多元函数可微性的研究

合集下载

多元函数的可微性

多元函数的可微性

x0
x
2022年9月1日10时41分
上一页 下一页 主 页 返回 退出
9
类似地可定义关于 y 的偏导数
f y
( x0 , y0 )
f y ( x0 , y0 )
lim
y y0
f ( x0 , y) f ( x0 , y0 ) y y0
lim f ( x0 , y0 y) f ( x0 , y0 )
上一页 下一页 主 页 返回 退出
22
例6. 已知理想气体的状态方程
(R 为常数) ,
求证: p V T 1 V T p
证: p RT , V
p V
RT V2
说明: 此例表明,
V RT , p
V R T p
偏导数记号是一个 整体记号, 不能看作
分子与分母的商 !
p V V T
T p
z
lim f (x0 x, y0 ) f (x0, y0 )
x (x0, y0 )
x0
x
作平面 y =y0 , 得曲线 L ,
z f (x, y)
y
y0
在点 P0 ( x0 , y0 , f (x0 , y0 ))处
作曲线L的切线 Tx
由一元函数导数的几何意义:
z = tan
x ( x0 , y0 )
A( x x0 ) B( y y0 )
dz
从而
f ( x, y) f ( x0 , y0 ) A( x x0 ) B( y y0 )
2022年9月1日10时41分
上一页 下一页 主 页 返回 退出
5
在使用上,⑴式常写成下列形式:
其中
z Ax By x y
lim lim 0

浅谈多元函数的持续及可微

浅谈多元函数的持续及可微

浅析多元函数的持续及可微
摘要:在学习多元函数以前,咱们关于一元函数的熟悉都是超级熟悉的,对一元函数持续、可微之间的关系也都超级清楚.而多元函数是一元函数的推行,它具有比一元函数更复杂的性质.就一样的二元函数来讲,学习数学分析以后,咱们明白当二元函数的两个偏导数都持续时,函数可微.第一证明了当二元函数的一个偏导数存在,另一个偏导数持续时,函数可微.然后考虑了一样的多元函数的情形,取得了当多元函数的某个偏导数持续,而其余偏导数存在时,函数可微.由此可见可微性与偏导存在性间的关系是复杂的.本文通过具体实例对多元微分学中的几个重要概念间的进行分析讨论,要紧研究二元函数的持续性,偏导存在性,可微性等概念和它们之间因果关系.在了解本文以后,读者会对多元函数有更深刻的熟悉!
关键词:可微; 偏导数; 持续。

多元函数的连续性与可微性

多元函数的连续性与可微性

多元函数的连续性与可微性多元函数的连续性与可微性是微积分的重要概念。

在解析几何中,我们经常需要研究多元函数的性质,而连续性与可微性是我们理解和分析多元函数的基础。

在本文中,我将讨论多元函数的连续性与可微性的概念、定义以及它们在实际问题中的应用。

首先,我们来定义多元函数的连续性。

假设有一个定义在某个区域D上的多元函数f(x1, x2, ..., xn),其中x1, x2, ..., xn为自变量。

我们称函数f在某点(a1, a2, ..., an)处连续,如果当自变量x1, x2, ..., xn逐渐接近(a1, a2, ..., an)时,函数值f(x1, x2, ..., xn)也逐渐接近f(a1, a2, ..., an)。

用数学语言表达,即:lim┬(x→a) ⁡f(x) = f(a)其中,lim表示极限的概念。

如果函数f在集合D的每个点都连续,我们称函数f在D上连续。

那么,多元函数的可微性又是什么意思呢?我们称多元函数f(x1,x2, ..., xn)在某点(a1, a2, ..., an)处可微,如果该函数在该点附近的某个区域内有一个线性逼近函数。

这个线性逼近函数被称为多元函数的导数。

用数学语言表达,即:f(x1, x2, ..., xn) ≈ f(a1, a2, ..., an) + ∑┬(i=1)ⁿ ∂f/∂xi (a1, a2, ..., an)(xi - ai)其中,∂f/∂xi表示函数f对自变量xi的偏导数,xi - ai表示自变量与其对应的变化量。

连续性与可微性是密切相关的,一般来说,可微性是连续性的强化形式。

根据数学定义,若一个函数在某点可微,那么它在该点也是连续的。

而连续函数并不一定可微。

多元函数的连续性与可微性在数学中具有广泛的应用。

例如,在物理学中,我们经常需要利用多元函数来描述物体的运动轨迹、能量分布等。

通过研究函数的连续性,我们可以了解物体在不同时刻的位置、速度以及加速度等信息。

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系一、前言多元函数是数学中的重要概念,它在物理、经济学、工程学等众多领域都有广泛的应用。

而多元函数偏导数连续和可微的关系是多元函数研究中的一个重要问题,本文将详细介绍这个问题。

二、多元函数偏导数的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数的定义。

对于一个二元函数$f(x,y)$,它在点$(x_0,y_0)$处对$x$求偏导数,记为$\frac{\partial f}{\partial x}(x_0,y_0)$,表示当$y$固定在$y_0$时,$f(x,y)$对$x$的变化率。

同理,它在点$(x_0,y_0)$处对$y$求偏导数,记为$\frac{\partial f}{\partial y}(x_0,y_0)$,表示当$x$固定在$x_0$时,$f(x,y)$对$y$的变化率。

对于一个$n(n\geqslant3)$元函数$f(x_1,x_2,\cdots,x_n)$,它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数,记为$\frac{\partial f}{\partial x_i}(x_{10},x_{20},\cdots,x_{n0})$,表示当$x_j(j\neq i)$固定在$x_{j0}(j\neq i)$时,$f(x_1,x_2,\cdots,x_n)$对$x_i$的变化率。

三、多元函数偏导数连续的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数连续的定义。

对于一个$n(n\geqslant2)$元函数$f(x_1,x_2,\cdots,x_n)$,如果它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数存在且连续,那么称$f(x_1,x_2,\cdots,x_n)$在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数连续。

多元函数的连续性,偏导数,方向导数及可微性之间的关系

多元函数的连续性,偏导数,方向导数及可微性之间的关系

多元函数的连续性,偏导数,方向导数及可微性之间的关

多元函数这些性质之间的关系是:可微分是最强的性质,即可微必然
可以推出偏导数存在,必然可以推出连续。

反之偏导数存在与连续之间是
不能相互推出的(没有直接关系),即连续多元函数偏导数可以不存在;
偏导数都存在多元函数也可以不连续。

偏导数连续强于函数可微分,是可
微分的充分不必要条件,相关例子可以在数学分析书籍中找到。

其中可微分的定义是:
以二元函数为例(n元类似)
扩展:可微分可以直观地理解为用线性函数逼近函数时的情况(一元
函数用一次函数即切线替代函数增量,二元函数可以看做是用平面来代替,更多元可以看做是超平面来的代替函数增量,当点P距离定点P0的距离
p趋于零时,函数增量与线性函数增量的差是自变量与定点差的高阶无穷
小(函数增量差距缩小的速度快与自变量P靠近P0的速度))。

浅谈多元函数的连续及可微-转载1

浅谈多元函数的连续及可微-转载1

浅析多元函数的连续及可微摘要:在学习多元函数以前,我们对于一元函数的认识都是非常熟悉的,对一元函数连续、可微之间的关系也都非常清楚.而多元函数是一元函数的推广,它具有比一元函数更复杂的性质.就一般的二元函数来说,学习数学分析之后,我们知道当二元函数的两个偏导数都连续时,函数可微.首先证明了当二元函数的一个偏导数存在,另一个偏导数连续时,函数可微.然后考虑了一般的多元函数的情形,得到了当多元函数的某个偏导数连续,而其余偏导数存在时,函数可微.由此可见可微性与偏导存在性间的关系是复杂的.本文通过具体实例对多元微分学中的几个重要概念间的进行分析讨论,主要研究二元函数的连续性,偏导存在性,可微性等概念以及它们之间因果关系.在了解本文之后,读者会对多元函数有更深刻的认识!关键词:可微; 偏导数; 连续目录1引言 (1)2多元函数的连续、偏导数及可微........................... ... (1)2.1多元函数的连续性 (1)2.2 多元函数的偏导数 (3)2.3多元函数的可微性 (4)2.4多元函数连续性、偏导数存在性、及可微间的关系 (7)2.4.1二元函数连续性与偏导存在性间的关系 (7)2.4.2二元函数的可微性与偏导存在性间的关系 (8)2.4.3二元函数的连续性与可微性间的关系 (10)3小结.................................... .. (11)参考文献 (12)致谢辞 (13)1 绪论在中学时,我们着重学习了一元函数,对于函数()y f x =在0x 极限存在、连续、可微,这三个概念的关系是很清楚的.比如说:可微一定连续,但连续不一定可微,连续一定有极限,但有极限不一定连续等一些性质.简单表示为:可微⇒连续⇒极限存在(且不可逆).在什么条件下可逆,我们也都曾经学习过.对于多元函数而言,主要是讲二元函数,它既不同于一元函数有可导与可微的等价关系,也没有一元函数的“可导必连续”的关系.但对于二元函数的可微性,是可以证明的.从二元函数的一些性质中,我们可以看到:若二元函数(,)z f x y =在点0p (0x ,0y )可微,则函数(,)f x y 在点0p (0x ,0y ) 连续,偏导存在;若二元函数(,)z f x y =的两个偏导数'x f (x,y )与'y f (x,y)在点0p (0x ,0y )连续,则函数(,)f x y 在0p (0x ,0y )可微.因此对于函数的连续、偏导存在、可微、偏导连续,有下列蕴涵关系:偏导连续⇒可微⇒(连续,偏导存在);它们反方向结论不成立.当然,其可逆也是需要一定条件的.本文主要是就他们之间的关系作简单的分析.大家都知道,多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有某些差异,而且情况也更复杂一些.在我们研究多元函数的连续、偏导、可微之间的相互关系时,需要注意许多方面的问题.下面我们分别从多元函数的可微性、偏导存在性、连续性,进而到它们之间的关系进行具体的探讨.2多元函数的连续、偏导数及可微性2.1 多元函数的连续性一个一元函数若在某点存在左导数和右导数,则这个一元函数必在这点连续.但对于二元函数(,)f x y 来说,即使它在某点000(,)p x y 既存在关于x 的偏导数00(,)x f x y ,又存在关于y 的偏导数00(,)y f x y ,(,)f x y 也未必在000(,)p x y 连续.甚至,即使在000(,)p x y 的某邻域0()U p 存在偏导数(,)x f x y (或(,)y f x y ),而且(,)x f x y (或(,)y f x y )在点000(,)p x y 连续,也不能保证(,)f x y 在000(,)p x y 连续.如函数(,)f x y =21sin ,00,0x y y y ⎧⎛⎫+≠⎪ ⎪⎪⎝⎭⎨⎪⎪=⎩关于具体验算步骤不难得出.不过,我们却有如下的定理.定理1 设函数(,)f x y 在点000(,)p x y 的某邻域0()U p 内有定义,若0(,)f x y 作为y 的一元函数在点y=0y 连续,(,)x f x y 在0()U p 内有界,则(,)f x y 在点000(,)p x y 连续.证明 任取00(,)x x y y ++ 0()U p ∈,则0000(,)(,)f x x y y f x y ++-00000000(,)(,)(,)(,)f x x y y f x y y f x y y f x y =++-+++- (1) 由于(,)x f x y 在0()U p 存在,故对于取定的0y y + ,0(,)f x y y + 作为x 的一元函数在以0x 和0x x + 为端点的闭区间上可导,从而据一元函数微分学中的Lagrange 中值定理,存在(0,1)θ∈,使0000(,)(,)f x x y y f x y y ++-+ = 00(,)x f x x y y x θ++将它代入(1)式得0000(,)(,)f x x y y f x y ++-000000(,)(,)(,)x f x x y y x f x y y f x y θ=++++- (2) 由于00(,)x x y y θ++ 0()U p ∈,故00(,)x f x x y y θ++ 有界,因而当(,)(0,0)x y → 时,有00(,)0x f x x y y x θ++→又,据定理的条件知,0(,)f x y 在0y y =连续,故当(,)(0,0)x y → 时,又有0000(,)(,)0f x y y f x y +-→所以,由(2)知,有00000lim (,)(,)y x f x x y y f x y →→++- =0这说明(,)f x y 在00(,)x y 连续. 同理可证如下的定理定理2 设函数(,)f x y 在点000(,)p x y 的某邻域0()U p 有定义,(,)y f x y 在0()U p 内 有界,0(,)f x y 作为x 的一元函数在点0x x =连续,则(,)f x y 在点000(,)p x y 连续. 定理1和定理2可推广到更多元的情形中去.定理 3[5] 设函数12(,,,)n f x x x ⋅⋅⋅在点000012(,,,)n p x x x ⋅⋅⋅的某邻域0()U p 内有定义, 12(,,)i x n f x x x ⋅⋅⋅在0()U p 有界{}0111(1,2,),(,,,,)i i i n i n f x x x x x -+∈⋅⋅⋅⋅⋅⋅⋅⋅⋅作为111,,,i i n x x x x -+⋅⋅⋅⋅⋅⋅的n-1元函数在点0000111(,,,)i i n x x x x -+⋅⋅⋅⋅⋅⋅连续,则 12(,,,)n f x x x ⋅⋅⋅在 点000012(,,,)n p x x x ⋅⋅⋅连续. 证明 任取00001122(,,,,,)i i n n x x x x x x x x ++⋅⋅⋅+⋅⋅⋅+ 0()U p ∈,则 000000111(,,,,)(,,)i i n n i n f x x x x x x f x x x +⋅⋅⋅+⋅⋅⋅+-⋅⋅⋅⋅⋅⋅ =00011(,,,,)i i nn f x x x x x x +⋅⋅⋅+⋅⋅⋅+ 00000111111(,,,,,)i i i i i n n f x x x x x x x x x --++-+⋅⋅⋅++⋅⋅⋅+000000001111111(,,,,,)(,,,)i i i i i n n i n f x x x x x x x x x f x x x --++++⋅⋅⋅++⋅⋅⋅+-⋅⋅⋅⋅⋅⋅由于1(,,,i x i n f x x x ⋅⋅⋅⋅⋅⋅)在0(U p )内存在,故对于固定的{}0(1,2,,j j x x j n +∈⋅⋅⋅ \{}),i 0000111111(,,,,,,)i i i i i n n f x x x x x x x x x --+++⋅⋅⋅++⋅⋅⋅+ 作为i x 的一元函数在以01x 和0i i x x +为端点的闭区间上可导,从而据一元微分学中的Lagrange 中值定理,存在(0,1)θ∈,使00000111111(,,,,,)i i i i i i n n f x x x x x x x x x x --+++⋅⋅⋅+++⋅⋅⋅+ -00000111111(,,,,,)i i i i i nn f x x x x x x x x x --+++⋅⋅⋅++⋅⋅⋅+=00000111111(,,,,,)i x i i i i i i nn i f x x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+ 由于00000111111(,,,,,)i i i i i i n n x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+ 0()U p ∈故00000111111(,,,,,)i x i i i i i i n n f x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+ 有界因而,当111(,,,,,,)(0,,0)i i i n x x x x x -+⋅⋅⋅⋅⋅⋅→⋅⋅⋅ 时,00000111111(,,,,,)0i x i i i i i i n n i f x x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+→ .又,据定理的条件知,0111(,,,,,)i i i n f x x x x x -+⋅⋅⋅⋅⋅⋅作为111,,,,i i n x x x x -+⋅⋅⋅⋅⋅⋅的1n -元函数在点0111(,,,,)oi i nx x x x -+⋅⋅⋅⋅⋅⋅连续,故当111(,,,,,,)(0,0,0)i i i n x x x x x -+⋅⋅⋅⋅⋅⋅→⋅⋅⋅ 时,有00000111111(,,,,,)i i i i i n n f x x x x x x x x x --+++⋅⋅⋅++⋅⋅⋅+ 00000111(,,,,,)0i i i nf x x x x x -+-⋅⋅⋅⋅⋅⋅→ 所以,由(3)知,当111(,,,,,,)(0,0,0)i i i n x x x x x -+⋅⋅⋅⋅⋅⋅→⋅⋅⋅ 时,有00000111111(,,,,,)i i i i i i n n f x x x x x x x x x x --+++⋅⋅⋅+++⋅⋅⋅+ 00000111(,,,,,)0i i i n f x x x x x -+-⋅⋅⋅⋅⋅⋅→ 这说明111(,,,,,,)i i i n f x x x x x -+⋅⋅⋅⋅⋅⋅在点000000111(,,,,,)i i i np x x x x x -+⋅⋅⋅⋅⋅⋅连续. 证毕.2.2多元函数的偏导数我们知道高等数学及数学分析教材中有:////0000(,)(,)xyyx f x y f x y =此式成立的条件为:偏导数//xy f 和//yx f 在00(,)x y 都连续.下面给出一个更若条件下二元混合偏导数求导次序无关的条件.定理4 若函数(,)f x y 在0p 00(,)x y 的某邻域内偏导数/x f ,/y f 及//yx f 存在,且//yx f 在0p 对y 连续,则偏导数//xy f 在0p 存在,且 ////0000(,)(,)xyyx f x y f x y = 证明 不妨设000(,)p x y 的邻域为 :{}000()(,)(,),(,)U p x y x U x y y δδ=∈∈ 又设x在0x 有增量x 00(0,(,))x x x U x δ≠+∈ ,y在0y 有增量y 00(0,(,))y y y U y δ≠+∈ ,则要证极限////0000000(,)(,)(,)lim x x xyy f x y y f x y f x y y→+-= (1)存在且值为//00(,)xyf x y . 因为/x f 在0()U p 存在,所以/0000000(,)(,)(,)limx x f x x y y f x y y f x y y x→++-++=及 /0000000(,)(,)(,)limx x f x x y f x y f x y x→+-=都存在,将其代入(1)式右端得//00(,)xy f x y 00lim limy x →→= [][]00000000(,)(,)(,)(,)f x x y y f x y y f x x y f x y y x++-+-+- (2)作辅助函数 (,)(,)(,)x y f x x y f x y ϕ=+-因为/y f 在0()U p 存在,所以///(,)(,)(,)yy y x y f x x y f x y ϕ=+- 在0()U p 存在,故对函数0(,)x y ϕ,在以0y 和0y y + 为端点的区间上应用Lagrange 中值定理,得/000000(,)(,)(,)y x y y x y x y y y ϕϕϕθ+-=+ (01)θ<<而由(,)x y ϕ的构造可知,上式即[]0000(,)(,)f x x y y f x y y ++-+ []0000(,)(,)f x x y f x y -+-//0000(,)(,)y y f x x y y f x y y θθ⎡⎤=++-+⎣⎦ y (01)θ<<将其代入(2)式右端得//0000//0000(,)(,)(,)lim lim y y xy y x f x x y y f x y y y f x y y xθθ→→⎡⎤++-+⎣⎦=//000000(,)(,)lim limy y y x f x x y y f x y y xθθ→→++-+= (0)y ≠又因为//yx f 在0()U p 存在,所以//00000(,)(,)limy y x f x x y y f x y y xθθ→++-+ //00(,)yx f x y y θ=+//////0000000(,)lim (,)(,)xy yx yx y f x y f x y y f x y θ→=+= (//yx f 在0p 对y 连续)定理得证.2.3 多元函数的可微性考察函数的可微性时,如果知道偏导数连续,则函数一定可微.但是偏导数连续性条件常常不满足,或不易判断.熟知函数在点0p 可微的必要条件是各个偏导数在0p 处存在.如果函数(,)z f x y =在0p 处的全增量可表示为:z=A x+B y+()ορ则常数A 与B 一定为A=x f (0p ) B=y f (0P ) 且函数在0P 处可微.于是验证函数可微性的一个方法是检验极限:0limρ→00()()x y Z f p f p yρ-- 是否等于零,然而这先要求偏导数A=0()x f p 和B=0()y f p .有无可能不求偏导数,而设法判断可微性?例1 考虑函数Z=()()22221()sin ,0,00,,0,0x y x y x y x y ⎧+≠⎪+⎪⎨⎪⎪=⎩在(0,0)处的可微性.由 Z =22221()()sin()()x y x y ⎡⎤+⎣⎦+ 知22221limlim ()()sin0()()Zx y x y ρρρ→→=+=+ 能否判定此函数在(0,0)可微?事实上,上式极限等价于()Z o ρ= 或写成00()Z x y o ρ=++ 由全微分定义即知此函数在(0,0)可微,(0,0)(0,0)0x y f f ==且(0,0)dz =0这个例子启示我们有可能通过考察极限0limZρρ→ 判断某些函数的可微性.我们可以证明如下的定理定理5[2] 设n 元函数()z f p =在0p 的某个邻域内有定义,且极限0lim Zρρ→ 存在,记为α(1) 若0α≠,则函数()z f p =在0p 处不可微;(2) 若α=0,则函数在0p 处可微且00dz p =,其中221()()n x x ρ=+⋅⋅⋅+ . 我们以二元函数为例证明.证明(1)反证.设函数(,)z f x y =在000(,)p x y =处可微,则()Z A x B y o ρ=++由0lim0zραρ→=≠ 及上式可得220A B +≠ 考察等式()A xB yZo ρρρρ+=-两边的极限.令cos ,sin ,02x y ρθρθθπ==≤< ,则 左=0limlim(cos sin )A x B yA B ρρθθρ→→+=+ 极限不存在 (220A B +≠)右=0lim0Zραρ→=≠ 矛盾.故函数(,)z f x y =在0p 处不可微.(2)若0lim0Zρρ→= 即()Z o ρ= 则有 00()Z x y o ρ=++故z=f(x,y)在0p 处可微.且00dz p = 这时有0000(,)(,)0x y f x y f x y == 需要说明的是,0limZρρ→ 不存在时,函数()z f p =在0p 点的可微性不确定.我们熟知如果一个多元函数的所有偏导数在某一点都存在并连续,则它一定在该点可微.那么是不是非得满足这一条件才可微呢?以下我们介绍一个较弱条件小关于多元函数可微的定理.定理6[3] 若n+1元函数1(,,)n f x x y ⋅⋅⋅关于y 的偏导数对n+1个变量连续,关于1,n x x ⋅⋅⋅可微(即把1,(,)n f x x y ⋅⋅⋅中的y 看成常数后可微),则n+1元函数1,(,)n f x x y ⋅⋅⋅可微.证明 因为1,(,)n f x x y ⋅⋅⋅关于1,n x x ⋅⋅⋅可微,所以1//111(,,)(,,)n x n x n n f a a b x f a a b x ⋅⋅⋅+⋅⋅⋅⋅⋅⋅= 1111(,...,)(,...,)()n n n f a x a x b f a a b ορ++-+ (1) 其中2211()()n x x ρ=+⋅⋅⋅ 有因为1(,,)n f x x y ⋅⋅⋅关于y 有连续的偏导数,有Lagrange 中值定理,在b 与b+y 之间存在ζ满足/11(,,)y n n f a x a x y ζ+⋅⋅⋅+=1111(,,)(,,)n n n n f a x a x b y f a x a x b +⋅⋅⋅++-+⋅⋅⋅+由连续性有//1110lim (,)(,,)y n n y n f a x a x f a a b ρζ→+⋅⋅⋅+=⋅⋅⋅其中2221()()()n x x y ρ=+⋅⋅⋅++ ,所以//111(,,)(,,)()y n y n n f a a b y f a x a x y o ζρ⋅⋅⋅=+⋅⋅⋅++=1111(,,)(,,)()n n n n f a x a x b y f a x a x b o ρ+⋅⋅⋅++-+⋅⋅⋅++ (2)(1)+(2)得1///1111(,,)(,,)(,,)n x n x n n y n f a a b x f a a b x f a a b y ⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅=1111(,,)(,,)()()n n n f a x a x b y f a a b o o ρρ+⋅⋅⋅++-⋅⋅⋅++因为10ρρ≤≤,所以1()()o o ρρ=,即1(,,)n f x x y ⋅⋅⋅可微.推论 若n(n ≥2)元函数1(,,)n f x x ⋅⋅⋅的偏导数存在,且至多有一个偏导不连续,则1(,,)n f x x ⋅⋅⋅可微.证明 对n 作数学归纳.当n=2时,不妨设2/x f 连续,而由一元函数可导与可微的关系知12(,)f x x 关于1x 可微,由定理12(,)f x x 可微.设n=k 时结论成立,则当n=k+1时,不妨设11(,,)k k f x x x +⋅⋅⋅关于1k x +有连续偏导数,此时1//,k x x f f ⋅⋅⋅仍最多有一个不连续,由假设11(,,)k k f x x x +⋅⋅⋅关于1,k x x ⋅⋅⋅可微.所以11(,,)k k f x x x +⋅⋅⋅可微.2.4 多元函数连续性、偏导数存在性、及可微间的关系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微间的关系. 2.4.1 二元函数连续性与偏导存在性间的关系(1) 函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例 2证明函数(,)f x y 22x y =+在点(0,0)连续偏导数不存在. 证明:因为22(,)(0,0)(,)(0,0)lim (,)lim0(0,0)x y x y f x y x y f →→=+==, 故函数22(,)f x y x y =+在点(0,0)连续.由偏导数定义:2001,0(0,0)(0,0)(0,0)limlim 1,x x x x f x f x f x x x →→>⎧+-===⎨-<⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.(2)函数(,)f x y 在点000(,)p x y 偏导存在,但不一定连续.例 3 函数22,0(,)1,0x y xy f x y xy ⎧+=⎪=⎨⎪≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→→+-=== 同理可求得(0,0)0y f =因为22(,)(0,0)(,)(0,0)lim(,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+=⎪=⎨⎪≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 2.4.2 二元函数的可微性与偏导存在性间的关系(1) 可微与偏导存在定理7 (可微的必要条件)若二元函数(,)f x y 在其定义域内一点000(,)p x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,及二元函数(,)f x y 在点000(,)p x y 处的偏导即使存在,也不一定可微.例 4 证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx →→+--=== 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[]22(0,0)(0,0)(0,0)(0,0)x y x y f df f x y f f dx f dy x y⎡⎤-=++--+=⎣⎦+应是较22x y ρ=+ 的高阶无穷小量,为此考察极限220limlimf dfx y x y ρρρ→→-=+当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)limlim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.(2) 偏导连续与可微定理8 (可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)p x y 的某邻域内存在,且x f 与y f 在点000(,)p x y 处连续,则函数(,)f x y 在点000(,)p x y 可微.注2 偏导连续是函数可微的充分而非必要条件.例5 证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+⎪=⎨⎪⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)点却间断.证明 22(,),0x y x y ∀+≠,有222222121(,)2sin cos x x f x y x x y x y x y =-+++ 222222121(,)2sincos y y f x y y x y x y x y=-+++ (1)当y=x 时,极限22111lim (,)lim(2sincos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)因200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x →→-=== 200(0,)(0,0)1(0,0)limlim sin 0y y y f y f f y y y→→-=== 则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→-===即函数(,)f x y 在点(0,0)可微. 2.4.3二元函数的连续性与可微性间的关系类似于一元函数的连续性与可微性间的关系,即二元函数(,)f x y 在000(,)p x y 可微 则必然连续,反之不然.例6 证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明 (1)因为00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.(2)因为(0,0)(0,0)f f x y f x y =++-=(0,0)(0,0)0x y df f dx f dy =+=所以2222limlim lim x x y y x y x y f dfx yx yρρ→→→→→-==++当动点(,)x y 沿着线y x = 趋于(0,0)时,有221lim 02x y x y x y →→=≠+即0lim0f dfρρ→-≠ ,故(,)f x y 在原点(0,0)不可微.综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:3 小结对于多元函数的连续性,偏导存在性,可微性等概念以及它们之间因果关系的研究,是多元微分学中的一个难点.本文在分别给出了一系列关于多元函数可微、可偏导,可连续的定理之后,主要以二元函数为例,通过具体实例对多元微分学中的几个重要概念间的关系进行了一些探讨.和一元微分学相比,尽管多元微分学有许多和一元微分学情形相似,但一元函数到多元函数确有不少质的飞跃,而从二元到三元以上的函数,则只有技巧上的差别,而无本质上的不同.学习多元微分学就要紧紧抓住这两个特点,既看到它们的相同之处,又要注意不同之点.偏导连续可微连续 偏导存在参考文献:[1] 同济大学应用数学系,高等数学.(第五版,下册)[M] 北京:高等教育出版社,2002,6.[2] 刘波,李晓楠.关于多元函数可微性的一个注记[J]高等数学研究,2008.3:36—38.[3] 汪明瑾 . 一个关于多元函数可微的定理[J] 高等数学研究,2001.3:8.[4] 李晓芬 . 关于混合偏导求导次序无关的条件[J] 山西师大学报(自然科学版)1996.6:1—2.[5] 李超. 有关多元函数连续性的几个新结论[J] 韶关学院学报(自然科学版)2002.6:1-4.[6] 华东师范大学数学系.数学分析(三版)[M]北京:高等教育出版社,2004,5.[7] 张鸿,门艳红. 讨论二元函数连续性、偏导存在性、及可微性间关系[J] 哈尔滨师范大学自然科学学报,2006.1:32—34.[8] 周良金,王爱国.偏导数存在、函数连续及可微间的关系[J]高等函授学报(自然科学版),2005,10:34—40.[9] 刘玉琏,傅沛仁.数学分析讲义(三版)[M]北京:高等教育出版社,2001,2.[10] 刘玉琏,等.数学分析讲义学习辅导书(二版)[M]北京:高等教育出版社,2004,7.谢辞经过半年的忙碌和工作,本次毕业论文设计已经接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,以及一起工作的同学们的支持,想要完成这个设计是难以想象的.在这里首先要感谢我的论文指导老师张璐老师.张老师平日里工作繁多,但在我做毕业设计的每个阶段,从选题到查阅资料,论文提纲的确定,中期论文的修改,后期论文格式调整等各个环节中都给予了我悉心的指导.除了敬佩张老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作,在此谨向张老师致以诚挚的谢意和崇高的敬意!在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!最后,我要向在百忙之中抽时间对本文进行审阅、评议和参加本人论文答辩的各位师长表示感谢!。

高等数学第17章第1节可微性

高等数学第17章第1节可微性

第十七章 多元函数微分学§1可微性一 可微性与全微分与一元函数一样,在多元函数微分学中,主要讨论多元函数的可微性及其应用.本章首先建立二元函数可微性概念,至于一般n 元函数的可微性不难据此相应地给出(对此,在第二十三章有更详细的论述).定义1 设函数),(y x f z =在点()000,y x P 的某领域)(0P U 内有定义,对于)(0P U 中的点),,(),(00y y x x y x P ∆+∆+=若函数f 在点0P 处的全增量z ∆可表示为: ),(),(00y x f y y x x f z -∆+∆+=∆),(ρo y B x A +∆+∆= )1(其中A,B 是仅与点0P 有关的常数,)(,22ρρo y x ∆+∆=是较ρ高阶的无穷小量,则称函数f 在点0P 可微,并称)1(式中关于y x ∆∆,的线性函数y B x A ∆+∆为函数f 在点0P 的全微分,记作y B x A y x df dz P ∆+∆==),(|000)2(由)1()2(可见dz 是z ∆的线性主部,特别当y x ∆∆,充分小时,全微分dz 可作为全增量z ∆的近似值,即).()(),(),(0000y y B x x A y x f y x f -+-+≈ )3(在使用上,有时.也把()1式写成如下形式,y x y B x A z ∆+∆+∆+∆=∆βα )4( 这里()()()().0lim lim 0,0,0,0,==→∆∆→∆∆βαy x y x例1 考察函数xy y x f =),(在点),(00y x 处的可微性. 解 在点),(00y x 处函数f 的全增量为()000000,),(,y x y y x x y x f -∆+∆+=∆ =.00y x y x x y ∆∆+∆+∆ 由于(),00→→≤∆∆=∆∆ρρρρρρyx yx因此()p o y x =∆∆.从而函数f 在00,y x 可微,且.00y x x y df ∆+∆= □二 偏导数由一元函数微分学知道:若()x f 在点0x 可微,则函数增量(),)()(00x o x A x f x x f ∆+∆=-∆+其中()0'x f =A .同样,由上一段已知,若二元函数f 在点),(00y x 可微,则f 在点),(00y x 处的全增量可由(1)式表示.现在讨论其中A 、B 的值与函数f 的关系.为此,在(4)式中令()00≠∆=∆x y ,这时得到z ∆关于x 的偏增量z x ∆,且有x x A z x ∆+∆=∆α或.α+=∆∆A xzx 现让0→∆x ,由上式便得A 的一个极限表示式.),(),(lim lim000000xy x f y x x f x z A x x x ∆-∆+=∆∆=→∆→∆ ()5容易看出,(5)式右边的极限正是关于x 的一元函数()0,y x f 在0x x =处的导数.类似地,令()00≠∆=∆y x ,由(4)式又可得到.),(),(limlim000000yy x f y y x f y zB y y y ∆-∆+=∆∆=→∆→∆ ()6它是关于y 的一元函数()y x f ,0在0y y =处的导数.二元函数当固定其中一个自变量时,它对另一个自变量的导数称为偏导数,定义如下: 定义2 设函数.),(),,(D y x y x f z ∈=若D y x ∈),(00,且()0,y x f 在0x 的某一邻域内有定义,则当极限.),(),(lim ),(lim00000000xy x f y x x f x y x f x x x ∆-∆+=∆∆→∆→∆ ()7存在时,称这个极限为函数f 在点),(00y x 关于x 的偏导数,记作()00,y x f x 或 ().00,y x xf ∂∂注意1 这里符号y x ∂∂∂∂,专用于偏导数算符,与一元函数的导数符号dxd相仿,但又有差别.注意2 在上述定义中,f 在点),(00y x 关于x (或y )的偏导数,f 至少在(){}(){}),|,(,|,000δδ<-=<-=y y x x y x xx y y y x 或上必须有定义. 若函数()y x f z ,=在区域D 上每一点()y x ,都存在对x (或对y )的偏导数,则得到函数),(y x f z =在区域D 上对x (或对)y 的偏导函数(也简称偏导数),记作),(y x f x 或xy x f ∂∂),( ()⎪⎪⎭⎫ ⎝⎛∂∂y y x f y x f y ),(,或, 也可简单地写作x f ,x z 或x f ∂∂⎪⎪⎭⎫ ⎝⎛∂∂.,y f z f y y 或 在上一章中已指出,二元函数),(y x f z =的几何图象通常是三维空间中的曲面.设()0000,,z y x P 为这曲面上一点,其中),(000y x f z =,过0P 作平面0y y =,它与曲面的交线⎩⎨⎧==),(,:0y x f z y y C是平面0y y =上的一条曲线。

多元函数的可微性

多元函数的可微性

摘要对于多元函数的连续性,偏导存在性,可微性等概念和它们之间因果关系的研究是多元微分学中的一个难点.此文在分别给出了一系列关于多元函数可微、连续,偏导存在的定理之后,本文主要以二元函数为例,通过具体实例对多元微分学中的几个重要概念间的关系进行了一些研究.多元函数微分学和一元微分学相比,虽然多元微分学有许多和一元微分学情形相似,但多元函数确也有不少质的飞跃,而从二元到三元以上的函数,则只有技复杂程度上的差别,而无本质上的不同.学习多元微分学就要抓住这两个特点,我们要看到它们的相同之处,又要分清它们不同之处.关键词连续性偏导存在性可微性AbstractFor continuous multivariate function, the existence of partial derivation, differentiability of concept and Research on the causal relationship between them, is a difficult problem in multivariate differential science. In this paper respectively gives a series on the differentiability of multivariate function, can be partial to guide, after the continuous theorem, mainly two unary as a function of example, through concrete examples for some discussion on the relations of several important concepts of differential calculus of differential calculus. And compared, although there are many multivariate differential calculus and differential calculus similar, but a function of many qualitative leap has multiple functions, and from two unary to three unary, function above, only the skills of the differences, but not essentially different. Study of differential calculus to seize these two characteristics, only to see their similarities, pay attention to different points again.KeywordsContinuity the existence of partial derivation differentiability内蒙古财经学院本科毕业论文多元函数的可微性作者姚淑艳系别统计与数学学院专业数学与应用数学年级 09 级学号 902091125指导教师王君导师职称一、绪论在这里我们讨论多元函数的可微性,多元函数是一元函数的推广,所以它保留着一元函数的一些性质,由于自变量有一个增加多个,就有了某些新的内容.以前学习的时候,我们主要学习了一元函数,对于函数()0y f x =在x 极限存在、连续、可微,以及这三个概念之间的关系.例如它们之间有一些性质:可微必连续,但连续不一定可微,连续必有极限,但有极限不一定连续.多元函数微分学是我们在大学时学习中的一个重点和难点,它涉及的内容是微积分学在多元函数中的体现,有关多元函数的连续性,可微性及偏导数存在之间的关系是我们在学习中容易发生模糊和不易把握的一个知识点. 在学习的时候容易混淆它们之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录中文摘要 (2)ABSTRACT (2)0引言 (2)1预备知识 (3)1.1多元函数全微分的定义 (3)1.2函数(),f x y在点00x y沿方向g可微的定义 (3)(,)2元函数可微的充分条件 (4)3 多元函数可微性的充要条件 (7)4定理的应用 (14)4.1 定理2.1,定理2.2的应用 (14)4.2 定理3.1,定理3.3的应用 (15)4.3 定理3.2,定理3.4的应用 (15)参考文献 (16)多元函数可微性的研究摘要: 本文针对多元函数可微性的充分条件和充要条件进行了研究。

第一,对Henle 定理(二元函数可微的充分条件)的充分条件的证明进行了改进,并将其充分条件推广到n 元,得出了从降低偏导连续的条件的多元函数可微的充分条件;第二,从多元函数可微的定义和方向导数的定义出发,并使用拼凑发得到了多元函数可微的的充要条件。

关键词:多元函数;可微;充分条件;充要条件;偏导数;连续Study of the Differenability of a Function Many VariblesAbstract: Based on multivariate function differentiable sex sufficient conditions and sufficient condition is studied. First,for Henle theorem (dual function of differentiable sufficient conditions of sufficient conditions of proof), and improvements will be generalized to the sufficient condition is obtained, n-gram from reducing partial derivative continuous conditions of differentiable multiple function fully conditions; In the second place, from multiple function of differentiable definition and directional derivative definition, and use of multivariate function together hair gets the sufficient and necessary conditions of differentiable.Key words : function of many variables; differentiable; sufficieny; necessary and sufficient conditions, partial derivative,continuity0引言众所周知,一元函数中,可微与可导是一回事,但在多元函数中情况就不同了,以二元函数为例,在现行的数学分析教材中给出了二元函数可微的充分条件和必要条件。

若函数()y x f ,在点P ()00,x y 处可微,则函数()y x f ,在点()00,x y P 处连续,且在该点处,x y f f 存在。

但,x y f f 存在,且()y x f ,在点()00,x y P 处连续仅是函数()y x f ,在点()00,x y P 处可微的必要但非充分的条件。

例如:()2222,00,x y f x y x y +≠=+=⎪⎩在点()0,0处,x yf f 存在,且()y x f ,连续,但()y x f ,在()0,0处不可微若函数()y x f ,的偏导数在点()00,x y P 的某领域内存在,且,x y f f 在该点连续,则()y x f ,在点()00,x y P 处可微。

但偏导数,x y f f 在点()00,x y P 连续仅是函数()y x f ,在点()00,x y P 处可微的充分但非必要条件。

例如:()()222222221sin ,0,00,x y x y x y f x y x y ⎧++≠⎪+=⎨+=⎪⎩,x y f f 在点()0,0不连续,但()y x f ,在()0,0处可微。

这说明,x y f f 在点()00,x y P 处连续作为函数()y x f ,在点()00,x y P 可微的条件较严格。

在一般的教材中,对可微的充要条件也未涉及。

本文的目的在于探究函数()y x f ,在点()00,x y P 处可微的较弱的充分条件和充要条件。

1预备知识1.1多元函数全微分的定义函数),(y x f z =在点()y x ,全微分的定义为:设函数()y x f z ,=在点()y x ,的某一领域内有定义,若全增量 ()(),,z f x x y y f x y ∆=+∆+∆- 可表示为 ()z A x B y ορ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,而仅与x 、y 有关,22y x ∆+∆=ρ,且()0lim0=→ρρορ,则称函数()y x f z ,=在点()y x ,可微分,而称y B x A ∆+∆为函数在点()y x ,的全微分,记作dz 即y B x A dz ∆+∆=1.2函数(),f x y 在点00(,)x y 沿方向g (g 为单位向量)可微的定义如果存在有限极限:()()10000000(,)lim ,,f x y f x y g f x y g ααα+-→∂⎡⎤=+-⎡⎤⎣⎦⎣⎦∂,则称00(,)f x y g∂∂为(),f x y 在00(,)x y 沿方向g 的方向导数,且有:()()00000000(,),,((,),,)f x y f x y g f x y o x y g gααα∂+=++⎡⎤⎣⎦∂,其中00((,),,)0(0)o x y g ααα+→→2元函数可微的充分条件Henle 定理[6] 如果函数()y x f ,在点()00,x y P 处的偏导数存在,至少有一偏导数在点()00,x y P 的一个领域内存在,且在点()00,x y P 处连续,则函数()y x f ,在点()00,x y P 可微。

证明的主要依据是引理[7]函数()y x f ,在点()00,x y P 可微的充要条件是曲面(),z f x y =在()00,x y P 处有切平面。

下面我将对Henle 定理的充分条件的证明进行改进,不必用上面的引理,并将其充分条件推广到n 元。

2.1 Henle 定理充分条件证明的改进定理2.1 若()y x f ,在点()00,x y P 处某个领域U ()0p 内偏导数存在,且其中有一个偏导数在点()00,x y P 处连续,则()y x f ,在点()00,x y P 处可微。

证明: 不妨设xf 在点()00,x y P 处连续,函数()y x f ,在点0p 处的全增量为:()()()()()()000000000000,,,,,,f x x y y f x y f x x y y f x y y f x y y f x y ∆Z =+∆+∆-=+∆+∆-+∆++∆-⎡⎤⎡⎤⎣⎦⎣⎦应用拉格朗日中值定理得:()()()()000000,,,,01x f x x y y f x y y f x x y y x θθ+∆+∆-+∆=+∆+∆∆<< 由于xf 在点()00,x y P 处连续,所以有: ()()0000,,x x f x x y y x f x y x x θα+∆+∆∆=∆+∆,其中0lim 0x y α∆→∆→=因为y f 在点()00,x y P 处存在,因而有:()()()000000,,,y f x y y f x y f x y y y β+∆-=∆+∆ 所以()()0000,x y f x y x f x y y x y αβ∆Z =+∆+∆+∆+∆这里当022→∆+∆y x 时,满足0,0→→βα.由函数f 在0p 点处可微的定义便知f 在0p 可微。

2.2定理2. 1的推广例1:函数22222/,0(,,)0,0xy z x y u f x y z x y ⎧+≠⎪==⎨+=⎪⎩在点(0,0,0)o 的偏导数为(0,0,0)(0,0,0)(0,0,0)lim0x x f x f f x∆→+∆-==∆(0,0,0)(0,0,0)(0,0,0)lim 0y y f y f f y ∆→+∆-==∆(0,0,0)(0,0,0)(0,0,0)lim0z z f z f f z∆→+∆-==∆所以,(0,0,0)x f ,(0,0,0)y f ,(0,0,0)z f 都存在,但(0,0,0)x f ,(0,0,0)y f 不连续,这是因为当220x y +=时,(0,0,0)0x f =,当220x y +≠时,2(,,)(/)x f x y z xy z x∂=∂=当(0)y kx k =≠时,22(,,)x f x y z =与k 有关,所以(,,)x f x y z 在原点(0,0,0)o 处的极限不存在,可见(,,)x f x y z 在原点(0,0,0)o 不连续。

由于y 与x 对称,所以(,,)y f x y z 在原点(0,0,0)o 不连续。

而当220x y +≠时,(,,)2z f x y z z =在点(0,0,0)o 处的极限与(,,)z f x y z 在该点的函数值都为0。

所以(,,)z f x y z 在平面内连续,且(0,0,0)0z f =。

当(,,)p x y z ∆∆∆沿着曲面y x =上任意曲线趋于(0,0,0)o 点时,由于0y x +∆=∆→,故2020lim{[(0,0,0)(0,0,0)(0,0,0)]}lim{/()lim{1/()}2x t z u f x f y f z x y z z ρρρ→→→∆-∆+∆+∆=∆⋅∆∆=∆=≠其中,ρ=(,,)u f x y z =在原点o 处不可微。

此例说明,对于三元函数来说,只有一个偏导数连续,另外两个偏导数存在是得不到函数可微的,但我们有定理2. 2(定理2. 1的推广)如果函数12(,,,)n f x x x 在点000012(,,,)n P x x x 处的某个领域内n 个偏导数()()00012,,,1,2,,i x n f x x x i n = 存在,且其中有1n -个偏导数在点000012(,,,)n P x x x 处连续,则12(,,,)n f x x x 在点000012(,,,)n P x x x 处可微。

相关文档
最新文档