Ansys非线性接触分析和设置
ANSYS教程,非线性结构分析过程

ANSYS教程,非线性结构分析过程尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的适当过程中,添加了需要的非线形特性。
非线性结构分析的基本分析过程也主要由建模、加载并求解和观察结果组成。
下面来讲解其主要步骤和各个选项的处理方法。
建模这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。
加载求解在建立好有限元模型之后,将进入ANSYS求解器(GUI:Main Menu | Solution),并根据分析的问题指定新的分析类型(ANTYPE)。
求解问题的非线性特性在ANSYS中是通过指定不同的分析选项和控制选项来定义的。
非线性分析不同于线性分析之处在于,它通常要求执行多荷载步增量和平衡迭代。
下面就详细讲解一下进行非线性结构分析需要定义的各个求解选项、分析选项和控制选项是如何设置的,以及他们的意义是什么。
求解控制对于一些基本的非线性问题的分析选项,可以通过ANSYS提供的求解控制对话框中的选项设置来完成。
选择菜单路径:Main Menu | Solution | Analysis Type | Sol’n Controls,将弹出求解控制(Solution Controls)对话框,如下图所示。
从图中可以看出该对话框主要包括5个选项卡:基本选项(Basic)、瞬态选项(Transient)、求解选项(Sol’n Options)、非线性选项(Nonlinear)和高级非线性选项(Advanced NL)。
如果开始一项新的分析,在设置分析类型和非线性选项时,选择“Large Displacement Static”选项(不是所有的非线性分析都支持大变形)。
如果想要重新启动一个失败的非线性分析,则选择“Restart Current Analysis”选项。
选中下面的“Calculate prestress effects”单选按钮用于有预应力的模态分析时的预应力计算,具体内容见模态分析部分。
ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一个强大的工程仿真软件,能够对各种复杂的结构进行分析。
其中,结构非线性分析是其中一种重要的分析方法,它能够模拟结构在非线性载荷和变形条件下的行为。
本文将为您提供一个ANSYS结构非线性分析的指南,帮助您更好地理解和应用这个方法。
首先,我们需要明确结构非线性分析的目标。
一般来说,结构非线性分析主要用于研究结构在大变形、材料非线性、接触或摩擦等复杂条件下的响应。
例如,当结构受到极大的外力作用时,其产生的变形可能会导致材料的非线性行为,这时我们就需要进行非线性分析。
在进行非线性分析之前,我们需要进行准备工作。
首先,我们需要准备一个几何模型,可以通过CAD软件导入或者直接在ANSYS中绘制。
然后,我们需要选择合适的材料模型,这将直接影响分析结果的准确性。
ANSYS提供了多种材料模型,例如线弹性模型、塑性模型和粘弹性模型等。
接下来,我们需要定义边界条件和载荷。
边界条件指明了结构的固定边界和自由边界,这决定了结构的位移约束。
载荷是作用在结构上的外力或者外界约束,例如压力、点载荷或者摩擦力等。
在非线性分析中,载荷的大小和施加方式可能会导致结构的非线性响应,因此需要仔细选择。
接下来,我们需要选择适当的非线性分析方法。
ANSYS提供了多种非线性分析方法,例如几何非线性分析、材料非线性分析和接触非线性分析等。
几何非线性分析适用于大变形情况下的分析,材料非线性分析适用于材料的弹塑性行为分析,而接触非线性分析适用于多个结构之间的接触行为分析。
在进行非线性分析之前,我们需要对模型进行预处理,包括网格划分和解算控制参数的设置。
网格划分的精度会直接影响分析结果的准确性,因此需要进行适当的剖分。
解算控制参数的设置涉及到收敛性和稳定性的问题,需要进行合理的调整。
然后,我们可以进行非线性分析了。
ANSYS提供了多种求解器,例如Newton-Raphson方法和弧长法等。
这些求解器可以通过迭代算法来求解非线性方程组,得到结构的响应结果。
ANSYS接触分析实例

ANSYS接触分析实例接触分析是指在模拟两个物体在接触过程中的力学行为。
在工程设计中,接触分析能够解决各种复杂的机械接触问题,例如轴承、齿轮传动、接头连接等。
ANSYS通过它的接触分析功能,能够模拟物体间的精确接触行为,包括接触压力、接触区域、接触力和摩擦力等,并提供准确的力学分析结果。
举一个实际的例子,假设我们需要分析一个摩擦力的问题。
一辆汽车正在上坡行驶,车轮与路面之间的接触处产生了摩擦力。
我们希望通过ANSYS来模拟并计算摩擦力的大小。
首先,我们需要建立一个三维模型,包括车轮和路面。
可以使用ANSYS提供的建模工具进行绘制,也可以导入其他CAD软件中的模型。
在建模过程中,我们需要设置适当的边界条件和材料属性,例如路面的摩擦系数和车轮的材料参数。
接下来,我们需要定义接触边界条件。
在这个例子中,车轮与路面之间发生接触的区域称为接触区域。
可以在ANSYS中使用接触探测器来自动识别接触区域,或者手动定义接触区域。
在定义接触区域后,需要设置接触界面的行为,包括摩擦系数、接触刚度和接触阻尼等。
这些参数将影响接触力和摩擦力的计算结果。
完成模型和边界条件的设置后,我们可以进行接触力的计算。
首先,需要进行非线性静力分析,通过施加一个外力或位移来激活接触区域。
ANSYS将自动求解力学平衡方程并计算出接触力。
我们可以通过结果后处理功能来可视化和分析接触力的分布情况。
得到接触力的结果后,我们可以根据需要进一步分析摩擦力。
ANSYS提供了丰富的后处理工具,例如力矩计算和摩擦力分析工具,可以帮助我们准确地计算和分析摩擦力的大小和方向。
通过以上的步骤,我们可以使用ANSYS进行接触分析,并得到准确的接触力和摩擦力结果。
这个例子只是接触分析的一个简单示例,实际应用中的接触分析可能涉及更复杂的几何形状、材料特性和接触行为等,并需要更深入的分析和验证。
但是通过ANSYS强大的功能和易用性,工程师们可以更高效地解决接触分析问题,提高产品设计的质量和性能。
ansys接触问题的参数设置

ANSYS接触问题的计算方法及参数设置接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。
法向关系:在法向,必须实现两点:1)接触力的传递。
2)两接触面间没有穿透。
ANSYS提供了多种算法来实现此法向接触关系,其中常用的两种方法是:罚函数法和拉格朗日乘子法。
1.罚函数法通过接触刚度在接触力与接触面间的穿透值(接触位移)之间建立力与位移的线性关系:接触刚度*接触位移= 法向接触力对面面接触单元17*,接触刚度由实常数FKN 来定义。
在程序中通过分离的接触体上节点间的距离来计算穿透值。
接触刚度越大,穿透值就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。
但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
以上力与位移的接触关系可以很容易地合并到整个结构的平衡方程组 [K] * {X} = {F} 中去,并不改变总刚度矩阵 [K] 的大小。
这种罚函数法有以下几个问题必须解决:1)接触刚度FKN 应该取多大?2)接触刚度FKN 取大一些可以减少虚假穿透,但是会使刚度矩阵成为病态。
3)既然与实际情况不符合的虚假穿透是不可避免的,那么可以允许有多大的虚假穿透为合适?因此,在ANSYS 程序里,通常输入FKN 实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN 取0.1 到10 中间的值。
当然,在需要时,也可以直接定义接触刚度,FKN输入为负数,则程序将其数值理解为直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG 等。
它们会需要更多的迭代次数,并有可能不收敛。
可以使用直接法求解器,例如稀疏求解器等。
这些求解器可以有效求解病态问题。
穿透的大小影响结果的精度。
用户可以用"PLESOL,CONT,PENE" 命令,在后处理中查看穿透的数值大小。
ansys非线性接触分析中的接触行为

ansys非线性接触分析中接触行为接触是状态改变非线性,经典ANSYS版本中共提供了7种接触行为,每一种都有其特点及相应的应用范围,在选用的时候应该谨慎。
(1)标准接触行为(standard)该接触行为包括了法向接触闭合和分开行为,在该接触模式中既考虑粘着摩擦同时也考虑了滑动摩擦。
如图上,AB与BC本来是分开的,中间通过B点连接,当在A点施加力F,AB慢慢贴近BC,最终靠在一起。
但F撤销后,AB在恢复力的作用下慢慢回复到初始分开状态。
标准接触行为包括了分开状态→闭合状态→分开状态。
当AB与BC靠在一起时,既存在正压力,同时还有沿BC圆弧切线方向的摩擦力。
(2)粗糙接触行为(rough)该接触行为包括了法向接触闭合和分开行为,但滑动行为在此是不会发生的。
原因是所有参与接触的表面都被假定为非常粗糙,以致于可以认为摩擦力无穷大而不能够产生相对滑动。
在这种接触行为中,接触的两个物体或部件之间,除了存在正压力外,还有切向摩擦力,但是接触部分之间不可以产生相对滑动。
(3)绑定接触行为(bonded)是指一旦接触关系建立,那么目标面及接触面就被假定为粘结在一起(不可以分开)。
(4)绑定接触行为(始终)(bonded(always))任何初始时在许可接触容差范围内探测到的接触点或者是那些即将进入接触的点在后续的分析中将被绑定在一起。
这种接触行为的典型应用,如在组装分析中将两种不同网络的组件“加”在一起。
线性静态分析也可以用该种接触行为来解决,虽然由于有接触单元的存在,分析中将会提示为非线性分析,但往往只要一步迭代就完成了。
(5)绑定接触行为(初始接触)(bonded(initial))绑定仅发生在初始状态下就接触的面上,初始状态下没有接触的部分将继续保持分开。
典型的例子是通过焊接连接在一起的两个物体,焊接部分始终保持连接,没有焊接的部分保持分离状态。
(6)不分开型(no separation)一旦接触关系建立,目标面及接触面便被约束在一起了,但还是允许接触面之间有滑动。
ANSYS结构非线性分析指南(一至三章)

ANSYS结构非线性分析指南(一到三章)屈服准则概念:1.理想弹性材料物体发生弹性变形时,应力与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。
2.理想塑性材料(又称全塑性材料)材料发生塑性变形时不产生硬化的材料,这种材料在进入塑性状态之后,应力不再增加,也即在中性载荷时即可连续产生塑性变形。
3.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这里可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不再增加可连续产生塑性变形。
Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,又要考虑加工硬化的材料,这种材料在进入塑性状态后,如应力保持不变,则不能进一步变形。
只有在应力不断增加,也即在加载条件下才能连续产生塑性变形。
4.刚塑性材料在研究塑性变形时不考虑塑性变形之前的弹性变形。
这又可分两种情况:Ⅰ.理想刚塑性材料在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。
Ⅱ.刚塑性硬化材料在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加工硬化材料。
屈服准则的条件:1.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。
2.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。
在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。
它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为)=Cf(σij又称为屈服函数,式中C是与材料性质有关而与应力状态无关的常数,可通过试验求得。
屈服准则是求解塑性成形问题必要的补充方程。
1.1 什么是结构非线性在日常生活中,经常会遇到结构非线性。
ANSYS非线性接触问题分析汇总

ANSYS 分线性接触问题分析汇总接触非线性是一门复杂的学科,ANSYS 关于计算非线性接触的设置选项多只又多,很多人摸不到头脑,本文就基于ANSYS 模拟过的几个接触实例,研究了相关设置选项对接触结果的影响。
实例1:橡胶密封圈配合接触研究—非线性求解设置对结果的影响密封圈配合模型简图见图1,左右两端为刚体,中间圆部分为橡胶密封圈,将刚体2沿刚体1方面移动,从而实现橡胶圈密封作用,采用plane182单元,设置轴对称行为,建立橡胶密封圈与刚体接触模型,见图2。
图1 密封圈配合模型简图 图2 密封圈配合有限元模型图接触对采用默认设置,摩擦系数取0.10,研究非线性求解器设置对收敛方面的影响,大变形静态(Large Displacement Static )效应打开,自动时间步长(Automatic time stepping )打开,子步数(Number of substeps )设置为50,线性搜索(Line search )打开。
1 收敛准则对结果的影响此实例收敛准则默认采用力收敛结合力矩收敛准则(基于L2范数),收敛容差(Tolerance )默认为0.001,工程上认为0.05的收敛容差足够满足要求。
表 1 收敛容差对计算结果的影响收敛容差 最大应力/ MPa报错与否? 0.001 4.12364报错 0.05 4.12785 报错 0.14.12996报错查看报错信息,见图3,表示单元过于扭曲,建议提高子步数或降低时间步长,需要提高网格质量,也要考虑材料属性,接触对及约束方程的合理性,若在第一步迭代就如此,需要预先执行单元形状检查。
图3 报错信息刚体1刚体2密封圈橡胶密封圈配合Von Mises应力云图见图4。
图4 橡胶密封圈配合Von Mises应力2 子步数对结果的影响此实例子步数设置为50、100、200、500,收敛容差(Tolerance)默认为0.001,研究子步数对收敛的影响。
5.3.9 接触设置综合实例[共10页]
![5.3.9 接触设置综合实例[共10页]](https://img.taocdn.com/s3/m/cabc9f6769dc5022abea0018.png)
5.3 状态非线性分析——接触5.3.9 接触设置综合实例通过前面例子的学习,已经了解了WB中接触设置。
下面以一个2D压片弯曲挤压胶片,胶片再承受密封流体压力的例子综合描述接触分析。
本例包含刚柔接触、自接触、密封流体压力。
1.建立2D模型如图5-3-99所示,建立一个含压模板、压片、胶片的2D模型。
由于压片上端为曲线,且压片与胶片均处于相对自由状态,所以很难精确定义压模板和胶片与压片相切的位置,因此压模板距压片有微小间隙,胶片与压片呈过盈状态。
压模板在整个过程中几乎不变形,而且也不是本分析所关注的目标,所以将其定义为刚体;压片在整个过程中存在大的弯曲变形,其结果将表现为首尾相接触,将其材料定义为非线性铝合金;胶片为橡胶件,整个过程中存在大应变,且胶片内部存在自接触可能,将其本构定义为Ogden 3rd Order类型。
压模板,命名tie,刚体压片,命名Surface Body,材料本构为非线性铝合金胶片,命名rub,材料本构为Ogden 3rd Order图5-3-99 2D模型2.2D模型及材料设置调用WB默认材料库内的非线性铝合金(General Non-linear Materials→Aluminum Alloy NL),新增一个材料,命名为rub,本构选择Hyperelastic→Ogden 3rd Order,9个参数分别为:MU1=0.043438MPa,A1=1.3,MU2=8.274E−5MPa,A2=5,MU3=−0.0006895MPa,A3=−2,D1=0.029MPa^−1,D2=0MPa^−1,D3=0MPa^−1。
在Geometry→2D Behavior处定义为Plane Stress(平面应力),如图5-3-100所示。
– 435 –第5章 非线性静力学分析– 436 – 3.Virtual Topology (虚拟拓扑)设置虚拟拓扑一般用于合并几个不同平面,使其保证为一个有限元拓扑模型,除此之外,还可用于分割模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansys非线性接触分析和设置5.4.9 设置实常数和单元关键选项程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。
参见《ANSYS Elements Reference》中对接触单元的描述。
5.4.9.1 实常数在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。
剩下的用来控制接触面单元。
R1和R2 定义目标单元几何形状。
FKN 定义法向接触刚度因子。
FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。
ICONT 定义初始闭合因子。
PINB 定义“Pinball"区域。
PMIN和PMAX 定义初始穿透的容许范围。
TAUMAR 指定最大的接触摩擦。
CNOF 指定施加于接触面的正或负的偏移值。
FKOP 指定在接触分开时施加的刚度系数。
FKT 指定切向接触刚度。
COHE 制定滑动抗力粘聚力。
TCC 指定热接触传导系数。
FHTG 指定摩擦耗散能量的热转换率。
SBCT 指定 Stefan-Boltzman 常数。
RDVF 指定辐射观察系数。
FWGT 指定在接触面和目标面之间热分布的权重系数。
FACT 静摩擦系数和动摩擦系数的比率。
DC 静、动摩擦衰减系数。
命令: RGUI:main menu> preprocessor>real constant对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。
程序将正值作为比例因子,将负值作为绝对值。
程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。
例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。
然而,ICON = -0.1 则表示真实调整带是 0.1 单位。
如果下伏单元是超单元,则将接触单元的最小长度作为厚度。
参见图5-8。
图5-8 下层单元的厚度在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。
因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。
如果出现这一问题,请用绝对值代替比例系数。
TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。
5.4.9.2 单元关键选项每种接触单元都包括数个关键选项。
对大多的接触问题,缺省的关键选项是合适的。
而在某些情况下,可能需要改变缺省值。
下面是可以控制接触行为的一些关键选项:自由度 KEYOPT(1)接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2)存在超单元时的应力状态(仅2D) KEYOPT(3)接触检测点的位置(仅低阶接触单元) KEYOPT(4)CNOF自动调整 KEYOPT(5)时间步控制 KEYOPT(7)伪接触预防 KEYOPT(8)初始穿透或间隙的影响 KEYOPT(9)法向和切向接触刚度修正方法控制 KEYOPT(10)壳的厚度影响 KEYOPT(11)接触面行为(粗糙、绑定等) KEYOPT(12)命令: KEYOPTETGUI:main menu>preprocessor>Elemant Type>Add/Edit/Delete5.4.9.3 选择接触算法对面─面接触单元,程序可以使用增进的拉格朗日方法或罚函数方法。
通过单元关键字 KEYOPT(2)来指定。
增进的拉格朗日方法是为了找到精确的拉格朗日乘子(即接触力),而对罚函数进行一系列修正迭代。
与罚函数的方法相比,拉格朗日方法容易得到良态条件,对接触刚度的敏感性较小。
然而,在有些分析中,增进的拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。
使用拉格朗日方法的同时应使用实常数 FTOLN。
FTOLN 为拉格朗日方法指定容许的最大穿透。
如果程序发现穿透大于此值时,即使不平衡力和位移增量已经满足了收敛准则,总的求解仍被当作不收敛处理。
FTLON 的缺省值为0.1。
用户可以改变这个值,但要注意,如果此值太小,可能会造成太多的迭代次数或者不收敛。
5.4.9.4 确定接触刚度所有的接触问题都需要定义接触刚度,两个表面之间穿透量的大小取决于接触刚度。
过大的接触刚度可能会引起总刚矩阵的病态,从而造成收敛困难。
一般来说,应该选取足够大的接触刚度以保证接触穿透小到可以接受,但同时又应该让接触刚度足够小以不致引起总刚矩阵的病态而保证收敛性。
ANSYS 程序根据下伏柔体单元的材料特性,来估计一个缺省的接触刚度值。
用户可用实常数 FKN 来为接触刚度指定一个比例因子或指定一个绝对值。
比例因子一般在0.01和10之间;对于大变形问题,选1是比较好的;而对于弯曲为主的问题,通常为0.01~0.1。
用户应当总是检验以使穿透到达极小值,而又避免过多的迭代次数。
注意 --FTOLN 和 FKN 从一个荷载步到另一个荷载步中,都可以修改。
也可以在重启动中修改。
这时,必须定义KEYOPT(10)=1,2。
为了确定一个较好的接触刚度值,可能需要一些经验。
用户可以按下面的步骤来进行尝试:1、开始时取一个较低的值。
低估值要比高估值好,因为由一个较低的接触刚度导致的穿透问题,比过高的接触刚度导致的收敛性困难,要容易解决。
2、对前几个子步进行计算分析,直到最终荷载的一个比例(刚好完全建立接触)。
3、检查每一子步中的穿透量和平衡迭代次数。
如果总体收敛困难是由过大的穿透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN 的值,或者是将 FTOLN 的值取得大小。
如果总体的收敛困难是由于不平衡力和位移增量达到收敛值时需要过多的迭代次数,而不是由于过大的穿透量引起的,那么 FKN 的值可能被高估。
4、按需要调整 FKN 或 FTOLN 的值,重新进行完整的分析。
注意--如果穿透控制变成总体平衡迭代中的主因(如果为使问题收敛到穿透容差内,比收敛到不平衡力的容差内,需要更多的迭代),用户应该增大 FTOLN 值,以允许更多的穿透,或增大 FKN。
5.4.9.5 选择摩擦类型在基本的库仑摩擦模型中,两个接触面在开始相互滑动之前,在它们的界面上会有达到某一大小的剪应力产生。
这种状态称为粘合状态(stick)。
库仑摩擦模型定义了一个等效剪应力τ,在某一法向压应力p作用下剪应力达到此值时表面开始滑动(τ=μp+COHE,其中μ是摩擦系数--MU--作为材料特性定义,而COHE 是粘聚力)。
一旦剪应力超过此值后,两个表面之间将开始相互滑动。
这种状态,叫作滑动状态(Sliding)。
粘合/滑动计算决定什么时候一个点从粘合状态到滑动状态,或从滑动状态变到粘合状态。
摩擦系数可以是任一非负值,程序缺省值为表面之间无摩擦。
对于粗糙或绑定接触( KEYOPT(12)=1、3、5、6),程序将不管给定的 MU 值而认为摩擦阻力无限大。
程序提供了一个人为指定最大等效剪应力的选项,不管接触压力值的大小,如果等效剪应力达到此值时,即发生滑动,见图5-9。
为了指定接触界面上最大容许剪应力,设置常数 TAUMAX (缺省为1.0E20)。
这个剪应力极限,通常用于在接触压力非常大的时候(如在某些加工过程中)的一些情况,以至于用库仑理论计算出的界面剪应力超过了材料的屈服极限。
TAUMAX 的一个合理上限估值为是表面附近材料的 von Mises屈服应力)。
经验数据有助于决定 TAUMAX 的值。
图5-9 摩擦模式5.4.9.5.1 静、动摩擦系数摩擦系数依赖于接触面的相对滑动速度,通常静摩擦系数高于动摩擦系数。
ANSYS提供了如下表示的指数衰减摩擦模型:μ=MU×(1+(FACT-1)exp(-DC×Vrel)其中:μ 为摩擦系数。
MU动摩擦系数,用MP命令输入。
FACT是静摩擦系数与动摩擦系数之比,缺省为最小值1.0。
DC为衰减系数,缺省为0.0,单位为time/length。
因此,时间在静态分析中有一些意义。
Vrel是ANSYS计算的滑动速度。
如果知道静、动摩擦系数和至少一个数据点(μ1,Vrel),则可以确定摩擦衰减系数为:如果不指定衰减系数,且FACT大于1.0,当接触进入滑动状态时,摩擦系数会从静摩擦系数突变到动摩擦系数,这种行为类似于CONTAC46和CONTAC49单元所用的动摩擦模型,因为这会导致收敛困难,所以不建议采用。
5.4.9.5.2 对称、不对称求解器对无摩擦、粗糙和绑定接触,接触单元刚度矩阵是对称的。
而涉及到摩擦的接触问题产生一个不对称的刚度。
在每次迭代使用不对称的求解器,比对称的求解器需要更多的计算时间。
因此ANSYS程序采用对称化算法。
通过采用这种算法大多数摩擦接触问题,能够使用对称系统的求解器来求解。
如果摩擦应力在整个位移场内有相当大的影响,并且摩擦应力的大小高度依赖于求解过程,则对刚度阵的任何对称近似都可能导致收敛性降低。
在这种情况下,选择不对称求解选项( NROPT ,UNSYM)来改善收敛性。
5.4.9.6 选择接触检查的位置接触检查点位于接触单元的积分点上。
在积分点上,接触单元不穿透进入目标面。
然而,目标面能穿透进入接触面。
见图5-10。
图5-10 接触检查点位于高斯积分点上图5-11 接触检查点位于节点上ANSYS面─面接触单元使用高斯积分点作为缺省值,高斯积分点通常会比Newton-Cotes/Lobatto 节点积分方案产生更精确的结果,Newton-cotes/Lobatto 用节点本身作为积分点。
通过KEYOPT(4)来选择用户想使用的方法。
这一选项仅适用于低阶接触( CONTAC171 和 CONTAC173)。
然而,使用节点本身作为积分点仅应该用于角接触问题(看图5-11 )。
注意,使用节点作为接触检查点可能会导致其它收敛性问题,例如“滑脱”(节点滑出目标面的边界),见图5-12。
对大多数的点─面的接触问题,我们推荐使用其它的点─面的接触单元,例如CONTAC26、CONTAC48 和CONTAC49。
见本书§5.5。
图5-12 节点滑脱5.4.9.7 调整初始接触条件在动态分析中,刚体运动一般不会引起问题。
然而在静力分析中,当物体没有足够的约束时会产生刚体运动,有可能引起错误而终止计算。
在仅仅通过接触的出现来约束刚体运动时,必须保证在初始几何体中,接触对是接触的。
换句话说,用户要建立模型以便接触对是“刚好接触”的。
然而这样做,可能会遇到以下问题:刚体外形常常是复杂的,很难决定第一个接触点发生在哪儿。
既使实体模型在初始时处于接触状态,在网格划分后由于数值舍入误差,两个面的单元网格之间也可能会产生小缝隙。