运算定律和性质整理
(完整版)加减乘除运算定律

加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
四年级数学简便计算:运算定律和性质

★这篇《四年级数学简便计算:运算定律和性质》,是®⽆忧考⽹特地为⼤家整理的,希望对⼤家有所帮助!1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
⽤字母表⽰:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
⽤字母表⽰:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
⽤字母表⽰:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
⽤字母表⽰:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与⼀个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
⽤字母表⽰:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质1:⼀个数连续减去两个数,可以减去这两个减数的和。
⽤字母表⽰:a-b-c= a -( b+c)a -( b+c) = a-b-c7、减法的性质2:⼀个数连续减去两个数,可以先减去第⼆个减数,再减去第⼀个减数。
⽤字母表⽰:a-b-c= a-c-b8、除法的性质1:⼀个数连续除以两个数,可以除以这两个除数的积。
⽤字母表⽰:a÷b÷c= a ÷( b×c)a ÷( b×c) = a÷b÷c9、除法的性质2:⼀个数连续除以两个数,可以先除以第⼆个除数,再除以第⼀个除数。
⽤字母表⽰:a÷b÷c= a÷ c ÷ b。
运算定律和性质及其应用

运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c7、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a÷( b×c) a÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷c÷b158+262+138 375+219+381+225 5001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065899+344 2357-183-317-357 2365-1086-214497-299 2370+1995 3999+4981883-398 12×25 75×24138×25×4 (13×125)×(3×8) (12+24+80)×50704×25 25×32×125 32×(25+125)88×125 102×76 58×98178×101-178 84×36+64×84 75×99+2×7583×102-83×2 98×199 123×18-123×3+85×123 50×(34×4)×3 25×(24+16)178×99+17879×42+79+79×57 2356-(1356-721)1235-(1780-1665)75×27+19×2 5 31×870+13×310 4×(25×65+25×28)(300+6)x12 25x(4+8) 125x(35+8) (13+24)x884x101 504x25 78x102 25x20499x64 99x16 638x99 999x9999X13+13 25+199X25 32X16+14X32 78X4+78X3+78X3 125X32X8 25X32X125 88X125 72X1253600÷25÷4 8100÷4÷75 3000÷125÷8 1250÷25÷5 1200-624-76 2100-728-772 273-73-27 847-527-273 278+463+22+37 732+580+268 1034+780+320+102 425+14+186214-(86+14)787-(87-29)365-(65+118)455-(155+230) 576-285+85 825-657+57 690-177+77 755-287+87871-299 157-99 363-199 968-599178X101-178 83X102-83X2 17X23-23X7 35X127-35X16-11X3526×39+61×26356×9-56×9 99×55+5578×101-78 52×76+47×76+76 134×56-134+45×134 48×52×2-4×48 25×23×(40+4)999×999+1999 184+98 695+202 864-199 738-301380+476+120 (569+468)+(432+131)704×25256-147-53 373-129+29 189-(89+74)28×4×25 125×32×259×72×1255001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+2863065-738-1065 899+344 2357-183-317-3572365-1086-214 497-299 2370+19953999+498 1883-398 12×25 75×24138×25×4 (13×125)×(3×8)(12+24+80)×5025×32×125 32×(25+125)88×125 102×76178×101-178 84×36+64×84 75×99+2×7598×199 123×18-123×3+85×12350×(34×4)×325×(24+16)178×99+178 79×42+79+79×57375+219+381+225 5001-247-1021-232 (181+2564)+2719378+44+114+242+222 276+228+353+219 (375+1034)+(966+125)(2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065 899+3442365-1086-214 497-2992370+1995 3999+498 1883-39812×25 75×24 138×25×4 (13×125)×(3×8)(12+24+80)×50 704×25 25×32×125 32×(25+125)88×125 102×76 58×98 178×101-178 84×36+64×8475×99+2×75 83×102-83×2 98×199123×18-123×3+85×123 50×(34×4)×3 25×(24+16)178×99+178 79×42+79+79×57 21500÷1257300÷25÷4 8100÷4÷75 16800÷120。
初中数学常用数学公式:运算定律

1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即ab=ba。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
小学数学,运算定律与性质

小学数学,运算定律与性质篇一:小学数学常用运算定律小学数学常用运算定律加法交换律: a+b=b+a加法结合律: a+b+c=(a+b)+c a+(b+c)=(a+c)+b乘法交换律:ab=ba乘法结合律: abc=(ab)c=a(bc)=(ac)b乘法分配律: a(b+c)=ab+acab+ac= a(b+c)减法的运算性质:a-b-c=a-(b+c)除法的运算性质:a÷b÷c=a÷(b×c)a÷(b×c)= a÷b÷c= a÷c÷b a÷b×c=a÷(b÷c)a÷(b÷c)= a÷b×c小学数学图形计算公式正方形(C:周长S面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2平行四边形(s:面积a:底h:高)面积=底×高s=ah 梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷2圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л S=лr2小学数学常用单位和进率质量(重量)单位:1吨=1000千克1千克=1000克长度单位:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=10分米=100厘米=1000毫米面积单位: 1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米地积单位1亩=10分,1公顷=15亩,1亩≈667平方米, 1公顷=100公亩=10000平方米体积单位:1立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米1升=1000毫升时间单位:1天=24时1时=60分1分=60秒1年=12月1月=3旬(上旬、中旬都是10天,剩下的天数为下旬)篇二:小学数学运算规律基本性质小学数学中一些概念、运算规律、基本性质乘法:1、积的变化规律:一个因数不变,另一个因数乘或除以几,积就相应的乘或除以几。
运算定律和性质

运算定律与性质1、加法运算定律交换律:连加法中,交换两个加法得位置,它们得与不变.例如:96+4=4+96用字母表示:a +b=b+ a同时也适用几个数相加得情况。
例如:28+75+25=25+75+28用字母表示:a + b +c=c+ b+ a结合律:几个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,它们得与不变。
例如:(25+8)+32=25+(8+32)用字母表示:(a+b)+c=(a+ c)+b如果先交换,再结合,可得:a + b+ c=( a + c)+ba+ b + c+ d=( a +d)+(b+c)2、乘法运算定律交换律:在乘法中,交换两个因数得位置,它们得积不变。
例如:12×23=23×12用字母表示:a×b=b×a同时也适用几个数相乘得情况。
例如:12×25×4=4×25×12用字母表示:a×b×c=c×a×b结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们得积不变。
例如:25×34×4=(25×4)×34用字母表示:a×b×c=a×(b×c)如先交换,后结合,可得a×b×c=(a×c)×b同时也适用几个数相乘得情况。
例如:25×5×4×2=(25×4) ×(2×5)用字母表示:a×b×c×d=(a×d)×(b×c)分配律:两个数得与或者两个数得差与一个数相乘可以用这个数分别去乘两个数,再把两个积相加或相减。
例如:(25+16)×4=25×4+16×4(25-16)×4=25×4—16×4用字母表示:(a + b)×c=a×c + b×c(a – b)×c=a×c- b×c3、加减混合运算性质(1)在加减混合运算中,改变运算顺序,结果不变。
四年级运算定律公式归纳

一、加法定律加法定律是指加法运算中的一些基本规律和性质。
1.加法结合律加法结合律是指用不同的顺序加三个数得到的和是相同的。
即:(a+b)+c=a+(b+c)。
例如:(2+3)+4=9,2+(3+4)=92.加法交换律加法交换律是指两个数相加的和与它们的顺序无关。
即:a+b=b+a。
例如:3+5=5+33.加法零律加法零律是指任何数加上0,得到的结果仍是原来的数。
即:a+0=a。
例如:2+0=2二、减法定律减法定律是指减法运算中的一些基本规律和性质。
1.减法的定义减法的定义是指a-b等于一个数c,使得b+c等于a。
即:a-b=c,b+c=a。
例如:5-2=3,2+3=52.减法与加法的关系减法可以通过加法来表示。
即:a-b=a+(-b)。
例如:5-3=5+(-3)。
三、乘法定律乘法定律是指乘法运算中的一些基本规律和性质。
1.乘法结合律乘法结合律是指用不同的顺序乘三个数得到的积是相同的。
即:(a×b)×c=a×(b×c)。
例如:(2×3)×4=24,2×(3×4)=242.乘法交换律乘法交换律是指两个数相乘的积与它们的顺序无关。
即:a×b=b×a。
例如:3×5=5×33.乘法分配律乘法分配律是指一个数与两个数的和相乘,等于这个数分别与这两个数相乘后的和。
即:a×(b+c)=(a×b)+(a×c)。
例如:2×(3+4)=(2×3)+(2×4)。
4.乘法零律乘法零律是指任何数乘以0,得到的结果是0。
即:a×0=0。
例如:2×0=0。
四、除法定律除法定律是指除法运算中的一些基本规律和性质。
1.除法的定义除法的定义是指a除以b等于一个数c,使得b乘以c等于a。
即:a÷b=c,b×c=a。
例如:6÷2=3,2×3=62.除法与乘法的关系除法可以通过乘法来表示。
8个运算定律的含义

8个运算定律的含义
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。
既是重要的数学规律,也是数学运算固有的性质。
1、加法交换律
两个数相加,交换加数的位置,和不变。
a+b=b+a
2、加法结合律
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)
3、减法的性质
减去一个数,等于加这个数的相反数。
a-b=a+(-b)。
连续减去两个数,等于减去这两个数的和。
a-b-c=a-(b+c)。
减去一个数再加上一个数,等于减去这两个数的差。
a-b+c=a+(c-b)
4、乘法交换律
两个数相乘,交换因数的位置,积不变。
ab=ba
5、乘法结合律
三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。
(ab)c=a(bc) 6、乘法分配律
分配律是乘法运算的一种简便运算,可用于分数、小数中。
主要公式为(a+b)c=ac+bc。
两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
7、乘法的其他运算性质
一个因数扩大若干倍,另一个因数缩小若干倍,其积不变。
8、除法的性质
商不变性质:被除数和除数同时扩大或缩小相同的倍数,(0除外),商不变。
连续除去两个数,等于除去这两个数的积。
a÷b÷c=a÷(b×c)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算定律
和性质
定义
字母公式
举例(不唯一)
加法交换律
两个数相加,交换加数的位置,和不变,这叫做加法交换律。
aபைடு நூலகம்b=b+a
1+2=2+1
加法结合律
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
(a+b)+c=a+(b+c)
(1+2)+3=1+(2+3)
减法性质
一个数连续减去几个数,可以看作这个数减去几个数的和,这叫做减法性质。
a-b-c=a-(b+c)
3-2-1=3-(2+1)
乘法交换律
两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。
a×b=b×a
1×2=2×1
乘法结合律
三个数相乘,先乘两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
(a×b)×c=a×(b×c)
(1×2)×3=1×(2×3)
乘法分配律
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
(a+b)×c=a×c+b×c
(1+2)×3=1×3+2×3
除法性质
一个数连续除以几个数,可以看作这个数除以这几个数的积,这叫做除法性质。
a÷b÷c=a÷(b×c)
3÷2÷1=3÷(2×1)