1且-b 2a =1,解得a =1,b =-2.(2)f (x )=x 2-2x =(x -1)2-1.因为k ≥1,所以f (x )在k ,k +1]上单调递增,所以f (x )max =f (k +1)=(k +1)2-2(k +1)=8,解得k =±3.又k ≥1,所以k =3.22.解:(1)由题知二次函数图象的对称轴为x =32,又最小值是74,则可设f (x )=a ⎝ ⎛⎭⎪⎫x -322+74(a ≠0), 又图象过点(0,4),则a ⎝ ⎛⎭⎪⎫0-322+74=4,解得a =1. ∴f (x )=⎝ ⎛⎭⎪⎫x -322+74=x 2-3x +4. (2)h (x )=f (x )-(2t -3)x =x 2-2tx +4=(x -t )2+4-t 2,其对称轴x =t .①t ≤0时,函数h (x )在0,1]上单调递增,最小值为h (0)=4; ②当0<t <1时,函数h (x )的最小值为h (t )=4-t 2;③当t ≥1时,函数h (x )在0,1]上单调递减,最小值为h (1)=5-2t ,所以h (x )min =⎩⎪⎨⎪⎧ 4,t ≤0,4-t 2,0<t <1,5-2t ,t ≥1.(3)由已知:f (x )>2x +m 对x ∈-1,3]恒成立,∴m <x 2-5x +4对x ∈-1,3]恒成立.∴m <(x 2-5x +4)min (x ∈-1,3]).∵g (x )=x 2-5x +4在x ∈-1,3]上的最小值为-94, ∴m <-94.。

高一数学必修1《第一章》单元测试题(含答案).doc

高一数学必修1《第一章》单元测试题(含答案).doc

班级:_______ 姓名:____________ 成绩: ____________一.选择题(本大题共12小题,第小题5分,共60分.1.设集合A = {xeQ\x>-l\,贝U ()A. 0^ AB.近冬AC. yf2e AD. |V2j c A2.已知集合A到B的映射f:x->y=2x+l,那么集合A中元素2在B中対应的元素是:A、2B、5C、6D、83.设集合A = {x\\< x <2} .B = {x\x < a}.若Au 3,则Q 的范围是( )A. a >2B. « < 1C. a > 1D. a <24.函数),=卮口的定义域是()A G'Z)B・[gg C.(列) D.(列]5.全集U= {0丄3,5,6,8},集合A={ 1, 5, 8}, B={2},则集合(qTl)UB:二()A. {0,2,3,6}B. {0,3,6}C. {2,1,5,8}D. 06.已知集合A = [x\-l<x<3},B = {x\2<x<5],则AljB=()A. (2,3)B. [-1,5]C. (-1,5)D. (-1,5]7.下列函数是奇函数的是()A. y = xB. y = 2x2 -3C. y =D. y = x2[0,1]8.化简:yl(7r-4)2 + 7T =()A. 4B. 2兀 _ 4C. 2兀一4 或4D. 4 — 2龙9.设集合M={x|-2<x<2), N={y\0<y<2},给出卜-列四个图形,其屮能表示以集合M为定义域,N为值域的函数关系的是()10.________________________________________________________________ 已知f (x) =g (.x) +2, •且g(x)为奇函数,若f (2) =3,则f (・2) = _______________________A 0 B・・3 C・1 D. 3x2x>011.己知f (x)=<71 % = 0,则f[f(-3)]等于0兀vOA> 0 Bx 7i C、d D> 912.已知函数/&)是人上的增函数,・A(O,—1), B(3,l)是其图像上的两点,那么|/(%)|<1 的解集是()A. (-3,0)B. (0,3)C.(一汽―l]u[3,+g)D. (―oo,0]u[l,-H«)二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上・)[x + 5(x>l) ,13.已知f(x) = \ .,则/T f (1)1 = .[2X2+1(X<1) ---------------------------------14 .已知/(兀一1) = /,贝|J于(兀)= __________15・定义在R上的奇函数/(%),当x>0时,/(%) = 2 ;则奇函数/(%)的值域是.16.关于下列命题:①若函数y = 2”的定义域是{x|x<0},则它的值域是{y | y <1};②若函数y=l-的定义域是{兀|兀>2},贝怕的值域是{y|y<-};x 2③若函数y = x2的值域是{y | 0 < > < 4},则它的定义域一定是{x|-2<x<2};④若函数=2r的定义域是{y | y < 4},则它的值域是{x|0<x<8}.其中不止确的命题的序号是___________ (注:把你认为不正确的命题的序号都填上).班级:_______ 姓名:____________ 成绩:____________一、选择题答案表:木人题共12题,每小题5分,共60分二、填空题答案:本人题共有4小题,每小题5分,满分20分13> __________ 14. _____________________________15> ____________ 16> ________________________三、解答题:本大题共5小题,共70分.题解答应写出文字说明,证明过程或演算步骤.17.设A = {% | x2 + 4% = 0} , A = {x\x2 +2(a + l)x + / -1 = 0},其中xe R ,如果 =求实数Q的取值范围.18.己知全集[/= {1,2,3,4,5,6,7,8}, A = {x | x2-3x4-2 = 0}, B = {x\\< x<5,xe Z} fC = {x\2<x<9,xeZ}. (1)求/lU(fiAC);(2)求(Q,B)U(Q,C).19.已知函数y=x2~2x+9分别求下列条件下的值域,(1)定义域是{x|3<x<8} (2)定义域是{% | -3 < x < 2}20.已知函数/(x) = x + -.兀(1)判断函数的奇偶性,并加以证明;⑵用定义证明f(x)在(0,1)上是减函数;(3)函数/(x)在(-1,0)上是单调增函数还是单调减函数?(直接写岀答案,不要求写证明过程).21.已知函数/(x)是定义在R上的偶函数,且当xWO吋,/⑴=F+2兀. ⑴现已应出函数/⑴在y轴左侧的图像,如图所示,请补出完整函数/*(兀)的图像,并根据图像写出函数/(%)的增区间;(2)写出函数/(%)的解析式和值域.1、B2、B3、A 4. B.提示:2x-l>0. 5. A.6. B.提示:运用数轴.7. A.提示:B为偶函数,C、D为非奇非偶函数.8. A.提示:+龙二”一4| + 兀=龙一4 + 龙二2龙一4 .9. B.捉刀P:10. c 11 B 12. B .提zjx: *•* —1 v /(兀)v 1,而y*(o)=—1,y*(3) = ], /(0)</(x)</(3), .\0<x<3.13.8.提示:/⑴=3, f(3) =8.14./(x) = (x + 1)2.提示:V/(x-l) = x2 =[(x —1) + 1 2, /. f(x) = (x + l)215.{-2, 0, 2 }.提示:因为/(0) = 0;x <0 时,f(x) = -2 ,所以f(x)的值域是{-2, 0, 2 }.16 .①②④.提示:若函数y = 2r的定义域是{ x | x < 0},则它的值域是{y\O<y<\};若函数v = 1的定义域是01 x > 2},则它的值域是{y\O<y<-}.x 2三.17、解A={0, —4} ........................................................A O B=B ・\BeA .........................................................由x2 + 2(a+ l)x + a2—1=0 得A =4 (a+1) 2—4 (a2—1) =8 (a+1) .....................................................................(1)当a<-l 时△<() B=4)CA ...........................................................(2)当a=・l 吋△=() B={O}cA ......................................................(3)当a>-l 时△>()要使BoA,则A=BVO, -4是方程x2+2(a+l)x+『・l=0的两根.J_2(d + 1) = -41 = 0解Z得a=l综上可得aW・l或a=l .....................................................1&解:(1)依题意有:A = {1,2},B = {1,2,3,4,5},C = {3,4,5,6,7,8}・・・MC = {3,4,5},故有AU(BAC) = {1,2}U{3,4,5} = {1,2,3,4,5}.由C"3二{6,7,8},C〃C二{1,2}(籾)U ( 〃C) = {6,7,8} u (1,2) = {1,2,6,7,8}.仃T)设x^x2 G(0」)冃・兀1 <x2••/ 0 < Xj < x2 < 1,/-兀]兀2 V 1,兀1尤2 一1 V 0T x2 > x A x2 -Xj > 0 .・• J&2)- / (“) V 0,/(x2) < /(xj因此函数/(兀)在(0,1)上是减函数(111) .f(x)在(-1,0)上是减函数.21. (1)函数图像如右图所示:/(兀)的递增区间是(-1,0) , (l,+oo).(2)解析式为:f(x) = [X +2x,x_0 值域为:[x-2x,x>0{y|y»-1}.20.解:y = 2x+2 -3-4' =-3-(2x)2 +4-2S令t = 2\则y = -3t2+4t= -3(t一 -)2 + -1 12 1V -1 < X < 0 , /.-<2X <lBPre[-,l],又・.•对称轴r = -e[-?l],32 2 4・••当t = -f即x = log2-时人ax=j ;当21 即x=o 时,y min =1.20•证明:仃)函数为奇函数f(-x)1=-x ——= =-/w一兀1 =(x2-Xj) 1-(兀2 —舛)(兀]兀2—1)第一章《集合与函数概念》单元测试题姓名:_______ 班别: _________ 成绩: _____________一、选择题:每小题4分,共40分1、在“①高一数学课本中的难题;②所有的正三角形;③方程午+2 = 0的实数解”中,能够表示成集合的是( )(A)②(B)③(C)②③(D)①②③2、若A=|x|0<x< V2 ={x11 < x < 2},则A^J B =( )(A) {x|x<0} (B) [x\x>2](C) {0<x<V2)(D) {x\0<x<2}3、若A={0丄2,3},B ={兀|兀=3a,dw 4},则Ar>B =( )(A) {1,2} (B) {0,1}(C) {0,3} (D) {3}4、在映射f : A T B中,A = B = {(x, y) \ x, ye R}, K / : (x, y) (x- >\x+ y),则与A中的元素(-1,2)对应的B屮的元素为( )(A) (—3,1) (B) (1,3) (C) (-1-3) (D) (3,1)5、下列各组函数.f⑴与g(x)的图象相同的是( )(A) /(x) = x,g(x) = (Vx)2(B) /(x) = x2)4g(x) = (x + l)2[x(X > 0)(C) f(x) = l,g(x) =兀(D) /(x)=|x|,g(x) = 2 / °、6、/⑴是定义在㈣上的增函数,则不等式的解集是()(A) (0 , +8) (B) (0 , 2) (C) (2 ,+8) (D) (2 ,—)77、若奇函数/(兀)在[1,3]上为增函数,且有最小值0,贝陀在[-3,-1]上()(C) (D)9、 若{1,4,牛{0,"+»,则严+严的值为()(A) 0 (B) 1 (C) -1(D) 1 或一 110、 奇函数f(x)在区间[・b,上单调递减,且f (x)>0,(0<a<b),那么I f (x)l 在区间[a, b ]上是 ( )A 单调递增B 单调递减C 不增也不减D 无法判断 二、填空题:每小题4分,共20分11、 ________________________________________________________________ 若A={0^2,},B = {1,2,3},C = {2,3,4},贝iJ(AnB)u(BnC) = ________________________12、 已知y = /(x)为奇函数,当%>0时/(x) = x(l — x),则当兀S0时,A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值0 (A)(B)则/(兀)= _______________________________________13、已知(兀)都是定义域内的非奇非偶函数,而f(x)-g(x)是偶函数,写出满足条件的一组隊I 数,/(%) = ____________ : g (x) = _________________ ;14、/(X)= X2+2X +1, XG[-2,2]的最大值是__________________15、奇函数/(兀)满足:①/⑴在(0,+oo)内单调递增;®/(1) = 0 ;则不等式(x-l)/(x)> 0 的解集为:________________________________ ;三、解答题:每小题12分,共60分16、设A = {xeZ\\x\< 6}, 3 二{1,2,3},C 二{3,4,5,6},求:(1) Au(BnC): (2) AnQ(fiuC)17、已知函数几兀) xe{x\x = 2nU9neZ}画出它的图象,并求心(_3))的值11,{x\x = 2n,ne Z}18、已知函数f (x)=兀+ —.x(1)判断f(X)在(0, +8)上的单调性并加以证明;(2)求f (x)的定义域、值域;19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份0.90元,卖出的价格是每份1.0元,卖不掉的报纸可以以每份0.10元的价格退冋报社。

人教A版数学必修一创优单元测评(第一章)B卷.docx

人教A版数学必修一创优单元测评(第一章)B卷.docx

高中数学学习材料马鸣风萧萧*整理制作高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (第一章) [名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝ ⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,1 2.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1(x ≥2),-x 2+3x (x <2),则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( )A .1B .-1C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数 8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈[3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间[0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f(x)在(0,+∞)上的单调性,并给出证明;(3)若a≥0且f(a+1)≤39,求a的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+ax (x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.详解答案 创优单元测评 (第一章) [名校好题·能力卷]1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎨⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0. ∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf (x )2f (x )+3=x ,f (x )=3x c -2x =cx2x +3,得c =-3.6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝⎛⎭⎪⎫a -122+34≥34>0,∴f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫34.解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在[0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1).又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1);令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-[f (x )]2≤0.16.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a-12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1, 即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是[3,7].19.解:(1)f (x )在[3,5]上为增函数.证明如下: 任取x 1,x 2∈[3,5]且x 1<x 2.∵ f (x )=2x -1x +1=2(x +1)-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1), ∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在[3,5]上为增函数.(2)根据f (x )在[3,5]上单调递增知,[f (x )]最大值=f (5)=32,[f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在[0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在[0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在[0,a ]上单调递增,在[a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2), Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2. ∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0, ∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=[f (3)]3,∴9=[f (3)]3,∴f (3)=39,∵f (a +1)≤39,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是[0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1). ∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x .任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2, f (x 1)<f (x 2),故f (x )在[2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。

人教A版数学必修一创优单元测评(第一章)B卷.docx

人教A版数学必修一创优单元测评(第一章)B卷.docx

高中数学学习材料鼎尚图文*整理制作高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (第一章) [名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝ ⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,1 2.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1(x ≥2),-x 2+3x (x <2),则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( )A .1B .-1C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数 8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈[3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间[0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f(x)在(0,+∞)上的单调性,并给出证明;(3)若a≥0且f(a+1)≤39,求a的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+ax (x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.详解答案 创优单元测评 (第一章) [名校好题·能力卷]1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎨⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0. ∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf (x )2f (x )+3=x ,f (x )=3x c -2x =cx2x +3,得c =-3.6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝⎛⎭⎪⎫a -122+34≥34>0,∴f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫34.解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在[0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1).又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1);令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-[f (x )]2≤0.16.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a-12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1, 即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是[3,7].19.解:(1)f (x )在[3,5]上为增函数.证明如下: 任取x 1,x 2∈[3,5]且x 1<x 2.∵ f (x )=2x -1x +1=2(x +1)-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1), ∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在[3,5]上为增函数.(2)根据f (x )在[3,5]上单调递增知,[f (x )]最大值=f (5)=32,[f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在[0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在[0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在[0,a ]上单调递增,在[a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2), Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2. ∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0, ∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=[f (3)]3,∴9=[f (3)]3,∴f (3)=39,∵f (a +1)≤39,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是[0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1). ∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x .任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2, f (x 1)<f (x 2),故f (x )在[2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。

高一数学必修1 第一章 单元测试B

第一章 单元测试B一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.方程组2,0.x y x y +=⎧⎨-=⎩的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{2.下面关于集合的表示正确的个数是( )①}2,3{}3,2{≠;②}1|{}1|),{(=+==+y x y y x y x ; ③}1|{>x x =}1|{>y y ; ④}1|{}1|{=+==+y x y y x x ;A .0B .1C .2D .33.设全集},|),{(R y x y x U ∈=,}123|),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么()U M ð∩()U N ð=( )A . ∅B .{(2,3)}C .(2,3)D . }1|),{(+≠x y y x 4.下列关系正确的是( )A .},|{32R x x y y ∈+=∈πB .)},{(b a =)},{(a bC .}1|),{(22=-y x y x ⊂≠}1)(|),{(222=-y x y xD .}02|{2=-∈x R x =∅5.已知集合A 中有10个元素,B 中有6个元素,全集U 有18个元素,≠⋂B A φ。

设集合)(B A C U ⋃有x 个元素,则x 的取值范围是( )A .83≤≤x ,且N x ∈B .82≤≤x ,且N x ∈C .128≤≤x ,且N x ∈D .1510≤≤x ,且N x ∈ 6.已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 ( ) A .N M =⊂≠P B .M ⊂≠P N = C .M ⊂≠N ⊂≠P D . N ⊂≠P ⊂≠M7.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( )A .B A U ⋃= B . ()U U A B =⋃ðC .()U U A B =⋃ðD .()()U UU A B =⋃痧8.已知}5,53,2{2+-=a a M ,}3,106,1{2+-=a a N ,且}3,2{=⋂N M ,则a 的值( )A .1或2B .2或4C .2D .19.满足},{b a N M =⋃的集合N M ,共有 ( ) A .7组 B .8组 C .9组 D .10组 10.下列命题之中,U 为全集时,不正确的是( )A .若B A ⋂= ∅,则()()U U A B U ⋃=痧B .若B A ⋂=∅,则A =∅或B =∅C .若B A ⋃= U ,则()()U U A B ⋂=痧∅D .若B A ⋃=∅,则==B A ∅11. 如右图,那么阴影部分所表示的集合是( ) A.[()]U B A C ð B.)()(C B B A C.()()U A C B ð D.[()]U A C B ð12. 定义A -B={x|x ∈A 且x ∉B}, 若A={1,2,3,4,5},B={2,3,6},则A -(A -B )等于( ) A.B B.{}3,2 C. {}5,4,1 D. {}6二、填空题:请把答案填在题中横线上(每小题6分,共24分).13.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B . 14.设集合}3|{2x y y M -==,}12|{2-==x y y N ,则=⋂N M . 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,{|02}U N x x =<<ð那么集合=N ,()U M N ⋂=ð ,=⋃N M .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 17.(12分)数集A 满足条件:若1,≠∈a A a ,则A a∈+11. ①若2A ∈,则在A 中还有两个元素是什么; ②若A 为单元集,求出A 和a .18.(12分)设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①B A ⋂=B A ⋃,求a 的值;②∅⊂≠B A ⋂,且C A ⋂=∅,求a 的值;③B A ⋂=C A ⋂≠∅,求a 的值;19.(12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.20.(12分)已知全集}5,4,3,2,1{=U ,若U B A =⋃,≠⋂B A φ,}2,1{)(=⋂B C A U ,试写出满足条件的A 、B 集合.21.(12分)在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少选作一题。

人教B版高一数学必修一单元测试题全套及答案.docx

最新人教B版高一数学必修一单元测试题全套及答案第一章检测试题一、选择题(每小题5分,共10小题,共50分.从给出的A、B、C、D四个选项中选出唯一正确的答案填在题后的括号内)1.若集合/={x|—2<x<l}, 5={x|0<x<2},则)A.{x| — 1<X<1}B. {x|—2<x<l}C. {x|-2<x<2}D. {x|0<x<l}解析利用数轴,数形结合可知D正确.答案D2.满足集合MU{1,2,3,4},且{1,2,4} = {1,4}的集合M的个数为()A. 1B. 2C. 3D. 4解析由题意可知,且2尙W,集合M可以是{1,4}, {1,3,4}.答案B3.设全集U=MUN={l,2,3,4,5},MQ([tW)={2,4},则N=( )A. {.1,2,3}B. {1,3,5}C. {1,4,5}D. {2,3,4}解析画出韦恩图,阴影部分为MQ(®N)= {2,4},:.N= {1,3,5},故选B./UB={1,3,5}, U={1,2,3,4,5},.•.[亦UB) = {2,4}.答案B4.已知集合A = {0,l,2},则集合B={x~y\x^A, y^A}中元素的个数是()A. 1B. 3C. 5D. 9解析逐个列举可得.x=0,尹=0,1,2时,x~y=0,—1, —2; x=l,尹=0,1,2 时,x—尹=1,0, —1; x=2,尹=0,1,2 时,X—y=2,l,0. 根据集合中元素的互异性可知集合B的元素为一2, -1,0,1,2.共5个.答案C5.设全集t/= {1,3,5,7,9},集合A={1, |tz-5|,9}, 血= {5,7}, 则a的值为()A. 2B. 8C. —2 或8D. 2 或8解析由血= {5,7},可知/= {1,3,9},• • |tz—5] — 3, ..a = 8,或a=2.答案D6.已知集合B, C 中,A^B, A^C,若^={0,1,2,3}, C= {0,2,4},则/的子集最多有()A. 2个B. 4个C. 6个D. 8个解析S, AQC,.•.佔{0,2}.当集合力={0,2}时,它的子集最多有4个. 答案B7. 已知全集 U=R,集合 M= {x|-2<x-l<2}和 N ={x|x=2広 —1, k^}的关系韦恩(Venn )图,如图所示,则阴影部分所示的集 合的元素共有()解析 图中阴影部分表示的集合为MCN,集合M= {x|-l<x<3},集合N 中的元素为正奇数,:.MCN= {1,3}- 答案B8. 设集合 S={x|x>5 或则Q 的取值范围是()A. —3<a<—1 C. aW — 3 或 — 1\a<— 1,解析 借助数轴可知:[Q + 8>5.答案A9. 已知全集 /= {1,2,3,4,5,6,7,8},集合 M= {3,4,5},集合 N= {1,3,6},则集合{2,7,8}是( )A. MUNB. MCNC.L MU L ND.Cjl/A I I NT= {x\a<x<a + 8}, SUT=R,B. —3WaW — 1 D. a<—3 或 a>—1—3<a<— 1.答案Df 3 1 f 1 '10.设数集M=\x mWxWm +才爲N=(x "—亍WxW"爲P= {x|0WxWl},且M, N都是集合P的子集,如果把b~a叫做集合{xQWxWb}的“长度”,那么集合MCN的“长度”的最小值是()A-3 B.|。

高中人教A版数学必修1单元测试:创优单元测评 (模块检测卷)AB卷 Word版含解析

高中同步创优单元测评A 卷数学班级:________姓名:________得分:________创优单元测评(模块检测卷)名师原创·基础卷](时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.42.若函数y=f(x)的定义域是0,2],则函数g(x)=f(2x)x-1的定义域是()A.0,1] B.0,1)C.0,1)∪(1,4] D.(0,1)3.下列各组函数中,表示同一函数的是()A.y=x2和y=(x)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)C.y=log a x2和y=2log a xD.y=x和y=log a a x4.如果lg x=lg a+3lg b-5lg c,那么()A .x =ab 3c 5 B .x =3ab5c C .x =a +3b -5cD .x =a +b 3-c 35.已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 6.若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫12,+∞ D .(0,+∞) 7.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)8.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x9.当x <0时,a x >1成立,其中a >0且a ≠1,则不等式log a x >0的解集是( )A .{x |x >0}B .{x |x >1}C .{x |0<x <1}D .{x |0<x <a }10.设P ,Q 是两个非空集合,定义集合间的一种运算“⊙”:P ⊙Q ={x |x ∈P ∪Q ,且x ∉P ∩Q },如果P ={y |y =4-x 2},Q ={y |y =4x ,x >0},则P ⊙Q =( )A .0,1]∪(4,+∞)B .0,1]∪(2,+∞)C .1,4]D .(4,+∞)11.已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如下图所示,则函数g (x )=a x +b 的图象是( )12.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝⎛⎭⎪⎫log 213=( )A .7 B.103 C .-4 D.43第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知幂函数y =f (x )的图象经过点(2,2),那么f (9)=________.14.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.15.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131则不等式fg (x )]>gf (x )]的解为________.16.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.18.(本小题满分12分)定义在(-1,1)上的函数f (x )满足:①对任意x ,y ∈(-1,1)都有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ;②f (x )在(-1,1)上是单调函数;③f ⎝ ⎛⎭⎪⎫12=1. (1)求f (0)的值; (2)证明:f (x )为奇函数;(3)解不等式f (2x -1)<1.19.(本小题满分12分) 已知函数f (x )=x 2+ax (x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.20.(本小题满分12分)已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)当x ∈-1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.21.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2-x +1,x >0.(1)请在直角坐标系中画出函数f (x )的图象,并写出该函数的单调区间;(2)若函数g (x )=f (x )-m 恰有3个不同零点,求实数m 的取值范围.22.(本小题满分12分)某专营店经销某商品,当售价不高于10元时,每天能销售100件;当售价高于10元时,每提高1元,销量减少3件.若该专营店每日费用支出为500元,用x 表示该商品定价,y 表示该专营店一天的净收入(除去每日的费用支出后的收入).(1)把y 表示成x 的函数;(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.详解答案 创优单元测评 (模块检测卷) 名师原创·基础卷]1.D 解析:∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16,a 2=4矛盾. 2.B 解析:由题意,得⎩⎪⎨⎪⎧0≤2x ≤2,x ≠1,∴0≤x <1.3.D 解析:要表示同一函数必须定义域、对应法则一致,A ,B ,C 中的定义域不同,故选D.4.A 解析:∵lg x =lg a +3lg b -5lg c ,∴lg x =lg a +lg b 3-lg c 5=lg ab3c 5,即x =ab 3c 5.5.A 解析:b =⎝ ⎛⎭⎪⎫12-0.8=20.8<a =21.2,c =2log 52=log 54<log 55=1<b=20.8,所以c <b <a .6.A 解析:要使函数f (x )=1log 12(2x +1)的解析式有意义,自变量x 需满足:log 12(2x +1)>0,2x +1>0,则0<2x +1<1,解得-12<x <0.7.B 解析:∵f (-1)=12-3<0,f (0)=1>0,∴f (-1)·f (0)<0. 又函数f (x )在(-1,0)上是连续的,故f (x )的零点所在的一个区间为(-1,0).8.A 解析:∵y =x -1是奇函数,y =log 12x 不具有奇偶性,故排除B ,D ,又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C ,故选A.9.C 解析:由x <0时,a x >1可知0<a <1,故y =log a x 在(0,+∞)上为减函数,∴log a x >0=log a 1,∴0<x <1,故不等式log a x >0的解集为{x |0<x <1}.10.B 解析:P =0,2],Q =(1,+∞),∴P ⊙Q =0,1]∪(2,+∞).11.A 解析:由函数f (x )的图象可知0<a <1,b <-1,故函数g (x )=a x +b (0<a <1,b <-1)可以看作把y =a x 的图象向下平移|b |个单位,且g (x )是单调递减函数,又g (0)=a 0+b =1+b <0,故选A.12.C 解析:∵f (x )是奇函数, ∴f ⎝⎛⎭⎪⎫log 213=f (-log 23)=-f (log 23).又log 23>0,且x >0时,f (x )=2x +1,故f (log 23)=2log 23+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 213=-4. 13.3 解析:设y =f (x )=x α(α是常数),则2=2α,解得α=12,所以f (x )=x 12,则f (9)=9 12=3.14.-2 解析:∵x =-2<0,∴f (-2)=10-2=1100>0, ∴f (10-2)=lg 10-2=-2,即f (f (-2))=-2.15.x =2 解析:∵f (x ),g (x )的定义域都是{1,2,3},∴当x =1时,fg (1)]=f (3)=1,gf (1)]=g (1)=3,此时不等式不成立;当x =2时,f g (2)]=f (2)=3,gf (2)]=g (3)=1,此时不等式成立; 当x =3时,f g (3)]=f (1)=1,gf (3)]=g (1)=3, 此时不等式不成立. 因此不等式的解为x =2.16.⎝ ⎛⎭⎪⎫1,54 解析:y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0, 作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.解题技巧:数形结合的思想的运用. 17.解:(1)A ={x |3≤3x ≤27}={x |1≤x ≤3}, B ={x |log 2x >1}={x |x >2},A ∩B ={x |2<x ≤3}, (∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}, (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3;综合①②,可得a 的取值范围是(-∞,3].18.(1)解:取x =y =0,则f (0)+f (0)=f (0),所以f (0)=0. (2)证明:定义域(-1,1)关于原点对称,令y =-x ∈(-1,1),则f (x )+f (-x )=f ⎝ ⎛⎭⎪⎫x -x 1-x 2=f (0)=0,所以f (-x )=-f (x ),则f (x )在x ∈(-1,1)上为奇函数.(3)解:∵f (0)=0,f ⎝ ⎛⎭⎪⎫12=1,∴f (x )是在(-1,1)上的单调增函数,∴不等式可化为⎩⎨⎧-1<2x -1<1,2x -1<12,∴⎩⎨⎧0<x <1,x <34,∴0<x <34,∴不等式的解集为⎝ ⎛⎭⎪⎫0,34. 19.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ),函数是偶函数. 当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1x .任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2.由于x 1≥2,x 2≥2,且x 1<x 2, ∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2),故f (x )在2,+∞)上是单调递增函数. 20.解:(1)设f (x )=ax 2+bx +c (a ≠0),由题意可知,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x , c =1.整理,得2ax +a +b =2x , ∴⎩⎪⎨⎪⎧a =1,b =-1,c =1,∴f (x )=x 2-x +1.(2)当x ∈-1,1]时,f (x )>2x +m 恒成立,即x 2-3x +1>m 恒成立; 令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,x ∈-1,1],则g (x )min =g (1)=-1,∴m <-1. 21.解:(1)函数f (x )的图象如下图.函数f (x )的单调递减区间是(0,1); 单调递增区间是(-∞,0)及(1,+∞). (2)作出直线y =m ,函数g (x )=f (x )-m 恰有3个不同零点等价于函数y =m 与函数f (x )的图象恰有三个不同公共点.由函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2-x +1,x >0的图象易知m ∈⎝ ⎛⎭⎪⎫12,1. 解题技巧:方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.22.解:(1)由题意可得,y =⎩⎪⎨⎪⎧100x -500,0<x ≤10,x ∈N *,[100-3(x -10)]·x -500,x >10,x ∈N *, ∴y =⎩⎪⎨⎪⎧100x -500,0<x ≤10,x ∈N *,-3x 2+130x -500,x >10,x ∈N *. (2)当0<x ≤10时,y =100x -500为增函数.∴当x =10时,y max =500. 当x >10时,y =-3x 2+130x -500 =-3⎝⎛⎭⎪⎫x -6532+2 7253,∴当x =653时,y max =2 7253. 又∵x ∈N *,∴当x =22时,y 取得最大值,y max =908. 又908>500,∴当该商品定价为22元时,净收入最大,最大为908元.高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (模块检测卷) 名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =A ∪B ={x ∈N |0≤x ≤8},A ∩(∁U B )={1,3,5,7},则集合B =( )A .{0,2,4}B .{0,2,4,6}C .{0,2,4,6,8}D .{0,1,2,3,4}2.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )·f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数3.下列各函数中,表示同一函数的是( ) A .y =x 与y =log a a x (a >0且a ≠1) B .y =x 2-1x -1与y =x +1C .y =x 2-1与y =x -1D .y =lg x 与y =12lg x 24.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图象是( )5.已知a =log 135,b =3 15,c =⎝ ⎛⎭⎪⎫150.3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a6.下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是( )A .y =-x 2+1B .y =|x |+1C .y =log 2x +1D .y =x 37.函数f (x )=2x +log 3x -1的零点所在的区间是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,34 D.⎝ ⎛⎭⎪⎫34,1 8.已知函数f (x )=-x 5-3x 3-5x +3,若f (a )+f (a -2)>6,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,3)C .(1,+∞)D .(3,+∞) 9.函数y =log 2(x 2-3x +2)的递减区间是( )A .(-∞,1)B .(2,+∞) C.⎝ ⎛⎭⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎫32,+∞ 10.设函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4 B .3 C .2 D .111.如图,平面图形中阴影部分面积S 是h (h ∈0,H ])的函数,则该函数的图象大致是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12 B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点________.14.已知函数f (x )是定义在R 上的奇函数,且在区间0,+∞)上是单调减函数,若f (2x +1)+f (1)<0,则x 的取值范围是________.15.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a +1对一切x ≥0都成立,则a 的取值范围为________.16.下列命题中:①若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1; ②已知函数y =f (3x )的定义域为-1,1],则函数y =f (x )的定义域为(-∞,0];③函数y =11-x 在(-∞,0)上是增函数;④方程2|x |=log 2(x +2)+1的实根的个数是2.所有正确命题的序号是____________(请将所有正确命题的序号都填上).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 计算下列各式的值: (1)(-0.1)0+32×2 23+⎝ ⎛⎭⎪⎫14-12;(2)log 327+lg 25+lg 4.18.(本小题满分12分)已知幂函数f (x )=(m 2-m -1)x -5m -3在(0,+∞)上是增函数,又g (x )=log a 1-mx x -1(a >1,a ≠0).(1)求函数g (x )的解析式;(2)当x ∈(t ,a )时,g (x )的值域为(1,+∞),试求a 与t 的值.19.(本小题满分12分)已知函数f (x )=1+1x -x α(α∈R ),且f (3)=-53. (1)求α的值; (2)求函数f (x )的零点;(3)判断f (x )在(-∞,0)上的单调性,并给予证明.20.(本小题满分12分)已知函数f (x )=ax +b x 2+1为定义在R 上的奇函数,且f (1)=12.(1)求函数f (x )的解析式;(2)判断并证明函数f (x )在(-1,0)上的单调性.21.(本小题满分12分)函数f (x )=12(a x +a -x )(a >0,且a ≠1)的图象经过点⎝⎛⎭⎪⎫2,419.(1)求f (x )的解析式;(2)证明:f (x )在0,+∞)上是增函数.22.(本小题满分12分)某网店经营的一种消费品的进价为每件12元,周销售量p(件)与销售价格x(元)的关系如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p(件)与销售价格x(元)的函数关系式;(2)写出周利润y(元)与销售价格x(元)的函数关系式;(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润.详解答案 创优单元测评 (模块检测卷) 名校好题·能力卷]1.C 解析:因为集合U =A ∪B ={0,1,2,3,4,5,6,7,8},又B ∪∁U B =U ,所以A =∁U B ={1,3,5,7},所以B ={0,2,4,6,8}.2.C 解析:f (x )f (y )=a x a y =a x +y =f (x +y ).3.A 解析:要表示同一函数必须定义域、对应法则一致,B ,D 中的定义域不同,C 中的对应法则不同.故选A.4.A 解析:根据题意得f (x )=1⊕2x =⎩⎪⎨⎪⎧2x ,x <0,1,x ≥0.5.C 解析:a =log 135<0,b =315>1,0<c =⎝ ⎛⎭⎪⎫150.3<1.6.B 解析:函数y =-x 2+1为偶函数,在区间(0,+∞)上为减函数,y =log 2x +1为非奇非偶函数,函数y =x 3为奇函数.故选B.7.C 解析:∵f ⎝ ⎛⎭⎪⎫12=log 312<0,f ⎝ ⎛⎭⎪⎫34=log 3334>0, ∴f ⎝ ⎛⎭⎪⎫12·f ⎝ ⎛⎭⎪⎫34<0. 又函数f (x )在⎝ ⎛⎭⎪⎫12,34上是连续的,故f (x )的零点所在的区间为⎝ ⎛⎭⎪⎫12,34. 8.A 解析:设F (x )=f (x )-3=-x 5-3x 3-5x ,则F (x )为奇函数,且在R 上为单调减函数,f (a )+f (a -2)>6等价于f (a -2)-3>-f (a )+3=-f (a )-3],即F (a -2)>-F (a )=F (-a ),所以a -2<-a ,即a <1,故选A.9.A 解析:由x 2-3x +2>0,得x <1或x >2,底数是2,所以在(-∞,1)上递减.故选A.10.B 解析:当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.11.D 解析:由图中可知,S 随着h 的增加而减少,并且减小的趋势在减小,当h =H 2时,阴影部分的面积小于整个半圆面积的一半.故选D.12.C 解析:由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>⎪⎪⎪⎪⎪⎪13-1>⎪⎪⎪⎪⎪⎪12-1,∴f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2). 解题技巧:由f (2a -x )=f (x )知f (x )的图象关于直线x =a 对称.13.(1,2) 解析:当x -1=0,即x =1时,y =2.∴函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点(1,2).14.(-1,+∞) 解析:f (2x +1)+f (1)<0,f (2x +1)<-f (1)=f (-1).由于f (x )是奇函数,在区间0,+∞)上是单调减函数.所以在定义域上是减函数,故2x +1>-1,x ∈(-1,+∞).15.(-∞,-1] 解析:当x =0时,f (x )=0,则0≥a +1,解得a ≤-1,当x >0时,-x <0,f (-x )=-x +a 2-x-2,则f (x )=-f (-x )=x +a 2x +2,由函数的图象或增减性可知,当x =a 2=|a |=-a 时,有f (x )min=-2a +2,所以-2a +2≥a +1,解得a ≤13,又a <0,所以a <0.综上所述:a ≤-1.16.③④ 解析:对于①,k =0也符合题意;对于②,y =f (x )的定义域应该是3-1,3];对于③,画出y =11-x的图象或利用定义可判定y =11-x在(-∞,0)上是增函数;对于④,在同一坐标系中作出y =2|x |,y =log 2(x +2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.18.解:(1)∵f (x )是幂函数,且在(0,+∞)上是增函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,解得m =-1, ∴g (x )=log a x +1x -1. (2)由x +1x -1>0可解得x <-1或x >1, ∴g (x )的定义域是(-∞,-1)∪(1,+∞).又a >1,x ∈(t ,a ),可得t ≥1,设x 1,x 2∈(1,+∞),且x 1<x 2,于是x 2-x 1>0,x 1-1>0,x 2-1>0, ∴x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1)>0, ∴x 1+1x 1-1>x 2+1x 2-1.由a >1,有log a x 1+1x 1-1>log a x 2+1x 2-1,即g (x )在(1,+∞)上是减函数. 又g (x )的值域是(1,+∞),∴⎩⎪⎨⎪⎧t =1,g (a )=1,得g (a )=log a a +1a -1=1,可化为a +1a -1=a , 解得a =1±2,∵a >1,∴a =1+2,综上,a =1+2,t =1.19.解:(1)由f (3)=-53,得1+13-3α=-53,解得α=1.(2)由(1),得f (x )=1+1x -x .令f (x )=0,即1+1x -x =0,也就是x 2-x -1x=0, 解得x =1±52.经检验,x =1±52是1+1x -x =0的根,所以函数f (x )的零点为1±52.(3)函数f (x )=1+1x -x 在(-∞,0)上是单调减函数.证明如下:设x 1,x 2∈(-∞,0),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1+1x 1-x 1-⎝ ⎛⎭⎪⎫1+1x 2-x 2=(x 2-x 1)⎝ ⎛⎭⎪⎫1x 1x 2+1. 因为x 1<x 2<0,所以x 2-x 1>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )=1+1x -x 在(-∞,0)上是单调减函数. 20.解:(1)由题意得⎩⎨⎧ f (0)=0,f (1)=12,解得a =1,b =0,所以f (x )=x x 2+1. (2)函数f (x )在(-1,0)上单调递增,证明如下:任取x 1,x 2∈(-1,0),且x 1<x 2,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(1-x 1x 2)(x 1-x 2)(x 21+1)(x 22+1)<0,即f (x 1)<f (x 2).所以函数f (x )在(-1,0)上单调递增.21.(1)解:∵ f (x )的图象经过点⎝⎛⎭⎪⎫2,419, ∴ 12(a 2+a -2)=419,即9a 4-82a 2+9=0,解得a 2=9或a 2=19.∵ a >0,且a ≠1,∴ a =3或a =13.当a =3时,f (x )=12(3x +3-x );当a =13时,f (x )=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫13-x =12(3x +3-x ). ∴ 所求解析式为f (x )=12(3x +3-x ).22.解:(1)由A (12,26),B (20,10)可知线段AB 的方程为p =-2x+50,12≤x ≤20,由B (20,10),C (28,2)可知线段BC 的方程为p =-x +30,20<x ≤28, ∴p =⎩⎪⎨⎪⎧ -2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620;当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧ -2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28.(3)当12≤x ≤20时,y =-2⎝ ⎛⎭⎪⎫x -3722+1292.故当x =372时,y 取得最大值1292.当20<x ≤28时,y =-(x -21)2+61,故当x =21时,y 取得最大值为61.∵1292=64.5>61,∴当该消费品销售价格为18.5元时,周利润最大,最大周利润为64.5元.。

2017版高中数学1单元测试:创优单元测评 (第一章 第二章)B卷 含解析

高中同步创优单元测评B 卷数学班级:________ 姓名:________ 得分:________创优单元测评(第一章第二章)名校好题·能力卷](时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.80-lg 100的值为( )A.2 B.-2 C.-1 D。

错误!2.已知f(x)=x错误!,若0<a〈b<1,则下列各式中正确的是( )A.f(a)〈f(b)<f错误!〈f错误!B.f错误!〈f错误!〈f(b)<f(a)C.f(a)〈f(b)<f错误!<f错误! D.f错误!<f(a)〈f错误!〈f (b)3.下列不等式成立的是(其中a>0且a≠1)( ) A.log a5.1<log a5.9 B.a0.8〈a0.9C.1。

70.3〉0。

93。

1D.log32.9〈log0.52.24.函数f(x)=log a(4x-3)过定点()A.(1,0) B。

错误!C.(1,1) D.错误!5.在同一坐标系中,当0〈a<1时,函数y=a-x与y=log a x的图象是( )6.已知函数f(x)=错误!则f错误!的值是()A.-3 B.3 C。

13D.-错误!7.用固定的速度向如图形状的瓶子中注水,则水面的高度h和时间t之间的关系可用图象大致表示为()8.已知f(x6)=log2x,那么f(8)等于( )A.错误!B.8 C.18 D.错误!9.函数y=错误!的定义域是()A.0,2)B.0,1)∪(1,2)C.(1,2) D.0,1)10.函数f(x)=ln x的图象与函数g(x)=x2-4x +4的图象的交点个数为( )A.0 B.1 C.2 D.311.已知函数f(x)在0,+∞)上是增函数,g(x)=-f(|x|),若g(lg x)>g(1),则x的取值范围是()A.错误!B.(0,10)C.(10,+∞) D.错误!∪(10,+∞)12.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )A.-3 B.-1 C.1 D.3第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若x log23=1,则3x=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中同步创优单元测评创优单元测评(第一章) 名校好题·能力卷(时间:120分钟满分:150分) 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.已知函数y=1-x2x2-3x-2

的定义域为()

A.(-∞,1] B.(-∞,2] C.-∞,-12∩-12,1D.-∞,-12∪-12,12.已知a,b为两个不相等的实数,集合M={a2-4a,-1},N={b2-4b+1,-2},映射f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b等于() A.1 B.2 C.3 D.4

3.已知f(x)=2x-1x≥2,-x2+3xx<2,则f(-1)+f(4)的值为()

A.-7 B.3 C.-8 D.4 4.已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为() A.1 B.-1 C.1或-1 D.1或-1或0

5.函数f(x)=cx2x+3x≠-32,满足f(f(x))=x,则常数c等于()

A.3 B.-3 C.3或-3 D.5或-3 6.若函数f(x)的定义域为R,且在(0,+∞)上是减函数,则下列不等式成立的是()

A.f34>f(a2-a+1) B.f342-a+1)

C.f34≥f(a2-a+1) D.f34≤f(a2-a+1)

7.函数y=x|x|,x∈R,满足() A.既是奇函数又是减函数B.既是偶函数又是增函数C.既是奇函数又是增函数D.既是偶函数又是减函数8.若f(x)是偶函数且在(0,+∞)上是减函数,又f(-3)=1,则不等式f(x)<1的解集为() A.{x|x>3或-3C.{x|x<-3或x>3} D.{x|-3

9.已知f(x)=3-2|x|,g(x)=x2-2x,F(x)=gx,若fx≥gx,fx,若fx

F(x)的最值是() A.最大值为3,最小值为-1 B.最大值为7-27,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈0,+∞)(x1≠x2),

有fx2-fx1

x2-x1

<0,则()

A.f(3)C.f(-2)11.已知y=f(x)与y=g(x)的图象如下图:则F(x)=f(x)·g(x)的图象可能是下图中的() 12.设f(x)是R上的偶函数,且在(-∞,0)上为减函数.若x1<0,且x1+x2>0,则() A.f(x1)>f(x2) B.f(x1)=f(x2) C.f(x1)D.无法比较f(x1)与f(x2)的大小第Ⅱ卷(非选择题共90分) 二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件

的实数x组成的集合为________.14.若函数f(x)=kx2+(k-1)x+2是偶函数,则f(x)的递减区间是

________.15.已知函数f(x)满足f(x+y)=f(x)+f(y),(x,y∈R),则下列各式恒成立的是________.①f(0)=0;②f(3)=3f(1);③f12=12f(1);④f(-x)·f(x)<0.

16.若函数f(x)=x2-(2a-1)x+a+1是(1,2)上的单调函数,则实数a

的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分) 设集合A为方程-x2-2x+8=0的解集,集合B为不等式ax-1≤0的解集.(1)当a=1时,求A∩B;(2)若A?B,求实数a的取值范围.

18.(本小题满分12分) 设全集为R,A={x|3(1)求?R(A∪B)及(?RA)∩B;(2)C={x|a-4≤x≤a+4},且A∩C=A,求a的取值范围.19.(本小题满分12分) 函数f(x)=2x-1x+1,x∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.

20.(本小题满分12分) 已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分) 已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f(x)在(0,+∞)上的单调性,并给出证明;

(3)若a≥0且f(a+1)≤39,求a的取值范围.

22.(本小题满分12分) 已知函数f(x)=x2+ax(x≠0).

(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在2,+∞)上的单调性.

详解答案1.D解析:由题意知,1-x≥0,2x2-3x-2≠0,解得x≤1,x≠-12且x≠2.故选D. 2.D解析:∵集合M中的元素-1不能映射到N中为-2,∴a2-4a=-2,b2-4b+1=-1.即a2-4a+2=0,

b2-4b+2=0.

∴a,b为方程x2-4x+2=0的两根,∴a+b=4. 3.B解析:f(4)=2×4-1=7,f(-1)=-(-1)2+3×(-1)=-4,

∴f(-1)+f(4)=3,故选B. 4.D解析:∵A∪B=A,∴B?A,∴B=?或B={-1}或B={1}.则m=0或-1或1. 解题技巧:涉及到B?A的问题,一定要分B=?和B≠?两种情况进行讨论,其中B=?的情况易被忽略,应引起足够的重视.

5.B解析:f(f(x))=cfx2fx+3=x,f(x)=3xc-2x=cx2x+3,得c=-

3. 6.C解析:∵f(x)在(0,+∞)上是减函数,且a2-a+1=a-12

2+34≥34>0,∴f(a2-a+1)≤f

3

4.

解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C解析:由f(-x)=-f(x)可知,y=x|x|为奇函数.当x>0时,y=x2为增函数,而奇函数在对称区间上单调性相同.

8.C解析:由于f(x)是偶函数,∴f(3)=f(-3)=1,f(x)在(-∞,0)上是增函数,∴当x>0时,f(x)<1即为f(x)3,当x<0时,f(x)<1即f(x)9.B解析:作出F(x)的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.

10.A解析:若x2-x1>0,则f(x2)-f(x1)<0,即f(x2)在0,+∞)上是减函数,∵3>2>1,∴f(3)又f(x)是偶函数,∴f(-2)=f(2),∴f(3)11.A解析:由图象知y=f(x)与y=g(x)均为奇函数,∴F(x)=f(x)·g(x)为偶函数,其图象关于y轴对称,故D不正确.在x=0的左侧附近,∵f(x)>0,g(x)<0,∴F(x)<0,在x=0的右侧附近,∵f(x)<0,g(x)>0,∴F(x)<0.故选A. 12.C解析:∵x1<0且x1+x2>0,∴-x2又f(x)在(-∞,0)上为减函数,∴f(-x2)>f(x1).

而f(x)又是偶函数,∴f(-x2)=f(x2).

∴f(x1)).

13.{-3,2}解析:∵2∈M,∴3x2+3x-4=2或x2+x-4=2,

解得x=-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0]解析:∵f(x)是偶函数,∴f(-x)=kx2-(k-1)x+2=kx2+(k-1)x+2=f(x).∴k=1. ∴f(x)=x2+2,其递减区间为(-∞,0].15.①②③解析:令x=y=0得,f(0)=0;令x=2,y=1得,f(3)=f(2)+f(1)=3f(1);

令x=y=12得,f(1)=2f12,∴f12=12f(1);

令y=-x得,f(0)=f(x)+f(-x).即f(-x)=-f(x),∴f(-x)·f(x)=-f(x)]2≤0.

16.aa≥52或a≤32解析:函数f(x)的对称轴为x=2a-12=a-12,

∵函数在(1,2)上单调,∴a-12≥2或a-12≤1,即a≥52或a≤32.

解题技巧:注意分单调递增与单调递减两种情况讨论.17.解:(1)由-x2-2x+8=0,解得A={-4,2}.

当a=1时,B=(-∞,1].∴A∩B={}-4. (2)∵A?B,

∴-4a-1≤0,2a-1≤0,

∴-14≤a≤12,即实数a的取值范围是-14,12.

18.解:(1)?R(A∪B)={x|x≤3或x≥10},

相关文档
最新文档