红外光谱 特征吸收谱带
红外光谱频率与官能团特征吸收峰总结表

三、炔烃
在 IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。
1、σC C H 该振动吸收非常特征,吸收峰位置在 3300—3310 cm-1,中等强度。 σN-H 值与 σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。
2、σ C C 一般
C C键的伸缩振动吸收都较弱。一元取代炔烃 RC CH
σ C C 出现在 2140—2100 cm-1,二元取代炔烃在 2260—2190 cm-1,当两个取
代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。当
处
于分子的对称中心时,σ C为C红外非活性。 3、σ C C H 炔烃变形振动发生在 680—610 cm-1。
四、芳烃
芳烃的红外吸收主要为苯环上的 C-H 键及环骨架中的 C=C 键振动所引起。
1、σC=O 1750~1735 cm-1 处出现(饱和酯 σC=O 位于 1740cm-1 处),受相邻基 团的影响,吸收峰的位置会发生变化。
2、σC-O 一般有两个吸收峰,1300~1150 cm-1,1140~1030 cm-1 十一、酰卤
σC=O 由于卤素的吸电子作用,使 C=O 双键性增强,从而出现在较高波数处, 一般在~1800cm-1 处,如果有乙烯基或苯环与 C=O 共轭,,会使 σC=O 变小,一 般在 1780~1740cm-1 处。 十二、酸酐
随着卤素原子的增加,σC-X 降低。如 C-F(1100~1000 cm-1);C-C(l 750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X 吸收峰的频率 容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物变 化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。 因此 IR 光谱对含卤素有机化合物的鉴定受到一定限制。 六、醇和酚 醇和酚类化合物有相同的羟基,其特征吸收是 O-H 和 C-O 键的振动频率。 1、 σO-H 一般在 3670~3200 cm-1 区域。游离羟基吸收出现在 3640~3610 cm-1, 峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于 3710 cm-1)。OH 是 个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一 般出现在 3550~3200 cm-1。
精品现代材料分析-红外吸收光谱介绍PPT课件

R1 C
H
H 3040~3010
C R2
R2 3040~3010
C H
1420~1410 1420~1410
895~885
990 910 840~800
965
730~675
1658~1698 1645~1640 1675~1665 1675~1665 1665~1650
(3)炔烃
末端炔烃的C-H伸缩振动一般在3300 cm-1处 出现强的尖吸收带。
对于伸缩振动来说,氢键越强,谱带越宽,吸收强度越 大,而且向低波数方向位移也越大。
对于弯曲振动来说,氢键则引起谱带变窄,同时向高波 数方向位移。
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500
1620-1590
1650
3400
1650-1620
HO O
苯环取代类型在2000~1667cm-1和 900~650cm-1的图形
邻、间及对位二甲苯的红外光谱
(5)醇和酚
在稀溶液中,O-H键的特征吸收带位于3650~3600 cm-1;在纯液体或固体中,由于分子间氢键的关系, 使这个吸收带变宽,并向低波数方向移动,在 3500~3200 cm-1处出现吸收带。
~17ห้องสมุดไป่ตู้0
~1760(游离态)
(5)芳环、C=C、C=N伸缩振动区 1675~1500cm-1
① RC=CR′ 1620 1680 cm-1 强度弱, R=R′(对称)时,无红外活性。
② 芳环骨架振动在1600~1450 cm-1有二到四 个中等强度的峰,是判断芳环存在的重要标 志之一。
红外光谱与分子结构

红外光谱与分子结构一、红外光谱的特征性通过对大量标准样品的红外光谱的研究,处于不同有机物分子的同一种官能团的振动频率变化不大,即具有明显的特征性。
这是因为连接原子的主要为价键力,处于不同分子中的价键力受外界因素的影响有限!即各基团有其自已特征的吸收谱带。
例:2800~3000cm-1:-CH3特征峰;1600~1850cm-1:-C=O 特征峰;基团所处化学环境不同,特征峰出现位置变化:—CH2—CO—CH2—1715cm-1酮—CH2—CO—O—1735cm-1酯—CH2—CO—NH—1680cm-1 酰胺二、红外光谱的分区习惯上把化合物的4000~400cm-1范围的中红外区的红外光谱划分为四个区域。
1、X–H 伸缩振动区:4000~2500cm-1,X=O、N、C、S,…;2、叁键及累积双键伸缩振动区:2500~1900cm-1;3、双键伸缩振动区:1900~1200cm-1;4、X–Y伸缩振动,X–H 变形振动区:<1650cm-1;指纹区:1330~650cm-1,X–C(X≠H)键的伸缩振动及各类变形振动。
特征区:某些官能团的伸缩振动。
特点:吸收峰比较少,同一官能团存在于不同的化合物中,吸收峰位置变动不大,特征性较强,可以用来鉴定官能团。
指纹区:某些分子的骨架振动。
特点:振动频率对整个分子结构环境的变化十分敏感,分子结构的细微变化,引起该区域的变化十分地灵敏,可用于鉴别不同化合物。
1、X–H 伸缩振动区(4000~2500cm-1)X代表O、N、C、S时,对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃及饱和烃类的O–H、N–H、C–H伸缩振动。
(1)O–H醇与酚:游离态(浓度小),3640~3610cm-1,峰形尖锐;缔合(浓度大),3300cm-1附近,峰形宽而钝。
羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽。
(2)N–H胺类:游离,3500~3300cm-1;缔合,吸收位置降低约100cm-1。
红外吸收光谱特征峰特别整理版

表典型有机化合物的重要基团频率(/cm-1)化合物基团X-H伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区烷烃-CH3asCH:2962±10(s) asCH:1450±10(m)sCH:2872±10(s)sCH:1375±5(s)-CH2-asCH:2926±10(s)CH:1465±20(m)sCH:2853±10(s)CH:2890±10(s)CH:~1340(w)烯烃CH:3040~3010(m)C=C:1695~1540(m)CH:1310~1295(m)CH:770~665(s)CH:3040~3010(m)C=C:1695~1540(w)CH:970~960(s)炔烃-C≡C-HCH:≈3300(m)C≡C:2270~2100(w)芳烃CH:3100~3000(变)泛频:2000~1667(w)C=C:1650~1430(m)2~4个峰CH:1250~1000(w) CH:910~665单取代:770~730(vs)≈700(s)邻双取代:770~735(vs) 间双取代:810~750(vs)725~680(m)900~860(m) ~对双取代:860~790(vs)醇类 R-OHOH :3700~3200(变)OH :1410~1260(w)CO :1250~1000(s)OH :750~650(s)酚类 Ar-OHOH :3705~3125(s)C=C :1650~1430(m) OH :1390~1315(m)CO :1335~1165(s)脂肪醚 R-O-R 'CO :1230~1010(s)酮C=O :≈1715(vs)醛CH :≈2820,≈2720(w)双峰C=O :≈1725(vs)羧酸OH :3400~2500(m)C=O :1740~1690(m)OH :1450~1410(w)CO :1266~1205(m)酸酐C=O :1850~1880(s) C=O :1780~1740(s)CO :1170~1050(s)酯泛频C=O :≈3450(w)C=O :1770~1720(s) COC :1300~1000(s)胺-NH 2NH2:3500~3300(m) 双峰NH :1650~1590(s,m) CN (脂肪):1220~1020(m,w)CN (芳香):1340~1250(s)-NHNH :3500~3300(m)NH :1650~1550(vw)CN (脂肪):1220~1020(m,w)CN (芳香):1350~1280(s)酰胺asNH:≈3350(s)C=O:1680~1650(s)CN:1420~1400(m)sNH:≈3180(s)NH:1650~1250(s)NH2:750~600(m)NH:≈3270(s)C=O:1680~1630(s)NH+CN:1750~1515(m)CN+NH:1310~1200(m)C=O:1670~1630酰卤C=O:1810~1790(s)腈-C≡NC≡N:2260~2240(s)硝基化合物R-N02NO2:1565~1543(s)NO2:1385~1360(s)CN:920~800(m)Ar-NO2NO2:1550~1510(s)NO2:1365~1335(s)CN:860~840(s)不明:≈750(s)吡啶类CH:≈3030(w)C=C及C=N:1667~1430(m)CH:1175~1000(w) CH:910~665(s)嘧啶类CH:3060~3010(w)C=C及C=N:1580~1520(m)CH:1000~960(m) CH:825~775(m)*表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。
红外光谱特征吸收峰

红外光谱特征吸收峰物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。
通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
各类有机化合物的红外吸收

一、第一峰区(4000 ~2500 cm-1)
为X-H伸缩振动区,X可以是O、N、 C 或 S 等原子。
1、O--H的伸缩振动
出现在3650 ~3200 cm-1 范围内,它可以 作为判断有无醇类、酚类和有机酸类的重要 依据。
(1)醇和酚 游离态:在3650 ~3590 cm-1 处出现中等强 度吸收带,峰形尖锐。 缔合态:在3350 cm-1 出现一个宽而强的吸 收峰。 (2) 羧酸 缔合态:在3300~2500 cm-1 出现一个宽吸 收峰。
甲苯
四、第四峰区( 1500 ~ 600 cm-1)
为X-C(X≠H)键的伸缩振动及各类 弯曲振动区。 1、C-H弯曲振动 烷烃:
-CH3 as 1450 cm-1(m), s 1380 cm-1(w)
烯烃:
=C-H的面外弯曲振动 对判断双键的取代类型有用 CH面外弯曲振动吸收位置 (cm-1) 990(反),910(顺) 890 730-650 970
1-己炔
正丁腈
三、第三峰区(2000~1500 cm-1)
为双键伸缩振动区和N-H的弯曲振动区。
该区域主要包括三种伸缩振动: 1、C=O伸缩振动 出现在1900~1650 cm-1 ,是红外光谱中特 征的且往往是最强的吸收,以此很容易判断酮 类、醛类、酸类、酯类以及酸酐等有机化合物。
羰基化合物的C=O伸缩振动吸 收峰位置
2、 N-H伸缩振动
胺和酰胺的N-H伸缩振动出现在 3500~3150 cm-1 弱或中等强度的吸收带。 胺类: 伯胺----- 3500,3400 cm-1 仲胺----- 3400 cm-1 酰胺类: 伯酰胺----- 3350,3150 cm-1 仲酰胺----- 3200 cm-1 铵盐:3200~2200 cm-1 强、宽、散吸收带
红外吸收光谱特征峰特别整理版

红外吸收光谱特征峰特别整理版红外吸收光谱是一种常见的分析技术,可以通过观察物质在红外辐射下吸收的特定波长的光来确定它的结构和组成。
红外吸收光谱在许多领域都得到广泛应用,包括有机化学、药物研发、食品安全等。
在红外吸收光谱中,一些特定的吸收峰代表了特定的官能团或化学键,因此可以用于识别和鉴定物质。
下面是一些常见的红外吸收光谱特征峰的整理。
1. 羟基(OH)吸收峰:羟基的吸收峰通常出现在3200-3600 cm^-1的范围内。
在醇、酚和羧酸等化合物中,羟基的振动可产生广泛的吸收峰。
2. 胺基(NH)吸收峰:胺基的吸收峰通常出现在3100-3500 cm^-1之间。
在胺类化合物中,氨基的振动会引起这些吸收峰的出现。
3. 羧基(COOH)吸收峰:羧基的吸收峰通常出现在1700-1750 cm^-1之间。
在羧酸和酰胺等化合物中,这些吸收峰代表了羧基的存在。
4. 醛基(C=O)吸收峰:醛基的吸收峰通常出现在1700-1750 cm^-1之间。
在醛和酮等化合物中,醛基的振动会产生这些吸收峰。
5. 烯烃(C=C)吸收峰:烯烃的吸收峰通常出现在1600-1680 cm^-1之间。
在芳香烃和烯烃等化合物中,双键的振动会引起这些吸收峰的出现。
6. 芳香环(C-H)吸收峰:芳香环的吸收峰通常出现在3000-3100cm^-1之间。
在含芳香环的化合物中,芳香环上的氢原子的振动会产生这些吸收峰。
7. 硝基(NO2)吸收峰:硝基的吸收峰通常出现在1500-1600 cm^-1之间。
在含硝基的化合物中,硝基的振动会引起这些吸收峰的出现。
8. 卤素(C-X)吸收峰:卤素的吸收峰通常出现在500-800 cm^-1之间。
在含卤素的化合物中,卤素的振动会产生这些吸收峰。
上述仅是一些常见的红外吸收光谱特征峰,实际上还有很多其他化学键和官能团的吸收峰可供分析使用。
红外吸收光谱是一种非常有用的工具,可用于鉴定和定量分析不同物质。
通过观察红外光谱图中的吸收峰,我们可以获得有关被测物质结构和组成的重要信息,从而在科学研究和工业生产中得到广泛应用。
红外光谱 (2)

3500-3300 3450-3200 3500-3300
3000-2500
弱而稍尖 弱而尖 可变
强而宽(特征)可超出3000cm-1
13:30:54
讨论: (1)O-H伸缩振动在3700-3200cm-1区出现一强锋,它是
判断分子中有无-OH的重要依据。
(2)游离酚中的O-H伸缩振动位于3700-3500cm-1区段的低 频一端,该锋锋形尖锐,且没有其他吸收的干扰(溶剂中微量 水吸收位于3710cm-1),因此很容易识别。
常以二聚体或多聚体的形式存在。吸收峰向低波数方向移动,
在3000-2500cm-1区出现一个强而宽的峰。这个峰通常和脂肪
烃的C-H生缩振动峰重叠,只有在测定气态或非极性溶剂的稀
溶液时,方可看到游离的-OH峰,在3540cm-1附近出现。
13:30:54
(5)无论游离的与缔合的N-H,其峰强都比形成氢键缔合的OH峰弱,且峰稍尖锐些。 N-H吸收峰的数目与氮原子上取代 基的多少有关,伯胺、伯酰胺显双峰,且两峰强度近视相等 ;仲胺、仲酰胺、酰亚胺只出现一个吸收峰;叔胺、叔酰胺 不显峰。
13:30:54
二、分子结构与吸收峰
1、 0—H、N—H伸缩振动区(40003000 cm-1 )
基团类型
波数(cm-1 ) 峰强度
注
OH
3700-3200
游离O-H 3700-3500
缔合O-H 3450-3200
强(特征) 较强、尖锐 强、宽(特征)
NH 游离N-H 缔合N-H
O
C
OHNH2 -COOH
醛基C-H
波数(cm-1) 2960及2870 2930及2850
2890 2830-2810 2720-2750 2780-2765