初中数学概率与统计题知识点汇总中考
初中概率与统计知识点整理

初中概率与统计知识点整理概率与统计是数学中的一个重要分支,主要研究随机现象的规律性和数量关系。
初中阶段的概率与统计主要包括概率的基本概念、概率的计算方法、抽样调查、数据的整理与分析等内容。
下面将对初中概率与统计的知识点进行整理。
一、概率的基本概念1.随机事件:不确定性的事件称为随机事件,用大写字母A、B、C等表示。
2.样本空间:随机试验的所有可能结果组成的集合称为样本空间,用Ω表示。
3.事件的概率:事件A发生的可能性大小称为事件A的概率,用P(A)表示,0≤P(A)≤14.必然事件和不可能事件:概率为1的事件称为必然事件,概率为0的事件称为不可能事件。
5.互斥事件和对立事件:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。
二、概率的计算方法1.古典概型:指每次试验结果只有有限种可能且各结果发生的概率相等的情况。
2.几何概率:指通过几何方法计算概率,如在长方形中随机取点计算概率。
3.组合方法:根据有放回或无放回以及是否考虑顺序进行组合的计算方法。
三、抽样调查1.抽样方法:包括简单随机抽样、系统抽样、分层抽样、整群抽样等。
3.抽样误差:由于采样方法、样本数量不足等导致的偏差称为抽样误差。
四、数据的整理与分析1.数据的度量:包括中心位置度量(如均值、中位数)、离散程度度量(如极差、方差)和分布形状度量(如偏度、峰度)等。
2.统计图表:包括直方图、饼图、折线图、箱线图等。
3.数据的描述性分析:通过数据的度量和统计图表,描述数据的特征和规律。
以上是初中概率与统计的主要知识点整理,希望对您的学习有所帮助。
在学习过程中,要注重理解概念,掌握计算方法,提高数据整理与分析的能力,培养科学思维和统计思维,不断强化应用能力,为今后的学习打下扎实的基础。
祝您学习进步!。
中考数学统计与概率基础知识

中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
中考计算概率知识点总结

中考计算概率知识点总结一、随机事件与概率随机事件是在确定条件下,不确定是否发生的事件,例如:掷一枚硬币,掷一颗骰子,抽一张牌等。
概率是随机事件发生的可能性大小的量度,通常用P(A)表示,其中A为事件。
二、基本概率公式基本概率公式是指在n次试验中,事件A发生的次数除以总的试验次数n的比,用P(A)=n(A)/n表示。
当试验次数n很大时,可以用频率代替概率进行近似计算。
例如:投掷一枚硬币,正面朝上的概率为1/2。
三、排列与组合在概率计算中,排列和组合是很重要的概念。
排列是指从n个元素中,取出m(m≤n)个元素进行排成一行的操作,共有n(n-1)(n-2)……(n-m+1)种方法,记为A(n,m)。
组合是指从n个元素中,取出m(m≤n)个元素进行排列的操作,不考虑元素之间的先后顺序,共有C(n,m)=A(n,m)/m!种方法。
四、加法概率加法概率是指如果事件A和事件B不可能同时发生,即A∩B=∅,那么P(A∪B)=P(A)+P(B)。
例如:掷一颗骰子,出现1或2的概率为1/6+1/6=1/3。
五、乘法概率乘法概率是指如果事件A和事件B同时发生的概率为P(A∩B)=P(A)×P(B|A),其中P(B|A)表示在A发生的条件下B发生的概率。
例如:从一副扑克牌中先抽出一张牌后不放回,再从中抽出一张牌,则第一次抽出桃心的概率为13/52,第二次抽出桃心的概率为12/51,故两次抽出桃心的概率为(13/52)×(12/51)。
六、条件概率条件概率是指在事件A已经发生的条件下,事件B发生的概率,通常用P(B|A)表示。
例如:在一副扑克牌中,从中抽出一张牌,这张牌是红桃的概率为1/4,如果已知这张牌是红桃,再从中抽出一张牌是黑桃的概率为1/3,即在已知条件下的概率。
七、独立事件如果事件A和事件B的发生不影响对方发生的概率,则称事件A和事件B是独立事件,它们的关系表示为P(A∩B)=P(A)×P(B)。
初中概率与统计的重点知识点整理

初中概率与统计的重点知识点整理概率与统计是数学中的一门重要学科,旨在研究随机现象的规律性。
在初中阶段,学生需要掌握一些基本的概率与统计知识,以便能够理解和使用概率与统计的方法。
下面是初中概率与统计的重点知识点整理。
1. 随机事件与样本空间- 随机事件:概率论中的事件是指一个可能发生或不发生的结果。
例如,扔一次硬币,正面向上和反面向上都是可能的事件。
- 样本空间:样本空间是指一个随机试验中所有可能结果的集合。
例如,扔一次硬币,样本空间可以是{正面,反面}。
2. 概率的定义和性质- 概率:概率是指某一事件发生的可能性大小。
概率用一个介于0和1之间的数来表示,其中0表示不可能事件,1表示一定事件。
- 概率的性质:概率具有以下几个性质:- 非负性:概率不会是负数。
- 规范性:整个样本空间的概率为1。
- 加法规则:对于两个互不相容的事件A和B,它们的概率之和等于它们的并事件的概率。
- 互斥事件的加法规则:如果两个事件互斥,则它们的概率之和等于各自的概率之和。
3. 随机变量和概率分布- 随机变量:随机变量是指取决于随机试验结果的变量。
随机变量可以是离散的或连续的。
- 概率分布:概率分布是指随机变量在每个可能取值上的概率。
对于离散型随机变量,可以用概率分布函数或概率质量函数来描述。
对于连续型随机变量,可以用概率密度函数来描述。
4. 频率与概率- 频率:频率是指某一事件在一系列试验中出现的次数与总试验次数的比值。
当试验次数无限多时,频率趋近于概率。
- 概率与频率的关系:概率和频率都描述了事件发生的可能性,它们之间存在着一种近似关系。
当试验次数趋近于无穷大时,频率趋近于概率。
5. 统计描述- 统计描述:统计描述用于描述和总结数据的特征。
常见的统计描述方法包括平均数、中位数、众数和范围等。
- 平均数:平均数是指一组数据的总和除以数据个数。
平均数可以用于描述数据的集中趋势。
- 中位数:中位数是指将一组数据按照大小排序后,中间位置的数。
中考概率和统计知识点总结

中考概率和统计知识点总结一、概率的基本概念1.实验、随机现象和样本空间2.事件和事件的关系(包括互斥事件、对立事件等)3.概率的定义及其性质4.等可能概型二、概率的运算与应用1.概率的加法法则2.概率的乘法法则3.条件概率4.全概率公式和贝叶斯公式5.区间估计三、统计的基本概念1.数据的收集和整理2.数据的组织和展示(包括频数分布表、频数分布直方图等)3.平均数、中位数、众数等常用统计量的计算与应用4.极差、四分位数、标准差等常用离散程度的计算与应用四、统计的运算与应用1.抽样调查和总体推断2.关联图与线性回归线的绘制与分析3.相关系数与相关性分析4.统计问题的解决思路和方法五、典型例题解析通过分析和解答一些典型的例题,总结和归纳其中的解题思路和方法,帮助学生掌握应用概率和统计知识解决实际问题的能力。
其中,概率的基本概念是理解概率的基础。
实验、随机现象和样本空间是研究概率问题的起点,通过定义事件和事件的关系可以帮助学生理解事件的概率计算。
概率的定义及性质是概率题目的出发点,通过等可能概型的学习可以对概率有更深入的理解。
概率的运算与应用是概率题目的核心内容。
概率的加法法则和乘法法则是计算复杂概率事件的基本工具,条件概率是解决复杂概率问题的重要手段。
全概率公式和贝叶斯公式是处理复杂问题的常用公式。
区间估计是概率应用的重要方法,通过样本估计可以对总体进行推断。
统计的运算与应用主要包括抽样调查和总体推断、关联图与线性回归线的绘制与分析、相关系数与相关性分析等内容。
抽样调查和总体推断是通过样本对总体进行估计的方法,关联图和线性回归线可以帮助学生分析变量之间的关系,相关系数的计算和分析可以帮助学生评价相关性的强度和方向。
最后,通过解析典型例题可以帮助学生掌握概率和统计知识的解题思路和方法。
通过分析例题,可以发现一些常见的解题方法和技巧,帮助学生在考试中更好地应对各类概率和统计题目。
综上所述,中考概率和统计知识点主要包括概率的基本概念、概率的运算与应用、统计的基本概念、统计的运算与应用以及典型例题解析等内容。
中考统计与概率知识点大全

中考统计与概率知识点大全一、统计1.调查与数据收集-掌握调查的目的,懂得合理选取样本。
-掌握使用各种调查方法,如问卷调查、抽样调查等。
-熟练掌握数值资料和非数值资料的调查和收集方法。
2.数据整理与归纳-掌握清理数据的方法,如查漏补缺、整理排序等。
-能够使用表格、图表等工具整理数据。
-能够对数据进行分类、分组,运用逐次求和法进行观察和总结。
3.数据的表示与分析-掌握如何使用折线图、柱状图、饼图等不同形式的图表展示数据。
-能够根据图表进行数据分析,提取有效信息。
-能够通过数据分析,进行简单的预测和推测。
4.数据的描述统计-掌握数据的中心位置度量,如算术平均数、中位数等。
-掌握数据的离散程度度量,如极差、方差等。
-掌握数据的分布情况度量,如频率分布、频率分布直方图等。
5.数据的应用-能够运用所学知识解决实际问题,如调查数据的分析、市场需求的预测等。
-能够使用计算机软件辅助数据处理和分析。
二、概率1.随机事件与概率-掌握随机事件的概念,了解样本空间和事件的关系。
-掌握概率的定义和计算方法。
-能够根据随机现象的规律性求解概率。
2.集合与概率-掌握集合的基本概念和基本运算。
-掌握集合与概率的关系,能够根据集合的运算求解概率。
3.概率计算的方法-掌握事件的互斥与独立性质,能够根据互斥与独立求解概率。
-掌握事件的和、积和差、和事件的概率计算方法。
4.条件概率与事件的独立性-掌握条件概率的定义和计算方法。
-掌握事件的独立性概念和判定方法。
5.事件间的关系与扩展-掌握事件的包含与相等关系,能够根据事件的关系求解概率。
-了解事件的理论计算方法,如贝叶斯定理、全概率公式等。
-能够应用概率知识解决实际问题,如抽奖问题、生日问题等。
总结:。
中考复习初中数学概率与统计复习重点整理
中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
中考概率与统计总结知识点
中考概率与统计总结知识点概率与统计是数学的一个重要分支,也是生活中经常会用到的一种数学方法。
通过概率与统计的学习,我们可以更深入地了解生活中发生的事情,分析数据,做出合理的判断和预测。
在中考中,概率与统计是一个重要的考试内容,也是考查学生综合运用数学知识的重要环节。
下面我们来总结一下中考概率与统计的知识点。
一、概率1. 概率的基本概念概率是事件发生的可能性的大小。
常用P(A)表示事件A的概率。
概率的范围是[0,1],表示事件发生的可能性从不可能到一定发生。
事件的互斥与对立事件,互斥事件指的是两个事件不能同时发生,对立事件指的是两个事件至少有一个发生。
事件的和与积,事件的和指的是两个事件中至少有一个发生的概率,事件的积指的是两个事件同时发生的概率。
2. 概率的计算概率的计算公式:P(A) = 事件A发生的次数 / 总的可能性次数。
概率的计算方法:古典概率、几何概率、统计概率。
古典概率指的是在有限个元素的样本空间中,每个基本事件发生的可能性相等。
几何概率指的是利用几何图形来计算概率。
统计概率指的是利用统计方法来计算概率。
3. 概率的应用事件的独立性、相关性:当一个事件的发生不受另一个事件的影响时,两个事件是独立的,否则是相关的。
事件的概率运算:事件的交、并、差。
二、统计1. 统计的基本概念统计是一种数据的搜集、整理、分析和解释的方法。
通过统计可以了解数据的分布规律、发现数据的特点、进行数据的预测和判断。
常见的统计量:均值、中位数、众数、标准差等。
2. 统计分布离散型数据与连续型数据:离散型数据指的是数据的取值是一个个的分散的,连续型数据指的是数据的取值是一段范围内的。
频数分布表:将数据按照一定的间隔划分成若干组,然后统计每一组中数据的个数。
频率分布表:将频数除以数据的总个数得到频率,用来表示数据在每一组中出现的概率。
3. 统计图表直方图:用来表示数据的频数分布。
折线图:用来表示数据的趋势变化。
饼图:用来表示各部分所占的比例。
概率统计中考知识点总结
概率统计中考知识点总结1. 概率的基本概念概率是描述随机事件发生可能性大小的数值。
在概率统计中,我们通常用P(A)表示事件A发生的概率,该概率的取值范围是0≤P(A)≤1。
当P(A)=1时,表示事件A一定发生;当P(A)=0时,表示事件A一定不会发生;当0<P(A)<1时,表示事件A可能发生,但也可能不发生。
2. 概率的加法公式当事件A和事件B互斥时,它们的概率之和等于它们发生的并集的概率,即P(A∪B)=P(A)+P(B)。
当事件A和事件B不互斥,即存在交集时,加法公式可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
3. 概率的条件概率条件概率表示在已知事件B发生的条件下,事件A发生的概率。
它的计算公式为P(A|B)=P(A∩B)/P(B)。
条件概率的计算在很多实际问题中都有着重要的应用,比如医学诊断、金融风险管理等领域。
4. 概率的独立性两个事件A和B称为相互独立,如果它们的发生不会相互影响,即P(A|B)=P(A)或者P(B|A)=P(B)。
在概率统计中,独立事件的性质给予我们便利的计算条件,简化了问题的复杂性。
5. 随机变量和概率分布随机变量是取值不确定的变量,它可以是离散型的也可以是连续型的。
在概率统计中,我们通常用概率分布来描述随机变量的分布规律。
常见的概率分布包括二项分布、正态分布、泊松分布等,它们在实际问题中有着广泛的应用。
6. 统计推断统计推断是利用样本数据对总体特征进行推断和估计的过程。
在统计学中,我们通常使用点估计和区间估计来估计总体参数的值,同时利用假设检验来对统计推断进行检验。
7. 相关性和因果关系在概率统计中,我们也经常研究变量之间的相关性和因果关系。
相关性研究变量之间是如何随着变化而变化的规律,而因果关系则研究变量之间的因果关系。
这些研究成果在科学研究和实际问题中都有着重要的应用价值。
以上是概率统计中的一些重要知识点总结,概率统计在现代社会中有着广泛的应用,我们需要认真学习和掌握这些知识,以便更好地理解和应用在实际问题中。
中考统计与概率知识点大全
中考统计与概率知识点大全一、统计1.数据的收集和整理:-调查方法:抽样调查、完全调查。
-图表的制作:频数表、频率表、条形图、折线图、饼图等。
2.数据的分析和解读:-中心趋势:平均数、中位数、众数。
-发散程度:极差、方差、标准差。
-相关性分析:散点图、相关系数。
3.概率:-事件与样本空间:事件、样本空间、基本事件、对立事件。
-概率的定义和性质:概率的定义、概率的性质、互斥事件、对立事件。
-概率的计算:排列组合、加法原理、乘法原理、条件概率、独立事件。
4.事件的统计:-抽样:简单随机抽样、分层抽样、整群抽样。
-频率与概率:频率、频率分布、相对频率、长期频率转化为概率。
5.概率的应用:-事件的组合与分解:事件的并、交与差。
-概率的计算:事件的概率计算、互斥事件的概率计算、相互不独立事件的概率计算。
-事件的分类:确定事件、不确定事件、必然事件、不可能事件。
二、常见问题1.误差分析:-统计结果的误差分析:标准误差、置信区间。
2.统计图表的解读:-频数表与频率表:数据的分组与整理。
-条形图与折线图:数据的分布情况。
-饼图与扇形图:数据的占比情况。
3.概率计算:-排列组合问题:计算事件的可能性个数。
-加法原理与乘法原理:计算事件的概率。
-条件概率与独立事件:计算事件的概率。
三、解题思路1.分析问题:-确定问题是属于统计还是概率的范畴。
-确定所给数据的意义和目的。
2.思维灵活:-运用数学知识和思维方法解决问题。
-善于利用已知条件和问题的特点。
3.具体问题具体分析:-分析问题具体情况和要求。
-根据问题需求选择合适的统计或概率方法。
四、解题步骤1.阅读题目:-仔细阅读题目,了解问题的具体要求和限制条件。
-理解题目中所给的数据和条件。
2.分析问题:-根据题目的意义和目的,确定问题类型(统计或概率)。
-分析问题的具体情况和要求。
3.利用知识和方法:-运用已有的统计和概率知识和方法解决问题。
-根据题目的要求,选择适当的计算公式和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(填“甲”或“乙”).
4.某年6月上旬,厦门市最高气温如下表所示:
日期
1 2 3 4 5 6 7 8 9 10
最高气温(℃) 3
)
ﻩA、0 ﻩB、 1 3
ﻩC、 2 ﻩﻩD、1 3
2.下列事件为必然事件的是( )
A、打开电视机,它正在播广告
B、抛掷一枚硬币,一定正面朝上
C、投掷一枚普通的正方体骰子,掷得的点数小于 7
D、某彩票的中奖机会是 1%,买 1 张一定不会中奖
3.下列事件中,属于必然事件的是(
)
A.打开电视机,它正在播广告
(1)本次抽样调查的学生有_________名,其中选择曲目代号为 A 的学生占抽样总数的百分比是__ ______%; (2)请将图②补充完整; (3)若该校共有 1200 名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答 过程)
6.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉 馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不同口味粽子的喜爱情况, 在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
(4)若竞赛成绩 80 分(含 80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有 人.
5.为庆祝建党 90 周年,某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最 多的歌曲为每班必唱歌曲。为此提供代号为 A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将 采集的数据绘制如下两幅不完整的统计图。请根据图①,图②所提供的信息,解答下列问题:
27 32 33 30
那么,这些日最高气温的众数为 ℃.
5.一组数据 10,14,20,24.19,1 6 的极差是
。
6.袋子中有3个红球和 6 个白球,这些球除颇色外均完全相同,则从袋子中随机摸出一个球是白球的概率是
7.数据1,2,x,1, 2的平均数是 1,则这组数据的中位数是
。
8.抛掷一枚质地均匀的硬币 两次,正面都朝上的概率是_
初中数学-概率与统计题知识点 汇总-中考
———————————————————————————————— 作者: ———————————————————————————————— 日期:
2018 中考数学统计与概率
一、选择题
1.从 1,2,﹣3 三个数中,随机抽取两个数相乘,积是正数的概率是 (
.
9.甲、乙俩射击运动员进行10 次射击,甲的成绩是
环
7,7,8,9,8,9,10,9,9,9,乙的成绩
如图所示.则甲、乙射击成绩的方差之间关系是
S
2 甲
S
2 乙
(填“<”,“
=”,“>”).
1 9 08
7
三、解答题
1 2 3 4 5 6 7 8 9 10-
1.四张小卡片上分别写有数字 1、2、3、4.它们除数字外没有任次何区别,现将它们放在盒子里搅匀.
等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片
正面图案是中心对称图形的概率为(
)
A.错误! B.错误!
6.数名射击运动员第一轮比赛成绩如下表所示; 环数 7 8 人数 4 2
则他们本轮比赛的平均成绩是( ) A.7.8 环 B.7.9 环 C. 8.l 环 D.8.2环
7人 (((12) )3若)请“若一将该般以校”上和学两“优生幅秀有统”1计均2图优秀5%被00补0视人充为,一般___完达请不合格___2整标你0;成估%绩计,则此该次校测12486022436被试抽中数不 合 格取,的全学校生达一 般中标有的_学生优 秀有多少成 等人人达?级标绩;
4.某校为庆祝中国共产党 90 周年,组织全校 1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的 分布情况,从中随机抽取了部分学生的成绩进行统计分析,得到如下统计表:
分组
频数 频率
59.5~69.5 3
0.05
69.5~79.5
12
a
79.5~89.5 b
0.40
89.5~100.5 21
0.35
合计
c
1
根据统计表提供的信息,回答下列问题:
(1)a= ,b= ,c= ; (2)上述学生成绩的中位数落在 组范围内; (3)如果用扇形统计图表示这次抽样成绩,那么成绩在 89.5~100.5 范围内的扇形的圆心角为 度;
(1)请将表示成绩类别为“中”的条形统计图补充完整;
(2)在扇形统计图中表示成绩为“优”的扇形所对的圆心角为
度;
(3)学校九年级共有 600人参加这次数学考试,估计该校有多少名学生成绩可以达到优秀。
3.漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析, 将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信 息解答下列问题:
C.错误!
9 10 31
D.错误!
二、填空题
1.已知地球表面陆地面积与海洋面积的比约为 3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的
概率是
.
2.口袋中有 2 个红球和 3 个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是
_
.
3.甲、乙两个参加某市组织的省“农运会”铅球项目选拔赛,各投掷 6 次,记录成绩,计算平均数和方差的结
B.打开数学书,恰好翻到第50 页
C.抛掷一枚均匀的硬币,恰好正面朝上
D.一天有24 小时
4.九年级一班5名女生进行体育测试,她们的成绩分别为 70,80,85,75,85(单位:
分),这次测试成绩的众数和中位数分别是( )
A.79,85
B.80,79ﻩC.85,80
D.85,85
5.有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、
(1)随机地从盒子里抽取一张,求抽到数字 2 的概率;
(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,
并求抽到的数字之和为 5 的概率.
2.为了迎接 2015 年高中招生考试,某中学对全校九年级进行了一次数学摸底考试,并随机抽取了部分学生 的测试成绩作为样本进行分析,绘制成如下两幅不完整的统计图,请你根据图中所给的信息解答下列问题。