半导体名词解释

合集下载

半导体物理名词解释

半导体物理名词解释

半导体物理名词解释1.单电子近似:假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场是具有与晶格同周期的周期性势场。

2.电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。

这种运动称为电子的共有化运动。

3.允带、禁带: N个原子相互靠近组成晶体,每个电子都要受到周围原子势场作用,结果是每一个N度简并的能级都分裂成距离很近能级,N个能级组成一个能带。

分裂的每一个能带都称为允带。

允带之间没有能级称为禁带。

4.准自由电子:内壳层的电子原来处于低能级,共有化运动很弱,其能级分裂得很小,能带很窄,外壳层电子原来处于高能级,特别是价电子,共有化运动很显著,如同自由运动的电子,常称为“准自由电子”,其能级分裂得很厉害,能带很宽。

6.导带、价带:对于被电子部分占满的能带,在外电场的作用下,电子可从外电场中吸收能量跃迁到未被电子占据的能级去,形成了电流,起导电作用,常称这种能带为导带。

下面是已被价电子占满的满带,也称价带。

8.(本证激发)本征半导体导电机构:对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。

9.回旋共振实验意义:这通常是指利用电子的回旋共振作用来进行测试的一种技术。

该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。

当交变电磁场角频率W等于回旋频率Wc时,就可以发生共振吸收,Wc=qB/有效质量10.波粒二象性,动量,能量P=m0v E=12P2m0P=hk1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。

2.替位式杂质:杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。

3.施主杂质与施主能级:能够释放电子而产生导电电子并形成正电中心。

它们称为施主杂质或n型杂质。

半导体技术名词解释题

半导体技术名词解释题

半导体技术名词解释题1、半导体:半导体指常温下导电性能介于导体与绝缘体之间的材料。

2、本征半导体:本征半导体是完全不含杂质且无晶格缺陷的纯净半导体。

3、直接带隙半导体:直接带隙半导体是导带底和价带顶在k空间中处于同一位置的半导体。

4、间接带隙半导体:间接带隙半导体材料导带底和价带顶在k空间中处于不同位置。

5、极性半导体:在共价键化合物半导体中,含有离子键成分的半导体为极性半导体。

6、能带、允带、禁带:当N个原子相互靠近结合成晶体后,每个电子都要受到周围原子势场的作用,其结果是每个N度简并的能级都分裂成N个彼此相距很近的能级,这N个能级组成一个能带。

此时电子不再属于某个原子而是在晶体中做共有化运动,分裂的每个能带都称为允带,允带包含价带和导带两种。

允带间因为没有能级称为禁带。

7、半导体的导带:半导体的导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

8、半导体的价带:价带是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

9、禁带宽度:禁带宽度是指导带的最低能级和价带的最高能级之间的能。

10、带隙:带隙是导带的最低点和价带的最高点的能量之差。

11、宽禁带半导体材料:一般把禁带宽度E g≥ 2.3 eV的半导体材料归类为宽禁带半导体材料。

12、绝缘体的能带结构:绝缘体中导带和价带之间的禁带宽度比较大,价带电子难以激发并跃迁到导带上去,导带成为电子空带,而价带成为电子满带,电子在导带和价带中都不能迁移。

13、杂质能级:杂质能级是指半导体材料中的杂质使严格的周期性势场受到破坏,从而有可能产生能量在带隙中的局域化电子态,称为杂质能级。

14、替位式杂质:杂质原子进入半导体硅以后,杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。

15、间隙式杂质:杂质原子进入半导体以后,杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。

16、施主杂质比晶格主体原子多一个价电子的替位式杂质,它们在适当的温度下能够释放多余的价电子,从而在半导体中产生非本征自由电子并使自身电离。

第三节 半导体

第三节 半导体

第三节半导体
半导体是当今电子行业最基础的材料之一,其作用和意义不容小觑。

在此我们将深入探讨半导体的相关知识。

一、什么是半导体?
半导体是指在室温下,其导电性介于导体和绝缘体之间的材料。


时也被称为半导体晶体。

二、半导体的种类
从其晶体结构来看,半导体可分为单晶硅、多晶硅、非晶硅、蓝宝石、碳化硅、氮化硅等。

三、半导体的应用
1、集成电路 - 由于半导体表现出了半导体-绝缘体-金属场效应,能
够强制控制流经半导体器件的电流强度和方向,因此可用于制作各种
逻辑、振荡器等集成电路。

2、光电器件 - 利用半导体光电特性制作出的器件,如太阳能电池、发光二极管、激光器等。

3、功率器件 - 利用半导体导电性能和电特性,制作出高变换效率、低损耗、高可靠性的功率电子元器件,如IGBT器件等。

4、传感器 - 利用半导体的光电、温度、湿度、压力等特性制作出的传感器器件。

四、半导体技术的发展趋势
1、晶体管微型化和集成化 - 在实际应用中,需要更高的速度、更小的面积和功耗,因此晶体管制作微型化和集成化是半导体技术的重要趋势。

2、功率器件的高效率和大功率 - 随着人们生活水平的提高,需要更高效、更可靠、更节能的电子设备,因此功率器件的高效率和大功率是半导体技术的趋势。

3、新型材料的开发 - 蓝宝石、碳化硅等新型材料在一定应用领域已得到广泛的应用,半导体技术发展也将趋于多样化。

总而言之,半导体技术因其广泛的应用领域和重要的作用被越来越广泛地关注着,也将成为电子行业长期的研究方向之一。

半导体指的是什么

半导体指的是什么

半导体的定义和特性
半导体是一种电子导体,介于导体和绝缘体之间。

它具有导电性能介于金属和绝缘体之间,其特性使其在电子学领域中具有重要作用。

物理特性
半导体的导电性介于导体和绝缘体之间的主要原因是它的能带结构。

在半导体中,带隙是指电子在价带和导带之间跃迁所需要的最小能量。

当这个能隙很小时,半导体就会更容易地导电,因为较小的能量就足够让电子跃迁到导带中。

此外,半导体的导电性质还取决于掺杂。

掺杂是指在半导体中加入少量其他元素,通过掺杂可以改变半导体的导电性能。

掺杂分为N型和P型,N型半导体中掺入的杂质是能够提供额外自由电子的元素,而P型半导体中掺入的杂质则是能够提供额外空穴的元素。

应用领域
半导体在现代电子学中应用广泛。

例如,半导体器件如二极管、场效应晶体管和集成电路是电子设备的关键组成部分。

二极管可以实现电流的单向导通,场效应晶体管可以控制电流,而集成电路则将多个器件集成到一块芯片上,实现了更高的集成度和更大的功能。

此外,半导体在光电子学领域也有重要应用。

例如,LED(发光二极管)利用半导体材料电子跃迁产生光,广泛应用于照明、显示和通信等领域。

结语
总的来说,半导体是一种在电子学领域中至关重要的材料,其特性使其成为现代电子设备的核心组件之一。

通过对半导体的深入研究和应用,我们可以不断推动电子技术的发展,实现更多创新和应用。

什么是半导体

什么是半导体

什么是半导体?
半导体是一种介于导体(如金属)和绝缘体(如塑料)之间的材料。

在半导体中,电子的导电能力介于导体和绝缘体之间,即在一定条件下,半导体可以导电,但在其他条件下则表现为绝缘。

这种特性使得半导体在电子器件中具有重要的应用价值。

半导体的导电性质可以通过外加电场、温度或光照等外部条件进行控制,这种控制能力是现代电子器件的基础。

半导体的导电性主要依赖于两种载流子:电子和空穴。

在纯净的半导体中,电子和空穴的数量相等,因此其导电性较弱。

但通过在半导体中引入杂质或施加外部电场,可以改变电子和空穴的浓度,从而调节半导体的导电性能。

半导体在电子技术中有广泛的应用,包括但不限于:
1. **集成电路(IC)**:半导体晶体管的集成电路是现代电子产品的核心,如微处理器、存储器等。

2. **光电子器件**:半导体的光电特性使其用于光电二极管、激光器、光伏电池等。

3. **传感器**:利用半导体的电阻、电容或光电效应制作的传感器,用于测量温度、压力、光照等物理量。

4. **太阳能电池**:利用半导体材料的光电转换效应制作的太阳能电池,将光能转化为电能。

5. **电子管件**:半导体二极管、三极管等在电路中用于整流、
放大、开关等功能。

6. **发光二极管(LED)**:通过半导体材料的电致发光特性制作的LED,用于照明、显示等。

7. **光伏电池**:半导体材料制成的光电池,可以将光能转化为电能,用于太阳能发电等。

总的来说,半导体是现代电子技术的基础,其特性和应用推动了信息技术、通信技术、能源技术等领域的发展和进步。

什么是半导体?

什么是半导体?

什么是半导体?一、半导体的基本概念与特性半导体是一类介于导体和绝缘体之间的物质,它具有独特的电导特性。

与导体相比,半导体的电导率较低,但比绝缘体要高。

这种特殊的电导特性使得半导体被广泛应用于电子技术领域。

半导体的电导特性与其内部电子结构密切相关。

在半导体中,价带和导带之间存在一条能隙,称为禁带。

当半导体处于平衡状态时,禁带中没有自由电子或空穴,因此电导效果较差。

然而,当外界施加电场或光照等外界条件时,禁带中的电子可以跃迁到导带或离开价带,形成电流,从而实现电导。

二、半导体器件的应用领域1. 硅片在信息技术领域的应用硅片是半导体器件的重要组成部分,它在信息技术领域扮演着重要的角色。

如今,计算机、手机、电视等现代电子产品中几乎都离不开硅片的应用。

硅片的制造需要经历多道工艺流程,包括晶体生长、晶圆切割、芯片制作等。

通过在硅片上掺杂不同的杂质,可以实现不同的电导特性,从而制造出各种功能各异的半导体器件。

2. 光电子器件的发展与应用半导体的特殊电导特性还使其成为制造光电子器件的理想材料。

例如,光电二极管和激光器等器件通过利用半导体材料吸收或辐射光能来实现电光转换或光电转换。

这些器件在光通信、光储存、显示技术等领域起着举足轻重的作用。

而随着光通信技术的快速发展,半导体光电子器件的应用前景也越来越广阔。

三、半导体技术的发展趋势1. 纳米技术的应用和突破随着科技的进步,纳米技术在半导体领域得到了广泛应用。

通过制造纳米级结构和材料,可以进一步提升半导体器件的性能和功耗。

例如,纳米级材料可以实现更高的载流子浓度,从而提高电导率;纳米级结构可以实现更小的尺寸和更高的集成度,从而提高器件的速度和功能。

2. 多晶硅的发展与突破多晶硅是一种晶体结构较差的半导体材料,但由于其制造成本低廉、制程成熟等优势,仍然是半导体行业的主流材料之一。

随着半导体技术的不断发展,多晶硅材料的质量和性能也在不断提升。

例如,采用多晶硅材料制造的太阳能电池具有较高的转换效率和较低的成本,成为可持续能源领域的重要组成部分。

什么是半导体

什么是半导体

什么是半导体
在当今科技高速发展的时代,半导体作为一种基础材料在电子产业中扮演着至关重要的角色。

那么,什么是半导体呢?半导体是一种介于导体与绝缘体之间的物质,在固体物质中拥有非常特殊的电学特性。

半导体的电学特性
半导体的电学特性在于其电导率介于导体和绝缘体之间。

与导体相比,半导体的电导率要小很多;而与绝缘体相比,半导体的电导率又要大很多。

这种特殊性使得半导体在电子元件中得以应用,广泛用于晶体管、集成电路等电子产品中。

半导体的性质
半导体物质通常是由硅、锗、砷化镓等元素构成的化合物,具有晶体结构。

半导体的电导率可以通过控制杂质浓度或外加电场等方法来调节,这种调节性使半导体成为各种电子元器件的核心材料。

半导体的应用
半导体在电子领域有着广泛的应用。

晶体管是半导体应用最早、也最广泛的领域之一,它作为电子信号放大器和开关在各种电子设备中起着重要作用。

此外,集成电路(IC)是将大量的晶体管和其他元件集成在一起形成的电路,在计算机、通信、消费电子等领域也有着巨大的应用。

结语
总之,半导体作为一种特殊的电学材料,在现代电子产业中扮演着不可或缺的角色。

通过对半导体电导率的调控,人们能够实现各种电子元器件的制造和应用,推动着科技的发展和进步。

希望通过本文的介绍,读者能够对半导体有一个初步的认识,进一步了解其在电子产业中的重要性。

半导体名词解释

半导体名词解释

1. 何谓PIE? PIE 的主要工作是什幺?答:Process Integration Enginee工r( 艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。

2. 200mm,300mm Wafer 代表何意义?答:8 吋硅片(wafer)直径为200mm , 直径为300mm 硅片即12 吋.3. 目前中芯国际现有的三个工厂采用多少mm 的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm 的wafer 工艺?答:当前1~3 厂为200mm(8英寸)的wafer, 工艺水平已达0.13um 工艺。

未来北京厂工艺wafer 将使用300mm(12英寸)。

4. 我们为何需要300mm?答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加 2.25倍,芯片数目约增加 2.5倍5. 所谓的0.13 um 的工艺能力(technology代)表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um 的栅极线宽。

当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。

6. 从0.35um->0.25um->0.18um->0.15um->0.13um的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。

从0.35um -> 0.25um -> 0.18um -> 0.15um-> 0.13um 代表着每一个阶段工艺能力的提升。

7. 一般的硅片(wafer)基材(substrate可)区分为N,P 两种类型(type),何谓N, P-type wafer?答:N-type wafer 是指掺杂negative元素(5 价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂positive 元素(3 价电荷元素, 例如:B、In)的硅片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ACTIVE AREA主动区(工作区)主动晶体管(ACTIVE FRANSISTOR)被制造的区域即所谓的主动区(active area)在标准之MOS制造过程中ACTIVE AREA是由,一层氮化硅光罩及等接氮化硅蚀刻之后的局部特区氧化(LOCOS OXIDATION)所形成的,而由于利用到局部场氧化之步骤.所以Active AREA 会受到鸟嘴(BIRD’S BEAK)之影响而比原先之氮化硅光罩所定义的区域来得小以长0.6UM 之场区氧化而言大概会有O.5 UM之BIRD'S BEAK存在也就是说ACTIVE AREA比原在之氮化硅光罩定义之区域小O.5UMAcetone丙酮1.丙碗是有机溶剂的一种,分子式为CH30HCH32.性质:无色,具剌激性薄荷臭味之液体3.用途:在FAB内之用途,主要在于黄光室内正光阻之清洗、擦拭4﹒毒性:对神经中枢具中度麻醉性,对皮肤粘膜具轻微毒性,长期接触会引起皮肤炎,吸入过量之丙酮蒸气会刺激鼻、眼结膜、咽喉粘膜、甚至引起头痛、念心、呕吐、目眩、意识不明等。

5﹒允许浓度:1000ppmADI显影后检查After Developing Inspection之缩写目的:检查黄光室制程;光阻覆盖→对准→曝光弓显影。

发现缺点后,如覆盖不良、显影不良‥‥等即予修改(Rework)﹒以维产品良率、品质。

方法:利用目检、显微镜为之。

AEI蚀刻后检查1. AEI 即After Etching Inspection,在蚀刻制程光阻去除、前反光阻去除后,分别对产品实施主检或抽样检查。

2. AEI之目的有四:2-1提高产品良率,避免不良品外流。

2-2达到品质的一致性和制程之重复性。

2-3显示制程能力之指针。

2-4防止异常扩大,节省成本3. 通常AEI检查出来之不良品,非必要时很少做修改。

因为重去氧化层或重长氧化层可能造成组件特性改变可靠性变差、缺点密度增加。

生产成本增高,以及良率降低之缺点。

Air Shower空气洗尘室进入洁净室之前,须穿无尘衣,因在外面更衣室之故﹒无尘衣上沽着尘埃,故进洁净室之前﹒须经空气喷洗机将尘埃吹掉。

Alignment对准目的:在IC的制造过程中,必须经过6至10次左右的对准、曝光来定义电路图案,对准就是要将层层图案精确地定义显像在芯片上面。

方式:1.人眼对准,2.用光、电组合代替人眼,即机械式对准。

ALLOY/Sinter融合ALLOY之目的在使铝与硅基(SILICON SUBSTRATE)之接钢有OHMIIC特性,即电压与电流成线性关系。

ALLOY也可降低接触的阻力值。

AL/SI铝/硅靶此为金属溅镀时所使用的一种金属合金材料利用AR游离的离子,让其撞击此靶的表面,把AL/SI的原子撞击出来,而镀在芯片表面上,一般使用之组成为AL/SI(1%),将此当做组件与外界导线连接。

AL/SI/CU铝/硅/铜金属溅镀时所使用的原料名称,通常是称为TARGET,其成份为0.5% 铜,1% 硅及98.5%铝,一般制程通常是使用99%铝1%硅.后来为了金属电荷迁移现象(ELEC TROMIGRATION) 故渗加0.5%铜降低金属电荷迁移ALUMINUM铝此为金属溅镀时,所使用的一种金属材料,利用AR离子,让其撞击此种材料做成的靶表面﹒把AL原子撞击出来,而镀在芯片表面上,将此做为组件与外界导线之连接。

ANGLE LAPPING角度研磨ANGLELAPPING 的目的是为了测量JUNCTION的深度,所作的芯片前处理,这种采用光线干涉测量的方法就称之ANAGLE LAPPING。

公式为Xj = /NF,即JUNCTION深度等于入射光波长的一半与干涉条纹数之乘积。

但渐渐的随着VLSI组件的缩小,准确度及精密度都无法因应,如SRP(SPREADING RESISTANCE PRQBING) 也是应用﹒ANGLE LAPPING 的方法作前处理,采用的方法是以表面植入浓度与阻质的对应关系求出JUNCTION的深度,精确度远超过入射光干涉法。

ANGSTROM埃是一个长度单位,其大小为1公尺的佰亿分之一,约人的头发宽度之伍拾万分之一。

此单位常用于IC制程上,表示其层(如SiO2,POLY,SIN‥)厚度时用。

APCVD (ATMOSPRESSURE)常压化学气相沉积APCVD 为ATMOSPHERE(大气), PRESSURE (压力), CHEMICAL (化学), V APOR(气相) 及DEPOSITION (沉积) 的缩写,也就是说,反应气体(如SIH4(g),PH3(g), B2H6和O2(g)) 在常压下起化学反应而生成一层固态的生成物(如BPSG)于芯片上。

As75砷.自然界元素之一。

由33个质子﹒42个中子及75个电子所组成。

.半导体工业用的砷离子(As+)可由AsH气体分解而得到。

.As是N-type dopant常用做N-.场区﹒空乏区﹒及S/D植入。

Ashing, Stripping电浆光阻去除l.电浆光阻去除,就是以电浆(Plasma)的方式﹒将芯片表面之光阻加以去除。

2. 电浆光阻去除的原理﹒系利用氧气在电浆中所产生之自由基(Radical)与光阻(高分子的有机物)发生作用,产生挥发性的气体,再由邦浦抽走,达到光阻去除的目的。

反应机构如下示:O + PR→ CO2 ; H2O ; Polymer fragments,---3. 电浆光阻去除的生产速率(throughput)通常较酸液光阻去除为慢﹒但是若产品经过离子植入或电浆蚀刻后﹒表面之光阻或发生碳化或石墨化等化学作用,整个表面之光阻均已变质,若以硫酸吃光阻﹒无法将表面已变质之光阻加以去除﹒故均必须先以电浆光阻去除之方式来做。

Assembly晶粒封装以树脂或陶瓷材料﹒将晶粒包在其中﹒以达到保护晶粒,隔绝环境污染的目的,而此一连串的加工过程﹒即称为晶粒封装(Assembly)。

封装的材料不同,其封装的作法亦不同,本公司几乎都是以树脂材料作晶粒的封装﹒制程包括:芯片切割→晶粒目检→晶粒上「架」(导线架,即Leadframe) →焊线→模压封装→稳定烘烤(使树脂物性稳定) →切框、弯脚成型→脚沾锡→盖印→完成。

以树脂为材料之IC﹒通常用于消费性产品﹒如计算机、计算横。

而以陶瓷作封装材料之IC ﹒属于高信赖度之组件,通常用于飞弹、火箭等较精密的产品上。

Back Grinding晶背研磨利用研磨机将芯片背面磨薄以便测试包装,着重的是厚度、均匀度、及背面之干净度。

一般6吋芯片之厚度约20 mil—30 mil左右,为了便于晶粒封装打线,故须将芯片厚度磨薄至10 mil--15mil左右。

Bake, Soft bake, Hard bake烘培、软烤、预烤烘烤(Bake):在机集成电路芯片的制造过程中,将芯片置于稍高温(60ºC~250ºC)的烘箱内或热板上均可谓之烘烤。

随其目的不同,可区分为软烤(Soft bake)与预烤(Hard bake)。

软烤(Soft bake) :其使用时机是在上完光阻后,主要目的是为了将光阻中的溶剂蒸发去除,并且可增加光阻与芯片之附着力。

预烤(Hard bake):又称为蚀刻前烘烤(pre-etch bake),主要目的为去除水气,增加光阻附着性,尤其在湿蚀刻(wet etching)更为重要,预烤不全常会造成过蚀刻。

BF2二氟化硼.一种供做离子植入用之离子。

.BF2+是由BF3气体经灯丝加热分解成:B10,B11,F19,B10 BF2,B11F2经Extraction拉出及质谱磁场分析后而得到。

.是一种p-type离子,通常用做VT植入(层)及S/D质植入。

BOAT晶舟BOAT原意是单木舟。

在半导体IC制造过程中,常需要用一种工具作芯片传送,清洗及加工,这种承载芯片的工具,我们称之为BOAT。

一般BOAT有两种材质,一是石英,另一是铁氟龙。

石英BOAT用在温度较高(大于300°C)的场合。

而铁氟龙BOAT则用在传送或酸处理的场合。

B. O. E.缓冲蚀刻液B. O. E.是HF与NH4F依不同比例混合而成。

6:1 BOE蚀刻即表示HF: NH4F =l:6的成份混合而成。

HF为主要的蚀刻液,NH4F则做为缓冲剂使用。

利用NH4F固定[H']的浓度,使之保持一定的蚀刻率。

HF会侵蚀玻璃及任何硅石的物质,对皮肤有强烈的腐蚀性,不小心被溅到,应用大量冲洗。

Bonding Pad焊垫焊垫--晶粒用以连接金线或铝线的金属层。

在晶粒封装(Assembly)的制程中,有一个步骤是作"焊线";即是用金线(塑料包装体)或铝线(陶瓷包装体)将晶粒的线路与包装体之各个接脚依焊线图(Bonding Diagram)连接在一起,如此一来,晶粒的功能才能有效地用。

由于晶粒上的金属线路的宽度及间隙都非常窄小(目前TI-Acer的产品约是0.5微米左右的线宽或间隙) ,而用来连接用的金线或铝线其线径目前由于受到材料的延展性及对金属接线强度要求的限制,祇能做到1.0-1.3mill (25.4~33微米)左右。

在此情况下﹒要把二、三十微米的金属线直接连接到金属线路间距只有0.5微米的晶上,一定会造成多条铝路的桥接,故晶粒上的铝路,在其末端皆设计成一个4mil见方的金属层,此即为焊垫,以作为接线用。

焊垫通常分布在晶粒之四个周边上(以利封装时的焊线作业),其形状多为正方形,亦有人将第一焊线点做成圆形,以资识别。

焊垫因为要作接线﹒其上的护层必须蚀刻掉,故可在焊垫上清楚地看到"开窗线"。

而晶粒上有时亦可看到大块的金属层,位于晶粒内部而非四周,其上也看不到开窗线,是为电容。

Boron硼.自然界元素之一,由五个质子及六个中子所组成、所以原子量是11。

另外有同位素,是由5个质子及5个中子所组成,原子量是10,(B10),自然界中这两种同位素之比例是4:1,可由磁场质谱分析中看出。

.是一种p-type离子(B11+),用来做场区、井区、VT及S/D植入。

BPSG含硼及磷的硅化物BPSG乃介于POL Y之上,METAL之下,可做为上下二层绝缘之用,加硼、磷,主要目的在使回流后的STEP较平缓,以防止METAL LINE溅镀上去后,造成断线。

BREAKDOWN VOLTAGE崩溃电压反向P-N接面组件所加之电压为P接负而N接正,如为此种接法则当所加电压通在某个特定位以下时反向电流很小,而当所加电压大于此特定位后,反向电流会急遽的增加,此特定值也就是吾人所谓的崩溃电压(BREAKDOWN VOLTAGE)一般吾人定义反向P+-N接面之反向电流为1UA时之电压为崩溃电压在P+-N或为N +- P之接回组件中崩溃电压,随着N(或者P)之浓度之增加而减小。

相关文档
最新文档