最新小型光伏发电系统4KW的设计

合集下载

光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点提出问题:1. 光伏发电系统并网时的主要部件是什么?2. 光伏逆变器如何分类?其电路如何构成?3. IGBT是什么,有什么特点,主要参数?4. 电力MOSFET是什么,主要参数和特性?5. 逆变器的常用电路有哪些,各自的接线和特点是什么?6. 常用逆变器的形式有哪些,各自特点是什么,主要生产厂家?1.光伏发电系统并网时的主要部件是什么?光伏发电系统并网时的主要部件是逆变器。

无论是太阳能电池、风力发电还是新能源汽车,其系统应用都需要把直流电转换为交流电,承担这一任务的部件为逆变器。

逆变器又称电源调整器、功率调节器,是光伏系统必不可少的一部分。

通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。

逆变器的名称由此而来。

光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。

逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,逆变器的核心器件是IGBT(绝缘栅双极型晶体管),也是价格最高的部件之一。

2.光伏逆变器如何分类?其电路如何构成?光伏逆变器的分类如下图:功率较小(<4kW)的光伏发电系统一般采用正弦波逆变器。

逆变器的显示功能主要包括:直流输入电压和电流的测量值,交流输出电压和电流的测量值,逆变器的工作状态(运行、故障、停机等)。

光伏逆变器的电路构成如下图所示:控制电路:逆变器的控制电路主要是为主逆变电路提供一系列的控制脉冲来控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。

辅助电路:辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。

辅助电路还包含多种检测、显示电路。

逆变器的显示功能主要包括:直流输入电压和电流的测量值,交流输出电压和电流的测量值,逆变器的工作状态(运行、故障、停机等)。

保护电路:逆变器的保护电路主要包括输入过压、欠压保护,输出过压、欠压保护,过载保护,过流和短路保护,接反保护,过热保护等。

1MWp光伏并网发电系统技术方案

1MWp光伏并网发电系统技术方案

1MWp光伏并网发电系统技术方案1MWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2太阳能电池组件 (16)4.3光伏阵列防雷汇流箱 (17)4.4直流防雷配电柜 (18)4.5系统接入电网设计 (19)4.6系统监控装置 (23)4.7环境监测仪 (26)4.8系统防雷接地装置 (27)五、系统主要设备配置清单 (28)六、系统原理框图 (29)七、参考案例 (30)一、总体设计方案针对1MWp的太阳能光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,将系统分成10个100KW的并网发电单元,每个100KW的并网发电单元都接入10KV 升压站的0.4KV低压配电柜,经过0.4KV/10KV(1250KVA)变压器升压装置,最终实现整个并网发电系统并入10KV中压交流电网。

系统的电池组件选用180Wp(35V)单晶硅太阳能电池组件,其工作电压为35V,开路电压约为45V。

经过计算,每个光伏阵列按照16块电池组件串联进行设计,100KW的并网单元需配置10个光伏阵列,560块电池组件,其功率为100.8KWp。

则整个1MWp并网发电系统需配置5600块180Wp电池组件,实际功率约为1.008MWp。

为了减少光伏阵列到逆变器之间的连接线及方便日后维护,建议在室外配置光伏阵列防雷汇流箱,该汇流箱可直接安装在电池支架上,每个汇流箱可接入6路光伏阵列,每100KW并网单元配置6台汇流箱,整个1MWp并网系统需配置60台光伏阵列防雷汇流箱。

为了将每个100KW并网单元的6台光伏阵列防雷汇流箱的直流输出汇流后再接入SG100K3逆变器,系统需要配置4台直流防雷配电柜,每个配电柜按照3个100KW直流配电单元进行设计,分成3路直流输出分别接至3台SG100K3逆变器。

微型逆变器并网发电系统方案-10KWp

微型逆变器并网发电系统方案-10KWp

2
1.1 微型逆变器并网系统优势
与传统的集中式逆变器或组串式逆变器比较, 微型逆变器并网系统具有以下一些明 显的优点: 微逆逆变器系统会对每一块光伏组件进行独立的 MPPT(最大功率点跟踪) ,从而 可以避免因为阴影、光照不均匀、组件之间的参数不匹配等因素带来的能量损失。 通常可增加 5~25%的系统发电量。 系统没有高压直流电,避免潜在的电弧引起的火灾风险,以及高压对人体的伤害。 系统中不需要高压直流断路器等昂贵的高压直流设备,减少成本。 模块化结构,每两个光伏板和一个逆变器为一个最小模组,用户可以根据实际需要 增加安装容量,系统设计方便灵活。 易于扩展,日后就可以简单灵活地增加任意数量的光伏板。 没有单点故障。和集中式逆变器不同,如果有一块太阳能电池板或板后的微逆不正 常, 整个太阳能系统的其余部分不会受到任何影响, 仍可以正常运行, 冗余性更高。 可以对每块光伏板的电压电流功率实施监控,便于维护和故障定位。
1
1. 方案总述
由于阴影遮挡、 光伏板组件差异等因素导致传统的组串集中式逆变器在屋顶光伏并 网中受到很大的影响,功率丢失严重。本方案中我们采用分布式的微型并网逆变器来 进行屋顶光伏并网发电系统工程。 微型逆变器光伏并网发电系统的主要由五个部分组成: 1) 光伏电池板组件 2) 光伏板安装支架 3) 微型光伏并网逆变器 4) 交流并网线缆及其配件 5) 交流配电箱
7
2
电流指太阳能电池板输出的额定电流。 g) 太阳能电池板的一个重要性能指标是峰值功率 Wp, 即最大输出功率, 也称峰瓦, 是指电池在正午阳光最强的时候所输出的功率,光强在 1000 瓦左右。
3)
I-V 曲线图
8
4) 组件尺寸
9
2.3 光伏阵列设计

4000W屋顶光伏发电系统方案设计说明书

4000W屋顶光伏发电系统方案设计说明书

4000W屋顶光伏发电系统方案说明书一、系统方案(一)光伏发电简介光伏发电是根据光生伏特效应原理,利用太阳电池将太阳光能直接转化为电能。

不论是独立使用还是并网发电,光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件。

光伏发电系统分为独立光伏发电系统、并网光伏发电系统(1)独立光伏发电系统独立光伏发电也叫离网光伏发电。

主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。

独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统(2)并网光伏发电系统并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。

可以分为带蓄电池的和不带蓄电池的并网发电系统。

(二)背景与系统介绍(1)背景一南宁市家庭用户,屋面类型为水泥屋面。

主要电器设备为一盏功率为60W普通照明灯和一台功率为300W电视机。

(2)用电量分析电灯和电视机每天平均使用5小时,每天用电量为:(60W+300W)x 5h=1800Wh(即1.8度),考虑到特殊情况的每天最大用电量为2.5度电。

(3)装机容量的确定据南宁气象数据统计,南宁最大连续阴雨天气为3天,光伏发电在阴雨天连续提供的电量应达到:(3+1)X 2.5=10(度),因此本光伏发电系统的装机容量设定为4000W,4000W的光伏发电系统日均发电量约11.2度,用户电器按每天运行5小时计算,可满足其正常使用4天。

(4)系统介绍根据用户用电情况本工程选用离网光伏发电系统。

离网光伏发电系统构成:由太阳能电池组件、光伏控制逆变一体机、蓄电池组、交流配电柜、接地系统、电缆等组成。

电池组件方阵在有光照情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,即“光生伏特效应”。

小型独立光伏发电系统的分析与设计

小型独立光伏发电系统的分析与设计

小型独立光伏发电系统的分析与设计一、本文概述随着全球能源危机的日益加剧,可再生能源的开发和利用受到了广泛关注。

其中,光伏发电作为一种清洁、可再生的能源形式,具有巨大的发展潜力。

小型独立光伏发电系统作为一种将太阳能转化为电能的系统,具有独立性、灵活性、环保性等优点,特别适用于偏远地区、家庭及小型商业场所等场合。

本文旨在全面分析小型独立光伏发电系统的设计与应用。

我们将对光伏发电的基本原理进行介绍,包括光伏效应、太阳能电池的工作原理等。

我们将详细探讨小型独立光伏发电系统的设计要点,包括太阳能电池的选择、储能系统的设计、逆变器的选型等。

我们还将对系统的性能评估与优化进行探讨,以提高系统的发电效率和稳定性。

通过本文的阐述,我们希望能够为小型独立光伏发电系统的设计与应用提供有益的参考和指导,推动其在实际应用中的普及和发展。

我们也期待通过本文的探讨,激发更多研究者和工程师对可再生能源领域的兴趣和研究热情,共同为构建绿色、可持续的能源体系做出贡献。

二、光伏发电技术基础光伏发电,又称太阳能发电,是一种利用光生伏特效应将太阳能直接转换为电能的发电方式。

其基本原理是,当太阳光照射到光伏电池上时,光子与电池内的半导体材料相互作用,使得电子从原子中逸出,形成光生电流。

这个过程不涉及任何机械运动或其他形式的中间能量转换,因此光伏发电是一种清洁、高效且静音的能源转换方式。

光伏发电系统的核心组件是光伏电池(也称为太阳能电池),它通常由硅、硒、铜等半导体材料制成。

光伏电池的性能主要受到其转换效率、耐久性、制造成本等因素的影响。

转换效率指的是光伏电池将光能转换为电能的效率,它受到电池材料、结构、制造工艺等多种因素的影响。

耐久性则关系到光伏电池的使用寿命和维护成本,而制造成本则直接决定了光伏发电的经济性。

除了光伏电池,光伏发电系统还包括了逆变器、储能装置、支架等其他组成部分。

逆变器的作用是将光伏电池输出的直流电转换为交流电,以适应大多数电力系统的需求。

家用太阳能光伏发电系统设计

家用太阳能光伏发电系统设计

塔 类设 备 水 法正 压试 漏 阐述
程 效 东
( 大庆 石 化 公 司腈 纶 厂 聚 合 车 间 , 龙 江 大 庆 1 30 ) 黑 6 0 0 摘 要 : 工 装 置每 年 塔 类设 备 必 须进 行 周期 性 检修 , 化 以往 拆 装后 的塔 类设 备 是 采 用 负压保 压 的 方 法查 漏 点。 查过程 中需要 在 检 各法兰连接处涂抹肥皂液, 由于脱单塔表面粗糙 肉眼很难发现漏点。有时开车后脱 单塔真空还会发 生波动, 必须继续查找 漏点。 开 车后 因 为脱 单塔 是 连 续抽 真 空 的 , 漏后 仍 然 可能存 在 漏 点 。真 空 泵 负载 变 大 , 堵 需要 启动 两 台真 空泵 , 成 电 消耗 增 高。 造 关 键 词 : 塔 水 ; 类 , 备 脱单 塔 设 1具 体 实 施措 施 采用脱单塔水法正压试漏后, 漏点排除率 : 对拆装后 的脱单塔采取了加水正压试漏的方法。 脱单塔高度为 20 年~ 00年 , 08 21 每年平均拆塔 4台次 , 开车后没有发现漏点 , 1米 , 2 从脱单塔底加水 , A级水压力为 05 P , . a 当脱 单塔 内的水加 漏 点 排 除率 10 M 0 %。 满 后 ,溢 流 到 终 止罐 出料 管线 ,当管 线 上方 压 力 表压 力 为 O P -Ma 3 经 济效 益 : 时, 停止加水 , 避免压力过大将脱单塔下料视镜压坏。 观察脱单塔各 每台真空泵功率为 4 w,每 台次泵运行 5 天 ,每年减 少 2台 k 0 法 兰 连接 点 , 如果 密 封不 严 就会 有 水 漏 出 。 系维 修人 员 进行 处 理 , 次 , 联 电费 0 4元 k / . 4 wh 直 到 各 连接 点 不再 漏 水 为 止 。 每 年增 加效 益 = 2台次 * k *0天 *4小 时 0 4元 k /= 24 4w5 2 . 4 wh为 13 , - 倍 光伏 电池产 量 占全球 产 量 的 比例 也 由 20 年 1 7 02 . %增 长到 20 年 的 近 1%。商 业 化 晶体硅 太 阳 能 0 08 5 电池 的效 率 也从 3年前 的 1%一 4 3 1%提 高到 1%一7 6 1%。 据 欧洲 光伏 工 业协 会 E I PA预测 , 阳 能光 伏 发 电在 2 世 纪会 太 l 占据世界能源消费的重要席位 , 不但要替代部分常规能源 , 而且将 成 为 世 界能 源供 应 的 主体 。 预计 到 2 3 00年 , 可再 生 能源 在 总能 源结 构 中将 占到 3 %以上 , 太 阳能 光伏 发 电在世 界总 电力供 应 中的 占 0 而 比也 将 达到 1%以上 ; 2 4 年 , 再 生 能 源将 占总 能耗 的 5%以 0 到 00 可 0 上 , 阳能 光 伏发 电将 占总 电 力 的 2 %以上 ; 2 世 纪 末 , 再 生 太 0 到 1 可 能 源在 能源 结 构 中将 占到 8 %以上 ,太 阳能 发 电将 占到 6%以 上 。 0 0 这 些数 字足 以显 示 太 阳能 光 伏 产 业 的发 展 前 景 及 其 在 能 源 领 域 重要 的战 略地 位 。 2 太 阳能 光伏 发 电 系统 组成 及运 行 方式 太 阳能光伏发电系统是利用太 阳电池半导体材料 的光伏效应 ,

家用式太阳能光伏发电项目方案

家用式太阳能光伏发电项目方案

. -家用式太阳能光伏发电项目技术方案. - 优质文档-目录1.项目需求: (3)2.工程计算: (4)3.方案设计: (7)4.设备概算: (9)5.安装调试 (15)6.经济分析 (15)1.项目需求:我国的太阳能资源比较丰富,但也比较集中,国网提出的一特四大的能源发展战略也要求在发展集中式的大规模光伏电站,同时也要求大力发展分布式发电。

由于在现在的技术条件下太阳能电池板的发电效率还不高,如果要想大规模利用太阳能的话,就必须将太阳能电池板大面积的呈矩形排列在空旷且日照充足的地方,这样要建造太阳能发电站的条件就变得相当苛刻。

相比较而言家庭太阳能发电系统适合作为分布式发电发展。

单个家庭用电负荷一般较小。

只要一个家庭有不大的场地如阳台或屋顶就可以安装太阳能发电系统,而且一个小型的太阳能发电系统发出的电能也足够一个家庭使用并有富余,如果国家法律通过的绿电并网补贴电价政策合适,家用太阳能发电是可以赢利的。

国内配电网的户用容量配置标准如下:同时对一般小区家庭的用电情况数据调查如下:按照家庭月收入情况(万元)分为A、B、C、D、E类,其中:➢A类(0.3以下)➢B类(0.3~0.5)➢C类(0.5~0.7)➢D类(0.7~1.0)➢E类(1.0以上)4 257.4 334.6 283.2 291.7 151.7 照明、电视、风扇、电饭锅 B5 261.3 339.7 287.4 296.1 154.0 照明、电视、风扇、电饭锅、空调、冰箱 B6 263.2 342.1 289.5 298.2 155.1 照明、电视、风扇、电饭锅、空调、冰箱 B7 265.0 344.6 291.5 300.4 156.2 照明、电视、风扇、电饭锅、空调、冰箱 B8 266.9 347.0 293.6 302.5 157.3 照明、电视、风扇、电饭锅、空调、冰箱 B9 268.8 349.4 295.7 304.6 158.4 照明、电视、风扇、电饭锅、空调、冰箱 C10 283.6 368.7 312.0 321.5 167.2 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机 C11 285.6 371.3 314.2 323.7 168.3 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机 C12 287.6 373.9 316.3 325.9 169.5 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机 C13 289.5 376.4 318.5 328.2 170.6 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机 D14 291.5 379.0 320.7 330.4 171.8 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机 D15 293.5 381.5 322.8 332.6 173.0 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机 D16 322.5 419.2 354.7 365.4 190.0 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机、电脑 D17 324.6 422.0 357.1 367.9 191.3 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机、电脑 E18 326.8 424.8 359.4 370.3 192.6 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机、电脑 E19 328.9 427.6 361.8 372.8 193.8 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机、电脑 E20 329.4 428.2 362.3 373.3 194.1 照明、电视、风扇、电饭锅、空调、冰箱、洗衣机、电脑 E根据调查数据可以看出,所调查家庭的月平均用电为323.4度,家庭的月平均电费为168.2元。

光伏发电系统设计方案专业设计书

光伏发电系统设计方案专业设计书

光伏发电工程项目方案设计书目录一、概述 (4)1.1项目概况 (4)1.2编制依据 (4)二、建设地址资源简述 (4)2.1日照资源 (4)2.2接入系统条件 (6)三、总体方案设计 (6)3.1光伏工艺部分 (6)3.2太阳电池组件选型 (6)3.3光伏阵列设计 (12)3.4系统效率分析 (15)四、电气部分 (16)4.1概述 (16)4.2系统方案设计选型 (16)4.3电气主接线 (20)4.4主要设备选型 (20)4.5防雷及接地 (30)4.6电气设备布置 (31)4.7电缆敷设及电缆防火 (31)五、工程案例................................................................... 错误!未定义书签。

六、系统配置以及报价....................................................... 错误!未定义书签。

一、概述1.1 项目概况1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。

该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。

为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。

针对固定式安装电池板,采用最佳倾角进行安装,石家庄地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室内。

1.2 编制依据本初步设计说明书主要根据下列文件和资料进行编制的:1)GB50054《低压配电设计规范》;2)GB50057《建筑物防雷设计规范》;3)GB31/T316—2004《城市环境照明规范》;4)GBJl33—90《民用建筑照明设计标准》;5)JGG/T16—921《民用建筑电气设计规范》;6)GBJ16—87《建筑设计防火规范》;7)《中华人民共和国可再生能源法》;8)国家发展改革委《可再生能源发电有关管理规定》;二、建设地址资源简述2.1日照资源我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小型光伏发电系统4K W的设计南京信息职业技术学院毕业设计论文作者陈德清学号 31041P03 系部中认新能源技术学院专业光伏发电技术及应用题目小型独立光伏发电系统(4KW)的设计指导教师程超评阅教师张渊完成时间: 2013年 5 月 2 日毕业设计(论文)中文摘要毕业设计(论文)外文摘要目录1 引言 (5)2 独立光伏发电系统概述 (7)2.1 独立光伏发电系统的概念 (7)2.2.1 结构 (8)2.2.2 工作原理 (9)3 独立光伏发电系统的设计 (9)3.1 系统的设计原则、步骤和内容 (9)3.1.1 系统设计原则 (9)3.1.2 设计步骤和内容 (9)3.2 系统容量的设计 (10)3.2.1 数值计算值 (10)3.3 太阳能电池组件及方阵的设计 (12)3.3.1 光伏组件方阵需要考虑的问题 (12)3.3.2 太阳能电池组件(方阵)的方位角与倾斜角 (12)3.3.3 一般设计方法 (13)3.4 直流接线箱的选型 (16)3.5 光伏控制器的选型 (18)3.6 光伏逆变器的选型 (19)4 结论 (20)5 致谢 (21)6参考文献 (21)1 引言自人类社会诞生以来,能源一直是人类生存和发展的重要物质基础。

随着社会的发展,能源在社会发展中的重要性越来越突出,尤其是近年来各国日益呈现出来的能源危机问题更加明显地把能源置于社会发展的首要地位。

根据《BP世界能源统2005》的统计数据,以目前的开采速度计算,全球石油储量可供生产40 多年,天然气和煤炭则分别可以供应67年和164年。

而我国的能源资源储量情况更是危机逼人,按2000 年底的统计,探明可开发能源总储量约占世界总量的10.1%.我国能源剩余可开采总储量的结构为原煤占58.8%,原油占3.4%,天然气占1.3%,水资源占36.5%。

我国能源可开发剩余可采储量的资源保证程度仅为129.7年。

目前世界大部分国家能源供应不足,不能满足经济发展的需要,各国纷纷出台各种法规支持开发利用新能源和可再生能源,使得新能源和可再生能源在全球升混。

20世纪90年代以来,以欧盟为代表的地区集团,大力开发利用可再生能源,连续1 0 年可再生能源发电的年增长速度都在15%以上。

以德国、西班牙为代表的一些国家通过立法方式,促进可再生能源的发展,1999 年以来可再生能源年均增长速度均达到3日%以上。

四班牙2003 年风力发电装机占到全机总量的4% ,德国在过去11年间,风力发电增长21倍,2003年占全的3.1%,瑞典和奥地利的生物质能源在其能源消费结构中高达15%以上。

近年来,光伏产业迅速发展,世界太阳电池年产量在最近十年内保持了30%以上的增速,2007 年年增长率达到了50% ,2008 年年增长率甚至达到了100% ,年产量达到6.5GW ,大阳电池产量迅速增加的动力来自于世界对太阳能等清洁能源持续增长的需求,2008 年世界光伏系统新装机容量达到5.95GW ,比200 7年增长了110%。

按照目前光伏组件4.5 $/W的价格计算,世界光伏市场规模接近三百亿美元.新能源是国家“十二五”规划重点要求发展的产业,政策对其扶持力度很大。

2009年3月,由科技部、国家发改委等部门联合举办的2009年中国国际节能和新能源科技博览会上集中展示了节能减排和新能源科技的重大成果,引起了国内外的广泛关注。

2009年5月全国财政新能源与节能减排工作会议指出,国家财政要全力支持新能源发展和节能减排工作,重点加快启动国内光伏发电市场、开展节能与新能源汽车示范推广试点等十项工作。

我国拥有丰富的新能源与可再生能源可供开发利用,近十年来的高长使我国迫切需要加大对新能源和可再生能源的开发利用,以解决能源题,保障能源供应安全。

近年来,由于各级政府和社会各界的高度重视可再生能源的开发和利用方丽取得了较快发展,并于2005年2 月28日通过了《再生能源法》,该法已于2006年1月1日起实施,这对于我国可再生能具有十分重要的意义。

图1 我国不同地区的太阳能资源分布图表1 我国各地区的太阳能资源及分布2 独立光伏发电系统概述2.1 独立光伏发电系统的概念:独立光伏发电系统是指仅仅依靠太阳能电池供电的光伏发电系统或主要依靠太阳能电池供电的光伏发电系统,在必要时可以由泊机发电、风力发电、电网电源或其他电源作为补充。

从电力系统来说, kW级以上的独立光伏发电系统也称为离网型光伏发电系统。

图2独立光伏发电系统组成2.2 独立光伏发电系统的结构及工作原理2.2.1 结构通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统,也可叫做太阳能电池发电系统。

尽管太阳能光伏发电系统应用样式多种多样,应用规模跨度也很大,从小到不足一瓦的太阳能草坪灯,大到几百千瓦甚至几兆瓦的大型光伏发电站,但太阳能光伏发电系统的组成结构和工作原理基本相同。

其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。

图3 独立型太阳能光伏发电系统工作原理2.2.2 工作原理太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。

直流或交流负载通过开关与控制器连接。

控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。

有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。

在交流光伏发电系统中, DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

3 独立光伏发电系统的设计3.1 系统的设计原则、步骤和内容3.1.1 系统设计原则光伏发电系统的设计要本着合理性、实用性、高可靠性和高性价比(低成本)的原则。

做到既能保证光伏系统的长期可靠运行,充分满足负载的用电需要,同时又能使系统的配置最合理、最经济,特别是确定使用最少的太阳能电池组件功率和蓄电池的容量。

协调整个系统工作的最大可靠性和系统成本之间的关系,在满足需要保证质量的前提下节省投资,达到最好的经济效益。

3.1.2 设计步骤和内容:太阳能光伏发电系统的设计步骤和内容如图4所示。

图4 太阳能光伏发电系统设计内容与步骤3.2 系统容量的设计:目标: 优化太阳能电池方阵容量和蓄电池组容量的相互关系,在保证独立光伏发电系统可靠工作的前提下,达到成本最低。

要求: 首先对当地的太阳能辐照资源、地理及气象数据有尽量详细的了解,一般要求掌握日平均太阳辐照量、月平均太阳辐照量和连续阴雨天数。

方法: 依据各部件的数理模型,采用计算机仿真,可以拟合出太阳能电池方阵每小时发电量、蓄电池组充电量和负载工作情况,并预测所需要的太阳能电池方阵及蓄电池组的容量。

通过数值分析法,可以解析太阳能电池方阵容量及蓄电池组容量之间存在的相互关系,然后在特定的供电可靠性要求下,根据成本最低化的原则,确定二者各自的容量。

3.2.1 数值计算值在本章中,负载的总耗电量为4000w·h/d,选择的逆变器效率为90%,连续阴雨天数为4天,蓄电池的放电深度为70%,系统电压为48V。

①蓄电池容量= «Skip Record If...»=«Skip Record If...»=530AH通常,铅酸蓄电池的容量是在25℃时标定的。

随着温度的降低, 0 ℃时的容量大约下降到额定容量的90% . 而在-20℃的时候大约下降到额定容量的80% . 所以必须考虑蓄电池的环镜温度对其容量的影响。

南京地区全年最低气温大约为-4~-6℃,所以在此温度下,蓄电池的容量会下降10%左右。

蓄电池实际容量=«Skip Record If...»=«Skip Record If...»=590AH图5 铅酸蓄电池最大放电深度-温度曲线②确定蓄电池的串并联方式每个蓄电池都有它的标称电压。

为了达到负载工作的标称电压,将蓄电池串连起来给负载供电,需要串联的蓄电池的个数等于负载的标称电压除以蓄电池的标称电压。

这里选用24v/200AH的胶体蓄电池。

串联蓄电池数=«Skip Record If...»=«Skip Record If...»=2 所以蓄电池串联数为2并联蓄电池数=«Skip Record If...»=«Skip Record If...»=2.95≈3综上所述:使用江苏恒华公司生产的24V/200AH型胶体蓄电池,蓄电池串联数2,并联3块,连接方式如图6所示。

图6 蓄电池连接示意图3.3 太阳能电池组件及方阵的设计3.3.1 光伏组件方阵设计需要考虑的问题设计太阳电池组件要满足光照最差季节的需要。

蓄电池长时间处于亏电状态将使得蓄电池的极板硫酸盐化。

在独立光伏系统中没有备用电源在天气较差的情况下给蓄电池进行再充电,这样蓄电池的使用寿命和性能将会受到很大的影响,整个系统的运行费用也将大幅度增加。

太阳电池组件设计中较好的办法是使太阳电池组件能满足光照最恶劣季节里的负载需要,也就是要保证在光照最差的情况下蓄电池也能够被完全地充满电。

由于光照最差季节的光照度大大低于平均值,这样设计的太阳电池组件在一年中的其他时候会远远超过实际需要,而且成本高昂。

3.3.2 太阳能电池组件(方阵)的方位角与倾斜角由于太阳能光伏发电的发电量与太阳光的辐射强度、大气质量、地理位置等因素有直接的关系和影响,因此在设计太阳能光伏发电系统时,应考虑太阳辐射的方位角和倾斜角、峰值日照时数等。

太阳能电池组件(方阵)的方位角与倾斜角的选定是太阳能光伏系统设计时最重要的因素之一。

所谓方位角一般是指东西南北方向的角度。

对于太阳能光伏系统来说,方位角以正南为00,由南向东向北为负角度,由南向西向北为正角度。

方位角决定了阳光的入射方向,决定了各个方向的山坡或不同朝向建筑物的采光状况。

倾斜角是地平面与太阳能电池组件之间的夹角。

倾斜角为00时表示太阳能电池组件为水平设置,倾斜角为900时表示太阳能电池组件为垂直设置。

①太阳能电池方位角的选择在我国,太阳能电池的方位角一般选择正南方向,以使太阳能电池单位容量的发电量最大。

②太阳能电池倾斜角的选址最理想的倾斜角是使太阳能电池年发电量尽可能大,而冬季和夏季发电量差异尽可能小的倾斜角。

一般取当地纬度或加上几度作为当地太阳能电池组件安装的倾斜角。

以下为根据当地纬度粗略确定太阳能电池的倾斜角:纬度为00~250时,倾斜角等于纬度;纬度为260~400时,倾斜角等于纬度加上50~100;纬度为410~550时,倾斜角等于纬度加上100~150;纬度为550以上时,倾斜角等于纬度加上150~200。

相关文档
最新文档