基于nRF24L01的频率自适应通讯
基于nRF24L01模块的无线通信系统设计

目录摘要 (3)Abstract (4)目录 (1)前言 (3)1系统方案分析与选择论证 (7)1.1 系统方案设计 (7)1.1.1 主控芯片方案 (7)1.1.2 无线通信模块方案 (7)1.1.3 温度传感方案 (8)1.1.4 显示模块方案 (8)1.1.5 单片机与PC机通信模块 (9)1.2 系统最终方案 (9)2 主要芯片介绍和系统模块硬件设计 (11)2.1 AT89S52 (11)2.1.1单片机控制模块 (15)2.2 单片2.4GHz nRF24L01无线模块 (16)2.2.1 nRF24L01芯片概述 (16)2.2.2 引脚功能及描述 (16)2.2.3 工作模式 (17)2.2.4 工作原理 (18)2.2.5 配置字 (19)2.2.6 nRF24L01模块原理图 (21)2.3温度传感器 DS18B20 (21)2.3.1 DS18B20管脚配置和内部结构 (22)2.3.2 DS18B20的工作原理 (24)2.3.3 DS18B20的硬件设计 (26)2.4显示模块 (27)2.4.1 接收端显示模块 (27)2.4.2 发送端显示模块 (28)2.5报警电路 (29)2.6接收端与PC机通信 (29)2.7电源电路设计 (30)2.8其他外围电路 (31)3 系统软件设计 (32)3.1单片机软件设计 (32)3.1.1 发送端软件设计 (32)3.1.2 接收端软件设计 (33)4 系统仿真 (34)4.1电源电路的仿真 (34)4.1.1 +5V电源电路仿真 (34)4.2发送端温度采集与显示仿真 (34)4.3 接收端LCD1602显示温度仿真 (35)5 硬件电路板设计 (37)5.1 系统硬件原理图 (37)5.1.1 发送端原理图 (37)5.1.2 接收端原理图 (38)5.2 系统PCB图 (40)5.2.1 发送端PCB图 (40)5.2.2 接收端PCB图 (41)5.3 硬件制作 (41)5.4 硬件调试 (43)5.5 硬件调试结果 (43)6 nRF24L01应用于无线组网 (45)6.1 无线组网的意义及研究价值 (45)6.2 通信模型及协议设计 (45)总结 (47)致谢 (49)参考文献 (50)摘要温度是一个非常重要的参数。
基于nRF24L01的无线通信模块设计

1前言 (2)2总体方案设计 (3) (3)图2.1无线通信模块框图 (3)3单元模块设计 (4)3.1 nRF24L01的简单介绍 (4)3.2 STC89C52的简单介绍 (6)3.3 LCD1602的简单介绍 (7)3.4 其它的器件 (8)3.5 各单元模块的联系 (8)4软件设计 (9)5系统调试 (10)5.1主要问题及分析 (10)5.2调试工具 (10)6系统功能、指标参数 (11)6.1系统能实现的功能 (11)6.2系统指标参数测试 (11)6.3系统的指标功能及参数分析 (11)7结论 (12)8总结与体会 (13)9参考文献 (14)10附录 (15)10.1相关设计图 (15) (15) (16)图10.2无线收发模块电路原理总图 (16)图10.3正5V电源模块图 (16)10.2相关的程序 (20)1前言本次我们三人小组设计的是无线通信模块,根据设计要求我们选择了无线收发模块nRF24L01、单片机STC89C52、LCD1602和键盘模块等作为本次设计的硬件需求。
首先我们与老师一起讨论了一些设计的相关事宜和设计思路。
接下来我们一起画好了模拟电路图,在老师的帮助下我们对电路图进行了补充和完善。
完成这些基本工作后,在老师和同学的帮助下我们买回了自己所需的元器件。
接着我们变分工完成了元器件的焊接连接和程序的编写,然后便是模块的上电调试,设计的答辩和设计报告的完善。
我们本次之所以会选择无线通信模块的设计,是我们觉得无线通信技术是现代社会中一门很重要的技术,我们掌握好了这门技术对以后我们的工作生活都有很大的帮助。
我们本次设计的无线通信模块虽然只是我们的一次小小的体验,但我们都知道无线通信在我们现在所处的信息时代是多么的重要,如今我们生活的方方面面无不与无线通信息息相关。
我们所熟悉的手机、电脑、电视等等都与无线通信有着直接的联系。
甚至在某些高端领域方面无线通信技术能反映一个国家的科技水平和综合国力。
基于nrf24l01的无线发电路的设计

基于nrf24l01的无线发电路的设计1.简介本文档旨在介绍基于n rf24l01的无线发电路的设计。
n rf24l01是一种低功耗、高性能的射频通信模块,它被广泛应用于无线通信领域。
本文将介绍无线发电路设计的基本原理、硬件连接、代码编写以及测试验证等内容。
2.设计原理2.1n r f24l01概述n r f24l01是一款2.4G Hz无线射频通信模块,采用G FS K调制解调方式,具备16个通道和自动频率跳变功能。
该模块工作在低功耗模式下,能够实现远距离的无线数据传输,适用于各种物联网应用场景。
2.2无线发电路设计原理无线发电路设计的目标是实现两个或多个无线设备之间的数据传输。
基于nr f24l01的无线发电路设计主要包括以下几个方面:硬件连接 1.:连接n r f24l01模块与控制单元,确保数据的稳定传输。
代码编写2.:编写适合的代码,配置nr f24l01模块的寄存器以及实现数据的发送和接收。
电源管理3.:合理设计电源电路,确保n rf24l01模块的稳定工作。
通信协议 4.:选择合适的通信协议,确保数据传输的可靠性和安全性。
3.硬件连接为了实现无线发电路的设计,需要先完成n rf24l01模块与控制单元的正确连接。
具体连接方法如下:1.将n rf24l01模块的V CC引脚连接至控制单元的3.3V电源引脚。
2.将n rf24l01模块的G ND引脚连接至控制单元的地引脚。
3.将n rf24l01模块的C E引脚连接至控制单元的某一可用G PI O引脚。
4.将n rf24l01模块的C SN引脚连接至控制单元的某一可用G PI O引脚。
5.将n rf24l01模块的S CK引脚连接至控制单元的S PI时钟引脚。
6.将n rf24l01模块的M OS I引脚连接至控制单元的S PI数据输出引脚。
7.将n rf24l01模块的M IS O引脚连接至控制单元的S PI数据输入引脚。
4.代码编写无线发电路的设计需要编写适合的代码,以实现n rf24l01模块的数据传输功能。
项目(8)-基于NRF24L01的无线数据传输系统

基于NRF24L01的无线数据传输系统一、项目简介近年来无线传输技术一直处于活跃发展之中。
传输速度不断加快,传输的可靠性也在不断的提搞。
无线传输技术在生活中许多地方有着广泛用途。
该项目利用一种单片无线射频收发芯片NRF24L01和增强型STC 51单片机构成一个无线数据传输系统。
项目中分析了NRF24L01的功能、特性、工作原理及其寄存器操作等。
同时讨论系统的软硬件设计,在单片机的控制下进行无线数据传输,实现半双工点对点通信。
运行表明,该系统控制方便、工作稳定,能实现可靠的无线传输。
二、项目要求1、每次传输字节数为32。
2、采用中断方式接收数据。
3、完成点对点半双工通信。
4、扩展要求1:增加校验码。
5、扩展要求2:实现多点无线数据传输。
6、扩展要求3:结合TFT和触摸屏做一个良好的GUI。
三、项目方案首先要配置好硬件资源。
为完成项目,需要两套或两套以上实验板(扩展要求2需要两套以上)。
每套板子配套一个射频模块。
在初始化阶段要进行以下几个工作,分别是串口初始化、中断初始化、SPI 初始化、主从机配置、NRF24L01的通信参数设置。
SPI可选择用软件模拟SPI 或者硬件SPI,如果想追求传输速度,应采用硬件SPI。
为了提高数据传输的可靠性,在配置通信参数的时候应该设置自动应答(ACK)并设置一定次数的自动重发。
在两点或多点数据传输时,主机的发送地址和从机的接收地址必须严格一致。
另外,在多点数据传输时,不同的两条传输路线尽量选择不同的射频通道(总共可选125个工作频道)。
收发数据定义32字节为一帧数据。
在帧头或帧尾可以添加校验码或者用户识别码。
接收到数据后,通过串口向上位机发送接收的数据。
结合TFT和触摸屏的用户GUI可自行设计。
四、相关原理知识4.1、射频芯片NRF24L01简介nRF24L01 是一款工作在 2.4~2.5GHz 世界通用ISM 频段的单片无线收发器芯片无线收发器包括:频率发生器增强型SchockBurst、TM 模式控制器、功率放大器、晶体振荡器、调制器解调器。
基于nRF24L01无线通信温度监测系统资料

目录1引言............................................................................................................................................. - 1 -1.1课题来源及意义.............................................................................................................. - 1 -1.2无线数据传输的发展状况............................................................................................ - 1 -1.3本课题研究的对象和内容............................................................................................ - 2 -1.3.1对环境信号的采集及分析.................................................................................... - 2 -1.3.2对无线模块发送接收数据分析........................................................................... - 2 -2 系统方案设计 ......................................................................................................................... -3 -2.1MCU芯片选择 ................................................................................................................ - 3 -2.2无线通信模块的方案..................................................................................................... - 3 -2.3温度传感方案 .................................................................................................................. - 3 -2.4显示模块方案 .................................................................................................................. - 4 -3 系统的硬件设计..................................................................................................................... - 5 -3.1硬件的系统组成.............................................................................................................. - 5 -3.2AT MEGA16主控芯片介绍............................................................................................. - 5 -3.3DS18B20温度传感器工作原理.................................................................................. - 6 -3.4N RF24L01无线模块的工作原理................................................................................ - 8 -3.4.1N RF24L01芯片概述............................................................................................... - 8 -3.4.2引脚功能描述........................................................................................................... - 8 -3.4.3工作模式.................................................................................................................... - 9 -3.4.4工作原理.................................................................................................................. - 10 -3.4.5配置字 ...................................................................................................................... - 11 -3.4.6N RF24L01模块的原理图.................................................................................... - 12 -3.5发送端显示模块设计................................................................................................... - 13 -3.6接收端与PC机通信模块设计.................................................................................. - 13 -4 系统的软件设计................................................................................................................... - 15 -4.1发送端软件设计............................................................................................................ - 15 -4.2接收端软件设计............................................................................................................ - 15 -5 系统的调试............................................................................................................................ - 17 -结束语 ..................................................................................................................................... - 18 -参考文献 ..................................................................................................................................... - 20 -致谢 ..................................................................................................................................... - 21 -1引言1.1 课题来源及意义在信息化蓬勃发展的今天,工农业的一些现场环境参数仍然是值得研究和监测的。
_及_NRF24L01_调试方法经验总结

_及_NRF24L01_调试方法经验总结NRF24L01 :在通信中的应用方法,经验总结(1)2011-07-31 13:15首先说一下:nRF24.L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。
内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。
nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。
是想将这个IC调通,首先要多读一下技术文档:下载技术文档以下C51驱动nRF24.L01 的源代码库(nRF24.L01.h)此库文件适合发送端使用,在接收端会有所不同,请看第2 部分的分析在使用过程中,需要引用//****************************************NRF24L01端口定义***************************************sbit CE =P2^0;sbit CSN =P2^1;sbit SCK =P2^2;sbit MOSI =P2^3;sbit MISO =P2^4;sbit IRQ =P2^5;//*********************************************NRF24L01********* ****************************#define TX_ADR_WIDTH 5 // 接收地址宽度,一般设置为5 不要动它#define RX_ADR_WIDTH 5 // 接收地址宽度,一般设置为5 不要动它#define TX_PLOAD_WIDTH 1 //接收数据的数据宽度(最大为32 字节),这里我设置为最小的1 字节,方便调试#define RX_PLOAD_WIDTH 1 //发送数据的数据宽度(最大为32 字节),这里我设置为最小的1 字节,方便调试uchar const TX_ADDRESS[TX_ADR_WIDTH]={0x35,0x43,0x10,0x10,0x03}; // 这里就是设置了5 个字节的本地地址/*此处的地址:在IC内部真实地址是反过来的。
nRF24L01的工作原理
nRF24L01的工作原理nRF24L01是一款低功耗、高性能的2.4GHz无线收发模块,广泛应用于无线通信领域。
它采用射频(RF)技术,能够在2.4GHz频段进行无线数据传输。
本文将详细介绍nRF24L01的工作原理。
1. 无线通信原理:无线通信是通过无线电波在空间中传播信息的一种通信方式。
nRF24L01利用射频信号进行无线通信,通过调制和解调技术实现数据的传输和接收。
2. nRF24L01的硬件结构:nRF24L01由射频前端、基带处理器和SPI接口组成。
射频前端负责射频信号的发送和接收,基带处理器负责数据的调制和解调,SPI接口用于与主控制器进行通信。
3. 工作模式:nRF24L01有两种工作模式:发送模式和接收模式。
在发送模式下,它将数据通过射频信号发送给接收端。
在接收模式下,它接收来自发送端的射频信号,并解调出原始数据。
4. 发送端工作原理:发送端首先将要发送的数据通过SPI接口发送给nRF24L01的基带处理器。
基带处理器将数据进行调制,将其转换为射频信号。
射频前端将射频信号发射出去,经过空间传播后到达接收端。
5. 接收端工作原理:接收端的射频前端接收到发送端发射的射频信号。
射频前端将射频信号经过放大和滤波处理后送给基带处理器。
基带处理器将接收到的射频信号进行解调,得到原始数据。
6. 通信协议:nRF24L01采用自己的通信协议,包括数据包格式、通信速率、信道选择等。
发送端和接收端需要使用相同的通信协议才干正常通信。
7. 功耗管理:nRF24L01具有低功耗设计,可以通过设置工作模式、发送功率和休眠模式等来控制功耗。
在不需要进行通信时,可以将nRF24L01设置为休眠模式,以节省能源。
8. 技术特点:nRF24L01具有以下技术特点:- 工作频率:2.4GHz- 通信距离:可达100米- 数据传输速率:最高2Mbps- 工作电压:1.9V至3.6V- 工作温度:-40℃至85℃9. 应用领域:nRF24L01广泛应用于无线数据传输领域,例如无线遥控、无线传感器网络、物联网等。
nRF24L01的工作原理
nRF24L01的工作原理nRF24L01是一款低功耗、低成本的2.4GHz无线射频收发器,适用于各种无线应用,如遥控器、传感器网络、无线鼠标和键盘等。
它采用了射频收发器和基带处理器的集成设计,具有高度集成、灵活性和可靠性的特点。
nRF24L01采用了高度集成的射频收发器,包括射频前端、中频放大器、混频器、锁相环和功率放大器等。
它支持多种调制方式,如GFSK、MSK和OOK,具有良好的抗干扰性和传输距离。
nRF24L01的基带处理器负责数据的编码、解码和调制解调等功能。
它采用了自适应通信技术,可以根据环境的变化自动调整通信参数,以提高通信质量和可靠性。
同时,它还支持多通道通信,可以实现多个设备之间的同时通信。
nRF24L01的工作原理如下:1. 发送端工作原理:- 数据输入:发送端将要发送的数据输入到nRF24L01的发送缓冲区中。
- 数据编码:nRF24L01的基带处理器对输入的数据进行编码,以保证数据的可靠传输。
- 调制:经过编码的数据经过调制处理,转换为无线信号。
- 射频发送:经过调制的无线信号经过射频发送器的放大和滤波处理,发射到空中。
- 接收端接收:接收端的nRF24L01接收到发送端发射的无线信号。
2. 接收端工作原理:- 射频接收:接收端的nRF24L01接收到发送端发射的无线信号。
- 射频前端处理:接收到的无线信号经过射频前端的放大和滤波处理,转换为中频信号。
- 中频处理:中频信号经过混频器和锁相环等处理,转换为基带信号。
- 调制解调:基带信号经过调制解调处理,还原为发送端输入的数据。
- 数据输出:接收端将解调后的数据输出。
nRF24L01的工作原理基于2.4GHz的无线通信技术,通过射频收发器和基带处理器的协同工作,实现了数据的可靠传输。
它采用了自适应通信技术和多通道通信,提供了灵活性和可靠性,适用于各种无线应用场景。
同时,它的低功耗设计也使得它成为物联网和传感器网络等领域的理想选择。
基于NRF24L01的无线通信系统
3.5 PTR6000中断服务程序设计
3.3显示程序设计
显示程序设计总的思想是首先串行传送转换后的十位显示数码,然后选通十位,再进行适当延时后关闭。再串行传送转换后的个位显示数码,然后选通个位,进行适当延时后关闭。具体串行显示是这样实现的:首先把要显示码寄存器进行带进位移位,然后判断进位标志位C来向串行数据输出口送0或1,进行适当延时后,向串行时钟口送低电平,适当延时后送高电平,目的是产生一个上跳沿,把串行数据口的电平状态移入74HCl64。这样连续传送8次,就将8位显示码送出
3.2键盘程序设计
由硬件电路设计可知,键盘程序是放在中断服务程序中的,而且是下降沿触发中断,这一点有关的I/O口设置和寄存器有关位设置在主程序中完成,在此不再作具体说明。在外中断1服务程序的开始,首先对键盘延时消抖,判断是否真的有键按下,如果判断确实有键按下则向下执行键值判断程序,否则,判定为错误中断,中断返回。该部分键盘判断程序是通过线反转法完成的,首先3行送高电平,3列送低电平,延时一个时钟周期后,读取管脚电平(PINC),并且对读取的数据进行保存;然后3列送高电平,3行送低电平,延时一个时钟周期后,读取管脚电平(PINC),并且对读取的数据进行保存。然后两次读到的数据只保留低6位,高位全部清零,因为键盘只用到了低6位。然后再把2个键进行位或,得到一个数值,通过对这个数值的判断来判定是哪一个键按下了。
关键词:nRF24L01;ATmega8L;无线通信
引言
nRF24L01的工作原理
nRF24L01的工作原理引言概述:nRF24L01是一款低功耗、高性能的2.4GHz无线收发模块,广泛应用于无线通信领域。
它采用了先进的射频技术和通信协议,具有稳定的信号传输和高效的能耗管理。
本文将详细介绍nRF24L01的工作原理,匡助读者更好地了解这款模块的工作机制。
一、射频通信原理1.1 发射端工作原理:当发送端要发送数据时,先将数据通过SPI接口发送给nRF24L01模块,模块将数据转换成射频信号并通过天线发送出去。
发送端的nRF24L01模块会在发送完成后自动进入接收模式,等待接收端的应答信号。
1.2 接收端工作原理:接收端的nRF24L01模块接收到射频信号后,将其转换成数字信号并通过SPI接口传输给微控制器,微控制器解析数据并做出相应的处理。
接收端的nRF24L01模块也会发送应答信号给发送端,确认数据接收成功。
1.3 频率调谐原理:nRF24L01模块采用频率合成技术,可以在2.4GHz频段内进行频率调谐,以适应不同的通信环境和干扰情况。
这种技术可以保证通信的稳定性和可靠性。
二、数据传输原理2.1 数据包格式:nRF24L01模块采用数据包的形式进行数据传输,每一个数据包包含了数据字段、地址字段、校验字段等部份。
发送端和接收端需要事先约定好数据包的格式,以确保数据的正确传输。
2.2 自动重传机制:nRF24L01模块具有自动重传机制,可以在数据传输失败时自动重新发送数据,提高了数据传输的成功率。
这种机制可以有效应对信号干扰和传输错误的情况。
2.3 数据加密功能:nRF24L01模块支持数据加密功能,可以对传输的数据进行加密保护,防止数据被恶意窃取或者篡改。
这种功能可以保障通信的安全性和隐私性。
三、功耗管理原理3.1 低功耗模式:nRF24L01模块具有多种低功耗模式,可以在不同的工作状态下自动切换,以降低功耗并延长电池寿命。
这种功耗管理机制可以使nRF24L01模块适合于电池供电的应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模 拟S P I 接 口由函数s p Lr w实现 , S p Lr w返 回结果设置 为无符 号字符 类型 , s p Lr w只有一个 无符号字符 类型 的入 口参 ̄b y t e 。 函数 s p Lr w内定 义 无符 号 字符 类 型 变 量 n 。 函数 s p i _ r w以 n 为 循环 变 量 , 采q  ̄ f o r 循环语句 中, 1 " 1 的初值从0 开始, 循环延续条件是叫 、 于8 , 每循 环一次n 值加一 , 循环 8 次。 在循环 内执行如 下操作 : 1 ) 利用位与运算 判断b y t e 的最高位值 , 如果为 I , MO S I  ̄ I 脚置 为1 ; 否则 , MO S I  ̄ I 脚 置为0 。 2 ) b y t e 中数据左移一位, 次高位移至最高位 , 其他各位 向左补 上空出的前一位 , 最低位补零。 3 ) 串行时钟S C L K ̄ I 脚置为 1 。 4 ) 根据 MI S O引脚 电平, 设置b y t e  ̄低位值 。 如果M S S O  ̄『 脚 电平为高 电平 , b y t e 最 低位值为 1 ; 否则 , 不进行任何操作( 在第二 步数据左移 后 , 最 低位已为零) 。 5 ) 串行 时钟S C L K ̄ I 脚置为 1 。 最后 , 函数用r e t u m ̄ N 句 返回b y t e N。 利用s p i _ r w函数模拟S P I 接 口操作 , 可 以使频率 自适应 通讯 协议 推广到各种嵌入式系统下实现 。
f
沣 技 术
应 用研 究
基于 n R F 2 4 L 0 1 的( 天津滨海职业学院 天津 3 0 0 4 5 1 )
摘要 : 本文在 分析I s M频段通 讯存在 的前提 下, 在考虑 价格 、 程 序复 杂性等 外部条 件的情 况 下, 选 定n R F 2 4 L 0 1 为通讯设备 。 为保证 n R 2 4 u) 1 间通 讯 的 可靠性 和普 遍性 , 提 出频 率 自 适 应通讯 , 4  ̄n RF 2 4 L 0 1 间可进 行可 靠信 息传输 。 对 实现 频 率 自适应通 讯 涉及 的 S P I 接 口通讯 、 工作 模式 选择 、 频率
1引 言
n RF 2 4 L 0 1 是一款工作在2 . 4 ~2 . 5 G Hz 世界通 用I S M频段的单 片无 线收发器芯 片。 无 线 收 发器 包 括 :频率 发 生 器 、 增 强 型 S c h o c k B u r s t  ̄式控制器 、 功率放大器 、 调制器 、 解调器。 输出功率 、 频 道选择和协议 的设 置可以通过S P I 接 口进行设置[ 1 】 。 在嵌入 式系统 中 , 广泛采用n RF 2 4 L 0 1 进行通讯 。 在I S M频段存 在z i g b e e 、 wi i f 、 蓝牙 、 1 wi p 等通 讯协议 , 在I S M频段进行通信必须克 服不 同协议 间的相互干扰 , 前提是必须通讯保 证双方选定的通讯频 率是空 闲的。 在n RF 2 4 L 0 1 广泛使用 的背 景下 , 在设计嵌入 式系统 时, 如果 预先设定通讯频率 , 在实际使用环境下 , 不能保证预先设定 通讯 频率 空闲 , 通讯功能也不能保证 , 造成通讯系统设计失败 。 如果 嵌入 式系统能够根据使用场合 , 自己找到工作场合的 空闲频率 , 并 做为 通讯频率 , 同时在通讯频率 发生冲突时 , 可 以重新选择新 的空 闲频 率 , 实现通讯频率 自适应 , 则是成功的通讯系统设计 。
自适 应通 讯协 议 设计 进行 了描 述 。 关键 词: n R. F 2 4 L 0 1频 率 自适 应 S P I
中 图分类 号: T M7 5 5
文 献标识 码: A
文 章编 g - : 1 0 0 7 。 9 4 1 6 ( 2 0 1 5 ) 0 2 . 0 1 1 5 . O 1
2 . 2工 作模 式 选择
从数 据包 处理 方 式角 度看 , nRF2 4 L01 有两 种 工作模 式 : S h o c k B u r s t 模 式、 增 强S h o c k B u r s t 模式 。 , 在S h o c k B u r s t 接 收模式下 , n RF 2 4 L O 1 收到有 效数据后 , 用I RQ 发出提示 , 单片机 从RX F I F O 寄存器读 出数据 。 在S h o c k B u r s t 发送 模 式下 , 数据发送完毕后 , 用I RQ 发出提示表示发送完毕。 在增强S h o c k B u r s t  ̄式下 , 接收 、 发送过程 同在S h o c k B u r s t 模 式, 区别在于 : 接收到数据 时, 要 向发送方发送 应答信号 ; 发送信 息 时, 要等待接收方的正确应答信号 , 否则要重复发送。 频率 自适应在 综合考 虑后 , 采用S h o c k B u r s t 模 式。 2 . 3频 率 自适 应通 讯 协议 频率 自适应通讯协议的设计思路 : 将通讯过程分为连接呼 叫、 数据传输 、 再 连接三个状态 。 连接 呼叫状态 : 在数据通讯前 , 在可用频段上, 从第一个频段开 始, 发送方对接 收方进行呼叫 , 同时在预定时间 内等待接 收方应答 。 如果没有接 收方 应答, 则转下一频段进行呼 叫, 如果收到接 收方应 答, 数据传输状态就在 此频段进 行通讯 。 数据传输状 态 : 发送方发送数据 , 后在预定 时间内等待接 收方 应答 , 如果没有接收方应答 , 则认 为频道被 干扰 , 转入 再连接状态 。 再连接状态 : 本质 同连接呼叫状态一样 , 选择好 空闲频道后, 重 新转入数据传输状态进行数据传输 。