数学 四下 运算定律和性质概念总结
四年级数学下册知识点总结

四年级数学下册知识点总结四年级数学下册知识点总结1.整数加法(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。
加数是部分数,和是总数。
(3)加数+加数= 和,一个加数= 和-另一个加数2.整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。
被减数是总数,减数和差分别是部分数。
(3)加法和减法互为逆运算。
3.整数乘法(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。
相同加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0.(4)1和任何数相乘都的任何数。
(5)一个因数×一个因数= 积;一个因数= 积÷另一个因数4.整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
(3)乘法和除法互为逆运算。
(4)在除法里,0不能做除数。
因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
(5)被除数÷除数= 商,除数= 被除数÷商被除数= 商×除数。
5.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
6.整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
7.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
8.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
四年级数学下册概念及定义

四年级数学下册概念及定义2017.03第一单元:四则运算1.把两个数合并成一个数的运算。
叫做加法。
相加的两个数叫做加数。
加得得数叫做和。
和=加数+加数加数=和-另一个加数2.已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。
在减法中,已知的和叫做被减数。
结果叫做差。
减法是加法的逆运算。
差=被减数-减数减数=被减数-差被减数=减数+差3.乘除法的意义和各部分间的关系:乘法:求几个相同加数的和的简便运算,叫做乘法。
相乘的两个数叫做因数。
乘得的数叫做积。
乘法的各部分间的关系:积=因数×因数;因数=积÷另一个因数。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
除法是乘法的逆运算。
除法的各部分间的关系:商=被除数÷除数;除数=被除数÷商;被除数=商×除数。
0不能做除数。
4.四则运算:我们学过的加.减.乘.除四种运算统称四则运算。
一个算式里,既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
第二单元:观察物体(二)注意观察物体的角度,角度不同观察物体的形状也不一定相同。
第三单元:运算定律1.加法运算定律:加法交换律:两个数相加,交换加数的位置,和不变。
这叫做加法交换律。
a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
(a+b)+c=a+(b+c) 2.乘法运算定律:乘法交换律:两个数相乘,交换两个因数的位置,积不变。
这叫做乘法交换律。
a×b=b×a乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
(a×b)×c=a×(b×c)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
(a+b)×c=a×c+b×c第四单元小数的意义和性质1.在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
四年级数学下册运算定律知识点梳理与思维导图

连除的性质 公式:a÷b÷c=a÷(b×c )
拆分、凑整简便运算
描述:举当例一:个33数0÷比5整÷百2=、33整0÷千(…5…×稍2大)一些时,可以将它拆成整百、
拆分法
整千……和一个较小的数的和,然后利用运算定律简便计算。
凑整法
举例:204×25=(200+4)×25 描述:当一个数比整百、整千……稍小一些时,可以将它凑成整
加法运算定律 加法交换律
定义:两个数相加,交换加数的位置,和不变。
公式:a+b=b+a 举例:40+56=56+40
加法结合律
定义:三个数相加,先把前两个数相加,或者先把后两个
数相加,和不变。 公式:(a+b)+c=a+(b+c) 举例:(88+104)+96=88+(104+96)
定义:两个数相乘,交换因数的位置,积不变。
公式:(a+b)×c=a × c+ b× c
举例:(4+2)×25=4×25+2×25
连减的性质
连减、连这个数减去两个数的和
公式:a-b-c=a -(b + c ) 举例:234-66-34=234-(66+34)
定义:一个数连续除以两个数,等于这个数除以两个数的积。
乘法交换律 公式:a×b=b×a
举例:25×4=4×25
定义:三个数相乘,先乘前两个数,或者先乘后两个数,
运
乘法运算定律 乘法结合律
积不变。 公式:(a×b)×c=a × (b × c ) 举例:(25×5)×2=25×(5×2)
最新四年级下数学四则运算和运算定律知识点总结

1
2
第三单元重点掌握:1、加法和乘法的运算定律。
2、能够结合运算定律的学习进行一些简便运算。
3
4
分数除法计算法则练习题
知识要点回顾:
1、倒数:乘积是1的两个数叫做( )。
求一个数(0除外)的倒数,只要把这个数的分子、分母相互(
)。
2、(1)分数除以整数(0除外),等于分数乘这个整数的( )
(2)一个数除以分数,等于这个数( )除数的( )
(3)分数除法统一法则:甲数除以乙数(0除外),等于甲数( )乙数的( )。
3、拓展提升:在分数除法中,商的变化规律。
(第四题)
一、填空:
1、23 的倒数是( );0.25的倒数是( );( )没有倒数;1的倒数是( )。
2、( )×114 =9×( )=( )×57 =1×( )= 1
3、5的倒数与10的倒数比较,( )的倒数>( )的倒数
4、当a=( )时,a 的倒数与a 的值相等。
5、小红23 小时走4千米,她每小时走( )千米,她走1千米平均用( )小时。
6、如果a除以b等于5除以6,那么b就是a的()
5。
小学四年级数学简便计算:运算定律和性质

小学四年级数学简便计算:运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质1:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c)a -( b+c) = a-b-c7、减法的性质2:一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a-c-b8、除法的性质1:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c)a ÷( b×c) = a÷b÷c9、除法的性质2:一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷ b网络搜集整理,仅供参考。
数学四年级下运算定律知识点总结

在数学四年级下册中,学生将继续学习和巩固运算法则,并引入更复杂的运算概念。
以下是数学四年级下学期的运算定律的知识点总结:一、加法运算定律1.交换律:当两个数相加时,交换两个数的位置,结果不变。
例如,3+5=5+32.结合律:当三个数相加时,先加前面两个数,然后再加上第三个数,结果不变。
例如,(2+3)+4=2+(3+4)。
3.零元律:任何数加上0等于它本身,即a+0=a。
二、减法运算定律1.减法的性质:a-b=a+(-b),即减法可以转换为加法。
2.减法的借位:当被减数的其中一位小于减数的对应位时,需要向前一位借位。
借位后,被减数的该位加10,减数减去借位后的数。
三、乘法运算定律1.交换律:当两个数相乘时,交换两个数的位置,结果不变。
例如,3×5=5×32.结合律:当三个数相乘时,先乘前面两个数,然后再乘上第三个数,结果不变。
例如,(2×3)×4=2×(3×4)。
3.零元律:任何数乘以0,结果为0,即a×0=0。
4.单位元律:任何数乘以1,等于它本身,即a×1=a。
5.分配律:乘法对加法的分配律,即a×(b+c)=a×b+a×c。
四、除法运算定律1.除法的性质:a÷b=a×(1÷b),即除法可以转换为乘法。
2.零除律:任何数除以0是没有意义的。
3.同底数幂相除律:当两个幂次相同的数相除时,保留底数,减去指数,例如,(3^4)÷(3^2)=3^(4-2)=3^2五、括号运算规则1.括号与乘法的分配律:对于一个括号内有多项之和的表达式,可以将括号内的每一项与外面的因数相乘,再将所得的积相加。
例如,2×(3+4)=2×3+2×42.括号与减法的分配律:对于一个括号内有多项之差的表达式,可以将括号内的每一项与外面的因数相乘,再将所得的积相减。
小学数学运算定律和性质

小学数学运算定律和性质黎平县尚重中心小学教师:彭明1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c7、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷ b。
(完整版)人教版小学数学四年级下册【运算定律与简便计算】知识篇

加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a+b)+c = a+(b+c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35 =(65+35)+(28+72)=100+98 =488+100 =93+(165+35) = 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a-c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算定律和性质
1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这
叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)
3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这
叫做乘法结合律。
用字母表示:(a×b)×c= a×( b×c)
5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×c
a ×( b+c) =a×b+a×c
拓展:(a-b)×c= a×c-b×c
a ×( b-c) =a×b-a×c
6、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c
7、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b
8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a÷( b×c) a÷( b×c) = a÷b÷c
9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷c÷b。